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Cancer is a Global Public Health Problem

Cancer is a leading cause of mortality worldwide. It is a group
of diseases characterized by the uncontrolled growth and spread of
abnormal cells with accumulated genetic alterations that promote
cancerous initiation, development, growth, and metastasis [1,2].
According to estimates from the International Agency for Research
on Cancer (IARC), there were 12.7 million new cancer cases in 2008
worldwide, of which 5.6 million occurred in developed countries and
7.1 million in developing countries [3]. The corresponding estimates
for total cancer deaths in 2008 were 7.6 million (about 21,000 cancer
deaths a day), 2.8 million in developed countries and 4.8 million in
developing countries [3,4]. Worldwide, almost 32.5 million people
diagnosed with cancer within the five years previously were alive at the
end of 2012. Breast cancer is the most frequently diagnosed cancer and
the leading cause of cancer death among females, accounting for 23%
of the total cancer cases and 14% of the cancer deaths. Lung cancer is
the leading cancer site in males, comprising 17% of the total new cancer
cases and 23% of the total cancer deaths. By 2030, the global burden
is expected to grow to 21.4 million new cancer cases and 13.2 million
cancer deaths simply due to the growth and aging of the population,
as well as reduction in childhood mortality and deaths from infectious
diseases in developing countries [3]. A total of 574,743 cancer-related
deaths were recorded in 2010 in the United States (US), and cancer is
the second leading cause of death after heart diseases. One in 4 deaths
in the US is due to cancer. A total of 1,665,540 new cancer cases and
585,720 cancer deaths are estimated to occur in the US in 2014 [5]. This
means that more than 4,500 new cancer will be diagnosed each day
and about 1,600 Americans will die each day in 2014. During the most
recent five years for which there are data (2006-2010), cancer incidence
rates in the US declined slightly in men (by 0.6% per year) and were
stable in women, while cancer death rates decreased by 1.8% per year
in men and by 1.4% per year in women. In the UK, more than 331,000
people were diagnosed with cancer in 2011 (i.e. 910 people every day).
In the UK, there were around 159, 000 deaths from cancer in 2011, with
lung, bowel, breast and prostate cancers together accounting for almost
half of all cancer deaths.

Cancer Chemotherapy Often Fails due to Drug
Resistance and Severe Organ Toxicities

Cancer is treated with surgery, radiation, chemotherapy, hormone
therapy, immune therapy, and targeted therapy [6-8]. Cancer
chemotherapy attempts to eradicate or functionally disable tumor cells
by the use of synthetic and/or natural compounds while preserving
normal cells. Chemotherapeutic agents can eliminate tumor cells by
direct cytotoxicity, activating host immune response, inhibiting the
proliferation processes of tumor cells and inducing apoptosis. However,
they are characterized by significant interindividual variations in
pharmacokinetics (i.e. clearance and half-life) and pharmacodynamics
(i.e. therapeutic responses and drug toxicities) [6,9-13]. This will make
cancer chemotherapy unsuccessful and the outcomes are unpredictable

in patients. Such variability is partially due to genetic factors arising
from both tumor and noncancerous cells that lead to alterations in
drug metabolism and transport, and/or drug targets (e.g. receptors
or signaling transduction proteins) [14]. Chemotherapeutic agents
typically have a narrow margin of safety, in that the ratio of the dose
associated with antitumor efficacy and the dose associated with toxicity
is small. These drugs are usually prescribed at a maximum tolerated
dose in order to achieve maximum cancer cell death; as such toxicity
often is unavoidable, since there are frequently only subtle differences
in the genome of cancer and normal host cells.

Cancer chemotherapy drugs have a high rate of failure because
they usually kill only specific types of cancer cells within a tumor or
the cancer cells mutate and become resistant to the chemotherapy.
In addition to tumor resistance, severe organ toxicities are also an
important reason for chemotherapy failure when most anticancer drugs
cannot selectively kill tumor cells only.

Pharmacogenes in Fluoropyrimidine
Genotype-Phenotype Relationships

Pathways:

Fluoropyrimidines are antimetabolites widely used in the treatment
of solid tumors including colorectal, breast, lung, and gastric cancer
[15]. Three fluoropyrimidines including 5-fluorouracil (5-FU),
capecitabine, and tegafur are commonly used in cancer chemotherapy.
Capecitabine, an orally administered prodrug of 5-FU, is converted by
carboxylesterase into 5'-deoxy-5-fluorocytidine (5'-dFCR) and then
by cytidine deaminase to 5’-deoxy-5-fluorouridine (5'-dFUR) in the
liver [15]. 5'-dFUR is then converted to 5-FU by thymidine or uridine
phosphorylase. Tegafur is also a prodrug of 5-FU, which is converted
by hepatic (CYP2A6) to an unstable intermediate, 5-hydroxytegafur,
which spontaneously breaks down to generate 5-FU [15].

5-FU is widely prescribed for chemotherapy of solid tumors such
as colorectal and breast cancer; and is commonly administered either
via bolus intravenous injection with leucovorin or via continuous
infusion [16]. It is an analogue of uracil serving as a prodrug that is
converted to 5-fluoro-2-deoxyuridine monophosphate (5-FAUMP),
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a metabolite that inhibits thymidylate synthase (TYMS). TYMS is an
enzyme required for de novo pyrimidine synthesis and its inhibition
slows cancer-cell replication [17]. 5-FU may also act through the
incorporation of its cytotoxic metabolites into the DNA and RNA.
The conversion of 5-FU to 5-FAUMP is mediated by thymidylate
phosphorylase (TYMP) to 5-fluorodeoxyuridine and then by thymidine
kinase to 5-FAUMP or indirectly by 5-fluorouridine monophosphate
(5-FUMP), or 5-fluroridine (5-FUR) to 5-fluorouridine diphosphate
(5-FUDP) and then by ribonucleotide reductase to give rise to
5-fluorodeoxyuridine diphosphate and 5-FAUMP [16]. 5-FAUMP
covalently binds to TYMS and prevents the binding and conversion
of dUMP to dTMP, necessary for pyrimidine and DNA synthesis, and
simultaneously inhibits conversion of 5,10-methylene tetrahydrofolate
to dihydrofolate, a key component of the folate pathway [16]. The
inhibition of TYMS leads to an imbalance of deoxyuridine triphosphate
(dUTP) and deoxythymidine triphosphate (dTTP) and a rise in the
misincorporation of dUTP into DNA, resulting in cellular apoptosis.

In the liver, more than 80% of 5-FU is converted to inactive
dihydrofluorouracil (DHFU) by polymorphic dihydropyrimidine
dehydrogenase (DPYD) [15,16]. DHFU is converted by
dihydropyrimidinease (DPYS) to fluoro-B-ureidopropionate (FUPA)
and subsequently to fluoro-B-alanine (FBAL) by B-ureidopropionase
(UPB1) [16]. Deficiency in enzymes of this inactivating pathway can
lead to severe and even life-threatening toxicities. On the other hand,
5-FU may serve as the substrate of several drug transporters but the data
are conflicting. Transport of 5-FU by solute carrier family 22 member
A7 (SLC22A7, an organic anion transporter) has been observed in vitro
[18] and tumor resistance to 5-FU therapy has been implicated with
breast cancer resistance protein (BCRP/ABCG2), ATP-binding cassette
transporter C3 (ABCC3), ABCC4, and ABCC5.

DPYD is expressed in many cell types throughout the body, with
liver and peripheral blood being the major sites. The gene consists of
23 exons spanning 950 kb, resulting in 4,399 nucleotides encoding a
1,025-amino acid protein. The activity of DPYD varies considerably
among individuals. Patients with low DPYD activity cannot efficiently
inactivate 5-FU and form excessive amounts of active metabolitesleading
to hematopoietic, neurological and gastrointestinal toxicities [15,16].
The most common DPYD variant associated with fluoropyrimidine
toxicity is DPYD*2A that carries a G>A SNP (rs3918290) in the
splice site of intron 14, leading to skipping of exon 14 and synthesis
of a truncated protein, which is degraded by the ubiquitin-proteasome
system. The DPYD*13 variant carries an SNP of rs55886062 1679T>G
that results in Ile560Asn or Ile560Ser substitutions. Approximately
3-5% of the Caucasian population carry heterozygous mutations
that inactivate DPYD, and 0.1% are homozygous for inactivating
mutations. Severe toxicity occurs after 5-FU therapy in patients with
reduced DPYD activity (<100 pmol/min/mg of protein in peripheral
mononuclear cells). Currently, 17 mutations associated with reduced
DPYD activity have been reported.

Genetic polymorphisms of TYMS also may affect the clinical
outcomes of 5-FU chemotherapy in patients [15,16]. A lower TYMS
activity is associated with a better antitumor response to 5-FU treatment.
TYMS expression is regulated by a polymorphism that is characterized
by a variable number of tandem repeats (two or three repeats) in the
enhancer/promoter region of the TYMS gene. The common variant
of TYMS is a 28 bp repeat in the 5'-untranslated region (5'-UTR), a
6 bp deletion in the 3'-UTR and a G>C SNP within the third repeat of
this region. A higher number of repeats increases expression levels of
TYMS; as such, patients who have a homozygous genotype with three

tandem repeats have higher TYMS activity and a lower probability of
responding to 5-FU therapy compared to patients with two tandem
repeats.

Many clinical studies in cancer patients have shown that
polymorphisms of MTHFR may affect the clinical response to
fluoropyrimidine therapy, but the results are inconsistent [19-25]. The
most commonly studied SNPs are 677C>T and 1298C>A. 677C>T
has been associated with poorer response or shorter survival, better
response, but had no effect on response or survival in other studies [20-
23]. Similarly, 1298C>A has been associated with shorter survival but
had no effect in other studies, and the TA haplotype of both variants
was associated with worse response or had no effect [20-23]. It appears
that it is difficult in establishing an association between MTHFR
polymorphisms and clinical outcomes of fluoropyrimidine-based
chemotherapy.

Pharmacogenetics-Guided Dosingfor Fluoropyrimidine
Therapy

Approximately 3-5% of Caucasians have partial DPYD
deficiency and 0.2% have complete DPYD deficiency. The Clinical
Pharmacogenetics Implementation Consortium (CPIC) Dosing
Guidelines for fluoropyrimidines (i.e. 5-fluorouracil, capecitabine
or tegafur) recommends an alternative drug for patients who are
homozygous for DPYD non-functional variants (*2A rs3918290,
*13 1555886062 leading to Ile560Asn or Ile560Ser, and rs67376798
leading to Asp949Val; about 0.2% of patients) since these patients
are typically DPYD deficient [26]. A 50% reduction in starting dose
of fluoropyrimidines is recommended for heterozygous patients (3-
5% of patients) with an intermediate activity of DPYD (30-70% that
of the normal population) followed by an increase in dose in patients
experiencing no or clinically tolerable toxicity to maintain efficacy, a
decrease in dose in patients who do not tolerate the starting dose to
minimize toxicities or pharmacokinetics-guided dose adjustment.

Conclusions and Future Perspectives

Overall, the clinical impact of DPYD and TYMS polymorphisms
on 5-FU toxicity has been established, and genotyping test of DPYD
and TYMS could be useful in selecting patients who are more likely
to tolerate and to respond better to 5-FU therapy. However, much of
the data is contradictory and complicated by combination treatment
regimens and other factors and thus so far no good pharmacogenetic
biomarkers have been identified and validated for routine clinical
application for predicting clinical outcome of fluoropyrimidine therapy.
The low frequency of the functionally important variants and lack of
diagnostic tools for prospective genotyping and phenotyping testing
also hinder the use. Given that cancer patients are often treated with
5-FU plus other anticancer drugs such as oxaliplatin and irinotecan,
other factors related with patients and drug administration must be
taken into account when predicting fluoropyrimidine drug response
based on genotype-phenotype relationships.
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