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Introduction
Beams have wide applications in Engineering Structures and many 

Structures such as long span bridges, Aircraft wings, flexible satellite 
can be modeled to as flexible beams [1]. Large amplitude vibration of 
beams usually leads to nonlinearity. The nonlinear vibrations of free 
classical Euler Bernoulli beams have been investigated in pervious 
researches both numerically and analytically [2,3]. 

Nonlinear problems such as vibration of beams can be solved 
numerically and analytically, but obtaining analytical solution for 
nonlinear systems is very important due to limitations of numerical 
methods [4]. With the rapid development of nonlinear science, 
there appears an ever-increasing interest of scientists and engineers 
in the analytical asymptotic techniques for nonlinear problems. In 
the recent years, many asymptotic techniques including the Energy 
Balance Method (EBM) [5], Adomian Decomposition Method (ADM) 
[6], Hamiltonian Approach (HA) [7], Differential transformation 
method (DTM) [8,9], Parametrized Perturbation Method (PPM) 
[10], Amplitude Frequency Formulation (AFF) [11] and Variational 
Iteration Method (VIM) [12] have been developed to construct many 
types of aproximate solutions of nonlinear differential equations.

The aim of this paper was to determine the periodic solutions to 
nonlinear Euler Bernoulli beam subjected to axial load by applying HA 
and DTM. By comparing the analytical results with exact solutions, we 
illustrated the high accuracy of these methods.

Mathematical formulation

Euler-Bernoulli beam theory assumes that plane cross sections, 
normal to the natural axis before deformation, continue to remain 
plane and continue to remain normal to the neutral axis and do not 
undergo any strain in their planes [3].

The nonlinear partial differential equation of the beam when the 
effects of mid-plane stretching are not negligible can be written as 
follows:
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Where E  is the Young’s modulus of elasticity of the beam material,  

I is the second moment of area of the cross section with respect to the 
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Abstract
This paper is concerned with analytical approximate solutions, to the nonlinear vibration of Euler-Bernoulli 

beams subjected to the axial loads. Hamltonian Approach (HA) and Differential Transformation Method (DTM) which 
are applied to solve the nonlinear differential equation cause in current problem and consequently the relationship 
between the natural frequency and the initial amplitude is obtained in an analytical form. To verify the accuracy of the 
present approach, illustrative examples are provided and compared with Exact Solution. The procedure yields rapid 
convergence with respect to the exact integral solution.

bending axis, ŵ  is the beam deflection, m is the longitudinal density, 
L  is the length of the beam,  t̂  is the time, A  is the cross sectional area 
of the beam and N0 is the pretension of the beam. 

For convenience, the following non-dimensional variables are 
used:
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Assuming ( ) ( ) ( ),W x t x tϕ ψ=  where ( )xϕ  is the first eigenmode 

of the beam [9] and applying the Galerkin method, the equation of 
motion is obtained as following form:
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In equation.3 2
0ω  and α are defined as follows:
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The nonlinear ordinary differential equation in equation.3 is the 
governing nonlinear vibration of Euler-Bernoulli beams.
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Solution procedure

In this section the solution procedure of nonlinear vibration of 
Euler Bernoulli beam subjected to axial load by using DTM and HA 
will be presented.

Basic idea of DTM: Let ( )x t be analytic in a domain D and let  
t=ti represents any point in D. The function ( )x t  is then represented 
by one power series whose center is located at ti. The Taylor series 
expansion function of  ( )x t  is in the form of:
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The differential transformation of the function ( )x t  can be defined 

as following form [9]:
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Where ( )x t  is the original function and X(k)  is the transformed 

function. The differential inverse transform of X(k) is defined as follows:
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It is clear that the concept of the differential transformation is 
based upon the Taylor series expansion. The values of function X(k) at 
values of argument k are referred to as discrete, i.e.  X(0) is known as 
the zero discrete,  X(1) as the first discrete, etc. the function is expressed 
by a finite series and equation.8 can be written as:
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Mathematical operations performed by DTM are listed in Table 1.

Basic idea of HA: Consider a simple second order conservative 
oscillator with odd-nonlinearity in the form:

( ) ( ) ( ), 0 , 0 0u f u u A u= = = 
 ,			                 (10)

where a dot denotes differentiation with respect to t and 
( ) ( )f u f u− = − . The Hamiltonian of the nonlinear oscillation equation 

can be written as following form:
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In Equation.11 
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 and ( )F u  denote kinetic and potential energy, 

respectively. Therefore, we can write:
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We can introduce ( )H u  as follows:
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Consequently, the approximate frequency can be found from 
Equation 15.

Application of DTM: Taking the differential transform of 
equation 3
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From boundary conditions in equation 3, that we have it in point   
0t = and exerting transformation:
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The above process is continuous. Substituting equation18 into the 
main equation based on DTM, it can be obtained that the closed form 
of the solutions is:

( ) ( ) ( ) ( )0 1 20 1 2t t t tΦ =Φ × +Φ × +Φ × + ⋅⋅⋅ ,	              (19)

The approximate analytical solution can be easily yield.

Application of HA: Considering the following equation:
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Its Hamiltonian can be easily obtained:

Original Function Transformed Function
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Table 1: Some of the basic operations of Differential Transformation Method.
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Inserting equation.21 with respect to t  from 0 to 4
T , we yield:
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Considering the initial conditions, we assume that the solution can 
be expressed as:

( ) ( )cost A tφ ω=  				                    (23)

Substituting it into equation.3, we have:
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According to the Hamiltonian approach, we set:
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So, we can easily obtain the following approximate frequency-
amplitude relationship:
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The approximate analytical solution using Hamiltonian Approach 
is:
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Results and Discussions
We compared the results of the present analysis based on DTM 

with an exact integral solution and absolute error, as demonstrated in 
Table 2 for case of 2

00.5, 0.5α ω= =  and A=1 .

A very interesting agreement between the results is observed too, 
which confirms the excellent validity of the Differential Transformation 
Method (DTM). 

To illustrate and verify the accuracy of Hamiltonian Approach 
(HA), the comparison between the approximate period (THA) with the 
exact one [13] (TExact) are tabulated in Table 3 for various values of α  
and 2

0ω  when A=1 

In Figure 1 the approximate dimensionless deflection of Euler 
Bernoulli beam for each dimensionless time have been compared to 
exact solution for case of 2

00.15, 0.5α ω= =  and A=3 as it can be 
illustrated in Figure 1 the exact solutions have a good agreement with 
approximate analytical results.

Conclusion
In this paper, we have used analytical methods called Differential 

Transformation Method (DTM) and Hamiltonian Approach (HA) to 
determine the approximate solution of Euler Bernoulli beam nonlinear 
vibration which is subjected to the axial force. 

The comparison between analytical approximate results and exact 
integral solutions assures us about the convenience and accuracy of 
the solution procedure. Some patterns are also given to illustrate the 
effectiveness and convenience of the methodologies.

t Exact DTM Absolute
Error

0 1 1 0
0.25 0.969071 0.972781 0.003709
0.5 0.879941 0.892604 0.012663

0.75 0.74226 0.763835 0.02157
1 0.568569 0.593484 0.024915

1.25 0.371179 0.390821 0.019646
1.5 0.160398 0.166891 0.006491

1.75 -0.055622 -0.066131 0.010507
2 -0.269864 -0.295551 0.025686

Table 2: Comparison of DTM results and Exact Solution when, 2
00.5, 0.5, 1Aα ω= = = .

 

Figure 1: Analytical solutions and exact ones for case of 
2
00.15, 0.5, 3Aα ω= = = .

α 2
0ω exactT HAT

 
0.25

0.5 7.9534 7.9476
1 6.3006 6.2831
2 4.7381 4.7497

0.5 6.7292 6.7170

0.5
1 5.6213 5.6198
2 4.4498 4.4429

0.5 5.9178 5.9238

0.75
1 5.1256 5.1301
2 4.1903 4.1887

0.5 5.3505 5.3583

1
1 4.7612 4.7496
2 3.9811 3.9738

Table 3: Comparison between HA results and exact solution for various α , 2
0ω .
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