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Introduction
The human genome carries 57 genes encoding active cytochrome 

P450 enzymes. About 6-8 of these genes encode P450 enzymes active 
in the metabolism of clinically used drugs [1,2]. A large majority of 
these genes are polymorphic and alleles causing defective, diminished, 
qualitatively altered or increased drug metabolism have been described 
(See The Human Cytochrome P450 (CYP) Allele Nomenclature 
Database; www.cypalleles.ki.se). This variation is of importance for 
explaining interindividual differences in drug metabolism, drug 
efficacy and adverse drug reactions. Because of the major function for 
metabolism of exogenous compounds in the hepatic detoxifications 
processes these polymorphisms do not cause any major alterations in 
the phenotype of the individual. Accordingly no major phenotype in 
KO mice for any cytochrome P450 gene encoding hepatic enzymes 
active in drug metabolism has been described, although phenotypic 
changes have been seen in transgenic mice overexpressing some Cyps. 
The endogenous role in metabolism of the P450s in question is mainly 
related to oxidation of cholesterol, bile acids, steroid hormones and 
fatty acids [1]. Thus in mice transgenic for CYP3A4, disturbances in 
lactation of female mice are seen due to increased estradiol metabolism 
[3]. The area of endogenous roles of the P450 polymorphism has 
however not been completely unraveled. Phenotypes not obvious might 
however be related to such polymorphisms and indeed many examples 

of associations between such genetic variation and altered endogenous 
functions and phenotypes have been presented in the literature. Specific 
interesting aspect concerns the endogenous roles of cytochrome P450s 
expressed in the brain [4]. We here present recent results obtained 
regarding the CNS specific functions of CYP2D6 and CYP2C19 and 
possible implications for CNS disease.

CYP2D6
CYP2D6 is highly polymorphic and in Caucasians 7-10% are 

defective for expression of this enzyme (PMs) whereas 2-10% carry 
more than one functionally active CYP2D6 gene on each allele and 
are ultra-rapid metabolizers (UMs) [5,6]. The enzyme has been 
suggested to be active in the metabolism of the endogenous compounds 
5-methoxytryptamine, anandamide, progesterone and tyramine [4]
(Table 1). CYP2D6 mRNA and protein has been found in neurons in
numerous human brain areas, including e.g. thalamus, hypothalamus,
hippocampus, substantia nigra, cerebellum, and in several layers of the
frontal neocortex [7,8]. The fact that CYP2D6 is expressed in the brain
raises questions regarding its potential functions within the brain and
more specifically in the neurons. It is likely that regional expression of
CYP2D6 affects local metabolism of CNS-acting drugs metabolized
by the enzyme that in turn can affect treatment outcome. However,
CYP2D6 has in the last decade also been suggested to be involved in
endogenous metabolism of e.g. trace amines and neurosteroids, which
implicates a role in normal brain homeostasis as well. Several studies
have shown that CYP2D6 expressed in liver and brain can metabolize
tryptamines into both serotonin and dopamine [9,10], and furthermore 
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Substrates CYP2C19 CYP2D6

Exogenous

Amitriptyline Clomipramine 
Citalopram

Diazepam Mephenytoin
Moclobemide

Sertraline

Antiarrhythmics
Antipsychotics
Beta blockers

Codeine
Dextromethorphan

SSRIs
Tricyclic antidepressants

Endogenous

Arachidonic acid
Docosahexaenoic acid
Eicosapentaenoic acid

Estradiol
Estrone

Progesterone
Testosterone

Anandamide
5-Methoxytryptamine Pregnenolone 

Progesterone
Serotonin

Testosterone
Tyramine

Table 1: Some CNS active substrates for CYP2C19 and CYP2D6.
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metabolize the neurosteroid progesterone [11,12]. Further supporting 
this hypothesis is the CYP2D6 transgenic mouse model, displaying 
brain expression of the enzyme, displaying significantly higher 
serotonin levels in several brain regions, including the cerebellum and 
hippocampus [13].

In vitro studies also suggest that CYP2D6 is involved in the 
transformation of other neurosteroids like testosterone [14] and 
pregenolone [15]. Additionally, CYP2D6 has also been suggested 
to be involved in the endocannabinoid system within the CNS due 
to its ability to metabolize anandamide and its derivatives [16]. The 
physiological significance of such metabolism is however still unclear 
and the affinities for CYP2D6 enzyme by the compounds suggested 
might in many cases not be appropriate for significant metabolism 
under physiological conditions.

Psychopathology and behavior

Associations between CYP2D6 genotypes and personality traits 
were one of the first indications that CYP2D6 might have endogenous 
functions apart from its important role in drug metabolism.In one of 
the first reports it was shown that poor metabolizers displayed higher 
impulsivity-related traits [17]. Further studies have found similar 
traits among poor metabolizers [18] whereas others have found 
poor metabolizers to be more anxiety-prone and less successful in 
socialization, when compared with extensive metabolizers [19,20]. The 
inconclusive results could be explained by the different ethnicities of the 
populations and methods used but do however suggest that CYP2D6 
might have important endogenous functions in the human brain.

Furthermore, the ultra-rapid metabolizer phenotype where the 
subjects carry 3 or more active CYP2D6 genes has been associated with 
higher suicidal risk [21,22] as well as increased suicidal behavior among 
individuals with eating disorders [23]. The number of active CYP2D6 
genes has been associated with higher perfusion rates in the thalamus 
and the right hippocampus among healthy human subjects during 
resting [24] and lower perfusion rates in the cuneus and precuneus 
during cognitive tasks [25]. This provides an interesting mechanistic 
link to the findings concerning a relationship to suicidality, although 
as a whole these results have to be reproduced in larger independent 
cohorts before causality can be concluded.

Interestingly, an increased risk for Parkinson’s disease among 
CYP2D6 poor metabolizers was recently described in a large meta-
analysis [26]. Poor metabolizers furthermore displayed a better capacity 
to vigilance and alertness when exposed to a specific assignment 
and performed better in spatial memory tasks [27]. The displayed 
differences in neurocognitive function and perfusion rates display 
direct effects of CYP2D6 polymorphism on brain function. However, 
the basis for a CYP2D6 dependent influence on brain function remains 
unknown. CYP2D6 is very active in the metabolism of CNS active 
drugs, preferentially those containing basic nitrogens, so it might 
be suggested that the endogenous CYP2D6 substrates have similar 
structures and act as ligands to receptors within e.g. the serotonergic 
and dopaminergic systems.

CYP2C19
CYP2C19 is an important drug metabolizing enzyme involved 

in the metabolism of approximately 7-10% of all drugs used on the 
market today demonstrating broad substrate specificity [2,28]. The 
CYP2C19 gene, like many other CYP genes, is highly polymorphic. 
This polymorphism influences both blood plasma levels of drugs 
metabolized by CYP2C19 but also treatment outcome [29-32]. Like 

CYP2D6, CYP2C19 has a broad substrate specificity and is involved 
in the metabolism of many different classes of psychotropic drugs, 
including selective serotonin reuptake inhibitors e.g. sertraline [33,34] 
and citalopram [35,36], tricyclic antidepressants like amitriptyline 
[37] and clomipramine [38], and the monoamine oxidase inhibitor 
moclobemide [39]. CYP2C19 is furthermore involved in the metabolism 
of benzodiazepines e.g. diazepam [40] and the anticonvulsant drug 
mephenytoin [41,42] (Table 1).

Most studies investigating the effects of CYP2C19 polymorphism 
have been focused on the impact of drug plasma levels and related issues 
and therefore relatively little is known regarding endogenous effects 
of the CYP2C19 genotypes without drug challenge. However, some 
studies have suggested that CYP2C19 polymorphism also could play a 
role in predicting personality traits and depressive symptoms [43-45]. 
The suggested effect of CYP2C19 polymorphism on personality traits 
and depressive symptoms proposes that CYP2C19 is involved in the 
metabolism of endogenous substrates as well.

Endogenous substrates

Indeed, relatively few studies have investigated if CYP2C19 could 
be involved in the metabolism of endogenous compounds and due to 
its broad substrate specificity this is likely. In vitro studies performed in 
human liver microsomes have suggested CYP2C19 to be involved in 
the metabolism of steroid hormones. CYP2C19 is shown to effectively 
catalyze the 17β-hydroxy dehydrogenation of estradiol into estrone 
[46] and furthermore to contribute to the formation of the estrone 
metabolite 16α-OH-estrone [47]. CYP2C19 has been suggested to 
metabolize progesterone into mainly 21-OH-progesterone but also 
to some extent 16α-OH-progesterone [48]. Besides being involved in 
the metabolism of estradiol and progesterone, CYP2C19 has also been 
shown to oxidize testosterone into mainly androstenedione, but also to 
a lesser extent, 6β-, 16β-, and 2β-OH-testosterone [48]. In conclusion, 
several studies show that CYP2C19 can metabolize different steroid 
hormones. However, effects connecting CYP2C19 polymorphism with 
hormone levels have so far not been investigated in vivo.

Most of these steroid hormones are known to be active and also 
synthesized within the CNS. Their functions are diverse and important 
for normal brain development and for postnatal brain maturation 
and plasticity [49-51]. Thus, there might be a role for CYP2C19 in the 
metabolism of CNS localized steroid hormones.

Besides steroids, CYP2C19 has been suggested to be involved in 
the metabolism of several different polyunsaturated fatty acids e.g. 
arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid 
[52,53]. Some studies have also proposed that CYP2C19 is important 
in the metabolism of the exogenous cannabinoid cannabidiol, thus 
suggesting that other endogenous cannabinoids could be potential 
substrates as well [54,55]. However this area of research need to be 
extended and confirmed before any firm conclusions can be drawn. 
Nevertheless the proposed substrates are highly relevant and the 
CYP2C19 dependent metabolism of these might possibly explain 
the associations seen between CYP2C19 polymorphism and human 
phenotypes as further emphasized below.

Psychopathology and behavior

The first studies on associations between CYP2C19 polymorphism 
and human phenotypes, without a drug challenge, investigated 
personality traits using the Temperament and Character Inventory 
(TCI) [43,44]. It was initially suggested, in a cohort of healthy Japanese, 
that CYP2C19 homozygous extensive metabolizers had a lower 
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score in harm avoidance (HA) compared to heterozygous extensive 
metabolizers and poor metabolizers [44]. This report proposes that 
higher CYP2C19 enzymatic activity is associated with a more carefree, 
outgoing, and optimistic personality. Other studies have furthermore 
shown that high scores in HA are strongly associated with depression 
and can also predict MDD [56-58].

Another study, also investigating healthy Japanese subjects, found 
that female CYP2C19 poor metabolizers scored significantly lower 
on the dimensions reward dependence, cooperativeness, and self-
transcendence, compared to extensive metabolizers. Individuals with 
low scores in cooperativeness are more socially intolerant, unhelpful, 
and opportunistic [43] and has also been connected to a current state of 
depression [56]. Individuals with low scores in reward dependence are 
on the other hand more cold, practical, and withdrawn and low scores 
in self-transcendence are associated with an impatient, unimaginative, 
and proud personality [43].

The results from these two studies are rather inconclusive, but do 
however reveal some common aspects since  CYP2C19 poor metabolizers 
displayed high scores in HA and low scores in cooperativeness, 
previously shown to associate with depression. However, the observed 

gender differences and low number of participants encourages for these 
studies to be reproduced in larger cohorts and also in other ethnic 
groups.

Apart from being connected to personality traits CYP2C19 
polymorphism has also been associated with depressive symptoms. 
Subjects from the Swedish twin registry were assessed using the center 
for epidemiologic studies depression (CES-D) scale. The CES-D 
scale measures depressive symptoms and consists of four subscales 
that together form the total score (T1) with higher scores indicating 
higher levels of depressive symptoms during the last week [59]. This 
study suggests that poor metabolizers have lower depressive symptoms 
based on their significantly lower T1 scores, and lower scores on the 
subscales depressed mood, and psychomotor retardation and somatic 
complaints, compared to extensive metabolizers [45].

Brain expression of CYP2C19
Expression of CYP2C19 in humans has long been thought to be 

restricted to the liver and small intestine [60-62]. Recent preliminary 
studies of human fetal brain samples did however show relatively high 
cortical expression levels of CYP2C19, around 0.5% of that seen in adult 
liver. Transgenic mice for the human CYP2C19 gene also displayed 

A. Developmental brain expression of CYP2C19 B. Anxiety-like behavior in CYP2C19 transgenic mice

D. Altered hippocampal integrity in CYP2C19 trangenic miceC. Increased stress sensitivity in CYP2C19 trangenic mice

Increased reactivity to novel environment:
- increased mobility in the open-field test

Increased reactivity to short term stressor:
 - reduced immobility in the tail-suspension test

Adult mice spent less time in the light compartment
when exposed to the light-dark box

Wt

CYP2C19

Figure 1: Phenotypes described for the human CYP2C19 transgenic mouse.
A. CYP2C19 mRNA expression was unexpectedly seen specifically in the brain during embryonic and fetal development in the CYP2C19 transgenic mouse. 
Brain CYP2C19 mRNA expression peaked at embryonic day 18, with a 6-fold higher expression in brain compared to liver but the expression silenced after birth. 
Preliminary data indicated that this brain expression of CYP2C19 occurs during fetal development of human brain as well. The morphological brain phenotype 
at postnatal day 0 in mice homozygous for the genetic insert (CYP2C19) compared to a Wt brain is presented. The CYP2C19 homozygous mice displayed an 
extensive morphological phenotype with complete callosal agenesis and a less developed and smaller hippocampal formation compared to Wt litter mates, changes 
indicated by arrows in the images.
B. Adult CYP2C19 transgenic mice displayed an increased anxiety-like behavior as measured by the light-dark box. They spent significantly less time in the light 
compartment compared to Wt litter mates, thus indicating an anxiogenic-like phenotype. 
C. Adult CYP2C19 transgenic mice displayed an increased reactivity to stressful situations as displayed by their behavior in the tail-suspension test and in the 
open-field. They had an increased total distance travelled in the open-field compared to Wt controls and a significant reduction in immobility time was recorded in 
adult transgenic mice in the tail-suspension test. 
D. Adult CYP2C19 transgenic mice showed a smaller brain and hippocampal volumes as measured by magnetic resonance imaging. Furthermore was the neuron 
population within the hippocampal formation severely affected with e.g. reduced number of immature neurons. In response to acute stress an increased neuronal 
activation (increased c-fos expression) was observed in the hippocampus of the transgenic mice thus indicating an altered stress response of the hippocampus in 
these mice. All data are adapted from [62].
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specific brain expression of CYP2C19 during fetal life that is completely 
silenced after birth [63]. This suggests that CYP2C19 expression occurs 
as a peak in the CNS during fetal life and might then exert endogenous 
functions of importance for the development of the brain.

CYP2C19 transgenic mouse model

The transgenic mouse model for the human CYP2C19 gene 
displays some interesting phenotypes. High expression of the enzyme 
is lethal, with pups dying only a few days after birth. These mice 
display complete callosal agenesis and a severely underdeveloped 
hippocampus. Mice with fewer copies of the insert, possibly more 
closely resembling the expression seen in human rapid metabolizers, 
displayed no obvious neonatal disturbances of brain morphology. 
These mice did however show a behavioral phenotype in adult life, 
with increased stress sensitivity and increased anxiety-like behavior, 
as described in Figure 1 [63]. Stressful life events and stress sensitivity 
are major risk factors for psychiatric disease making this model highly 
interesting for investigating systems that are involved in regulating the 
stress response [64,65]. The CYP2C19 transgenic mice furthermore 
showed a hippocampal phenotype as adults, with a smaller and more 
stress sensitive hippocampal formation that furthermore contained 
a drastically reduced number of immature (double-cortin positive) 
neurons. The hippocampal formation has many critical functions 
including emotional processing, stress regulation, but also in learning 
tasks and memory formation [66-69]. Furthermore, the maturation 
and formation of new neurons within the hippocampus has been 
shown to be critical for normal hippocampal function [70,71] and the 
disturbances seen in the mouse model could be the explanation for the 
displayed smaller hippocampus. Reduced hippocampal volumes are 
commonly observed in several neuropsychiatric disorders including 
post-traumatic stress disorder [72], schizophrenia [73,74], and major 
depressive disorder [75,76].

So even though it is likely that CYP2C19 enzymatic activity affects 
fetal brain development, a hippocampal and behavioral phenotype does 
not fully develop until young adulthood in the transgenic mice, similar 
to major depressive disorder and other neuropsychiatric disorders in 
humans were the manifestation generally occurs at this age [77,78]. 
A role of CYP2C19 in the metabolism of endogenous substances 
during brain development seems to be a likely explanation for the 
phenotypes observed in the transgenic mouse model but the identities 
of these substances remain to be discovered. The CYP2C19 transgenic 
mouse model indeed suggests that this enzyme is involved in the 
transformation of endogenous substrates involved in important brain 
developmental processes. These data are interesting and in line with 
the previously described link between the CYP2C19 polymorphism and 
depressive symptoms. One can speculate that the CYP2C19 phenotypes 
poor and rapid metabolizers have dissimilarities in their brain functions 
due to the presence of different levels of CYP2C19 during human brain 

development. Studies focused on this aspect in the developing human 
brain would be of severe interest in the future.

Conclusions
Psychotropic drug metabolizing enzymes, including cytochrome 

P450s, are present in the brain [79,80] where they not only could 
contribute to local drug metabolism but also affect local biochemical 
homeostasis. CYPs, especially CYP2D6 and CYP2C19, are suggested to 
be involved in the transformation and metabolism of many endogenous 
substances including neurotransmitters and neurosteroids. Liver and 
brain levels of CYPs are highly dependent on genetic polymorphism 
which causes interindividual differences in drug levels and response. 
However, interindividual differences in local brain expression of these 
enzymes might also explain the reported associations between genetic 
polymorphism of e.g. CYP2D6 and CYP2C19 and personality traits, 
affective behaviour, and vulnerability to neuropsychiatric disorders as 
summarized in Table 2. This might raise some ethical issues with regard 
to the genetic tests recommended to determine treatment outcome 
and dose adjustments of many drugs metabolized by theses enzymes. 
However at the present stage such links are still not evidently shown 
and more research is needed before we can conclude that this would 
constitute an issue.
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