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ABSTRACT

Worldwide 70 percent of water is used in agriculture practices, in which 50% of water is lost due to improperly 
planned and inefficient irrigation system. Precision irrigation system has long been used on individual farms 
scale. Very rare work has been done so far to utilize the excessive irrigation water of one farm in another farm. In 
this research, we address the problem of predicting the runoff time between two farms. We propose Runoff time 
model which accepts irrigation depth, soil moisture and crop stage and time of concentration as input parameters 
and estimate runoff time. Machine learning algorithms i.e., Multiple Linear Regression (MLR), Artificial Neural 
Network-Levenberg Marquardt (LMA-ANN), Decision Trees/Regression Tree (DT/RT) and Least Square Support 
Vector Regression (LS-SVR) have been used for learning and predication purposes. A comparison has been made 
among these algorithms to choose best algorithm for irrigation runoff time prediction. Experimental results show 
that regression tree aces the results in terms of highest R-square value, lowest Mean square error. While MLR shows 
the worse result in terms of least R-square value, highest means square error. The algorithms Regression tree is 
ranked first-outstanding, ANN-LMA is ranked second-good, LS-SVR is ranked third-fair and MLR is ranked last-
poor on the basis of the regression error metrics/performance evaluation parameters. Hence it is strongly suggested 
that regression tree is an ideal machine learning-regression algorithm to be deployed on the Wireless Sensor Network 
(WSN) node for the predication of runoff time.

Keywords: Wireless Sensor Network (WSN); Precision irrigation; Machine learning algorithms; Regression; 
Irrigation runoff time modeling

INTRODUCTION

With the growth in population, the water scarcity is increasingly 
becoming a more daunting factor in many parts of the world. 
Currently, the human population of the planet earth is estimated 
to be 6.8 billion and it is predicted to grow to 9.1 billion by 2050. 
With the rise in population, the demands for food also grow to 70 
percent of the current demand. Hence, the steps must be taken to 
modernize and expand the agriculture, which requires more water 
and cultivable land. Although, Food and Agricultural Organization 
(FAO) projects that by 2050, the global cultivable land can be 
expanded to 70 million hectares, the scarcity of water in increasing 
number of countries can become a bottleneck in meeting the goals 
of sufficient food production. If the situation continues unabated, 
the scarcity of water would emerge as the biggest threat to the social 
and economic progress of many developing countries. Although 
water can be treated as a renewable source, in some parts of the 

world, its resources are either so heavily exhausted or polluted that 
it has hobbled the growth. The developing countries are facing the 
brunt of this crisis, where 95% of the new population is being 
spawned [1-3].

One of the sectors, which faces the brunt of water shortage, is the 
agriculture. As one of the most demanding sectors in agrarian 
societies, the shortage of water directly translates into decrease in 
the food production per capita [4]. Water mismanagement and 
primitive methods of cultivation have led to the sharp decrease 
in water resources; the most important of all is the traditional 
method of irrigation also known as “Surface Irrigation” or 
“Flood Irrigation” [5,6]. Due to poor efficiency of this method, 
an improperly designed flood irrigation causes a 40 to 60 percent 
loss of water in the form of runoff [7]. In order to maintain the 
production capacity, the need is to switch towards more efficient 
means of using the water, which can maximize the economic and 
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social gains while using the minimum resources. This is possible 
through special efforts directed at enhancing equity in access and 
optimum allocation of water resources [8]. Water use efficiency, 
which can be defined as “yield generated per unit precipitation and/
or irrigation of water applied”, is the first determinant of the crop 
yield under conditions of water scarcity. One possible solution 
(and now widely used) is the process of recycling the wastewater for 
agricultural, domestic and industrial use. A large number of studies 
are now dedicated to the recycling water techniques. Another 
solution is the use of precision irrigation system which could be 
implemented at micro level on a farm land. Precision irrigation 
system uses wireless sensors network for data collection such as soil 
moisture, crop properties, temperature and humidity of a farm and 
either send the gathered data to data aggregator (gateway node) or 
could process the data collected by its own (node level) to make 
efficient decision making regarding how much water is required by 
the farm to be applied and when? As reported by Pacific Institute, 
“precision irrigation” can save water in irrigation from 11 percent 
to 50 percent [9].

Precision irrigation is used on individual farms. Very rare has 
been done so far to utilize the excessive irrigation water of one 
farm in another farm. There are usually a number of farms in 
the same vicinity. Some of them might be at a slightly higher 
ground level than others. If there are two farms next to each 
other, one at slightly higher level, then with proper planning and 
communication, excess water from the irrigation at the higher farm 
can be directed to irrigate the farm at the lower level. This method 
will have a twofold advantage. Firstly, water would be provided to 
the second farm in some span of time without actually having to 
utilize any surplus amount, other than that provided to the first 
one. Secondly, the extra amount of water provided to the first farm 
would be redirected away from it. This will prevent over watering of 
the crops. To counter this issue, a unique two-farm infrastructure, 
which can handle both these issues, is proposed.

Wireless Sensor Network (WSN) and precision irrigation system 
such as sprinklers deployed on an individual farms scale to save 
water is reactive rather than proactive. A proactive, intelligent 
and integrated irrigation water management and monitoring 
system is required on multiple farms to preserve water resources. 
This irrigation water management and monitoring system can be 
established by concatenating multiple farms in some geographic 
vicinity. In this study, a two-farm scenario has been considered; the 
approach that could be used is distributed rather than centralized. 
Whenever an irrigation event information occurs in farm A, WSN 
system installed on farm A has the capability to opportunistically 
connect with other neighbouring farm B in the same geographic 
vicinity to exchange the irrigation event information with farm B. 
This approach will allow to detect the irrigation event information 
and the sensors installed on farm A will be able to make predictions 
that when the outcome of that event might be seen on farm B. 
This will help in decision making on farm B to adjust its local 
farm irrigation objectives. The predictions to be performed by the 
sensors on the farm are required to have low complexity machine 
learning algorithms. The reason for that is because wireless sensor 
nodes have low battery power, computational power and absence 
of suitable sensors require a simplified machine learning models 
to be run on the sensor nodes. The WSN sensor node must be 
configured such that it has the capability of the acquiring the 
data in real time for the dynamic parameters (irrigation depth soil 

moisture and crop stage) and also to run the sophisticated machine 
learning algorithms to predict the farm A hydrological discharge 
amount and its time taken into another farm B.

This paper address the issue of prediction of irrigation runoff time 
from one farm to another. Different machine learning algorithms 
are tested and evaluated using different performance matrices. A 
comparison has been made among these algorithms. Further it is 
suggested that which algorithm will be ideal to deploy in real world 
on the sensor node level or on the gateway level on the WSN of 
the farm.

The remaining paper is organized as follow. Section 2 describes 
related work on precision irrigation and the role of machine 
learning algorithm for runoff modeling. Section 3 describes 
methodology. Section 4 presents discussion on methods and result. 
Finally section 5 concludes the paper.

RELATED WORK

WSN has opened up new opportunities in environmental 
monitoring, precision agriculture, precision irrigation and 
hydrology. WSN is utilized in precision irrigation by monitoring 
soil moisture content to minimizing water wastage. Beside soil 
moisture other parameters like Leaf Wetness, Temperature and 
Relative Humidity, plant root depth, Sand Texture, Water Storage 
Capacities of Soil, Plant Water Use Capabilities can be monitored 
for efficient use of irrigation process [7]. Goumopoulos et al. [10] 
Describes an autonomous closed-loop zone-specific irrigation 
system based on the integration of WSN and adaptable decision 
based system. The proposed system control and monitor the 
irrigation process and plant growth in real time and is organized 
in a layered modular way to make it more flexible. The decision 
support system is able to learn by monitoring soil, crop and 
climate in a field and provides treatments, such as irrigation, to 
specific parts of a field in real time and proactively. In the similar 
context Mohapatra and Kumar [11] proposed neural network 
pattern classification technique for the forecast of soil Moisture 
Content (MC) by considering soil and environmental parameters. 
The predicated soil Moisture Content (MC) is used for creating 
appropriate notifications using fuzzy logic based weather model to 
generate irrigation recommendation.

Soil moisture is one key parameter for efficient water management 
and precision irrigation. Temporal variability analysis could be 
used to analyze soil moisture variations at different times of one 
day or between different days. Zhang et al. [12] Integrate WSN 
with spatial analysis software to monitor soil moisture and to do 
water saving and variable irrigation. Moisture sensors were placed 
at predetermined location in a field. The system sent the data 
of soil moisture periodically to the remote system. During the 
experimental period, the data of soil moisture were dynamically 
stored, and analysis of the temporal and spatial variability was 
performed in order to determine whether irrigation was required 
or not.

Machine learning is a very rich field and can be used for a variety 
of tasks such as classification, regression, bioinformatics, machine 
vision, fraud detection. Machine learning has been used in WSN 
and precision agriculture for decades. Integrating Machine learning 
with weather and soil data can be beneficial for water management 
and scheduling irrigation in agriculture fields. Machine learning 
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can be used for creating prediction model for precision irrigation. 
In their work Navarro-Hellin et al. [13] proposed an automatic 
Smart Irrigation Decision Support System, SIDSS to forecast the 
weekly irrigations needs of crops. The main features is the use 
of continuous soil measurement with the climatic parameters to 
precisely estimate the irrigation requirements of the crops. It not 
only takes decision on the basis of weather variables but also take 
into account the quantity of water required by the crops.

Wan [14] Implement the precision irrigation system by employing 
machine learning, to find the accurate water demand of crop at 
different growth cycle of crop. The system consist of sensors nodes 
for measuring three parameters; humidity, soil moisture and 
irrigation volume. On basis of these three parameters machine 
learning model is built for predicting water requirements of crop 
and their growth status.

Soil Conservation Service Curve Number (SCS-CN) is one of the 
most popular and simplest hydrological models. It has renamed as 
the Natural Resource Conservation Service (NRCS) curve number 
method [15]. This method is used to estimate the volume of direct 
surface runoff and, its response and travel times for a given rainfall 
event. This method is used widely and is accepted in numerous 
hydrologic studies. The SCS method originally was developed for 
agricultural watersheds in the mid-western United States; however 
it has been used throughout the world far beyond its original 
developers would have imagined.

Hydrological models provide us a wide range of significant 
applications in the multi-disciplinary water resources planning 
and management activities. Soil water distribution and variation 
are helpful in predicting and understanding various hydrologic 
processes, including weather changes, rainfall/runoff generation 
and irrigation scheduling. Soil water content prediction is essential 
to the development of advanced agriculture information systems. 
Soil moisture is an integral variable in hydrology. Soil moisture 
information is critically important for many application areas 
such as irrigation scheduling, rainfall/runoff generation processes, 
reservoir management, crop yield forecasting meteorology, climate 
investigations, and natural hazards predictions. Prior knowledge 
of soil water content behaviour can not only help in better 
management and understanding of hydrological systems but also 
result in improved forecasting, especially in precision irrigation.

From literature, it is clear that there are various machine-learning 
algorithms used in the prediction of hydrological discharges [16]. 
Over the past several years, various attempts have been made to 
produce soil water content estimates by using different statistical 
models, such as Multiple Linear Regression (MLR) [17], Artificial 
Neural Networks (ANNs) [16], Support Vector Machine (SVM) 
and Decision Tree [18]. Once the model is trained, it can be 
tested using an independent data set to determine how well it can 
generalize to unseen data. These techniques such as ANNs, DT, 
SVM, and MLR are quiet flexible; these techniques have been 
widely used in hydrology to model runoff based on rainfall data 
and flood forecasting.

Multiple Learning Regression (MLR) is a linear model and has been 
used for flood forecasting. Rasouli et al. [17] uses weather forecast 
data generated by the NOAA Global Forecasting System (GFS) 8 
to forecast streamflow. The forecast has been made on daily basis 
by using machine-learning techniques with weather and climate 

as input. They use Bayesian Neural Network (BNN), Support 
Vector Regression (SVR) and Gaussian Process (GP) and their 
results were compared with Multiple Linear Regressions (MLR). 
Their experimental results show that nonlinear models generally 
outperform MLR, and the performance of BNN was slightly 
better as compare to other nonlinear models. BNN automatically 
estimated error bar (prediction intervals) for the model predictions, 
hence result in better models.

Ishak [19] proposed a Model based Intelligent Decision Support 
System (IDSS) based on Artificial Neural Network (ANN) for 
forecasting and decision making in the reservoir water level. The 
proposed model comprised of situation assessment, forecasting 
and decision models. Situation assessment extracts relevant data 
and attribute from both hydrological and operational data by 
utilizing temporal data mining techniques. The forecasting model 
use the extracted data to perform forecasting of the reservoir water 
level by utilizing ANN approach. The forecasted data is then used 
by decision model; ANN is applied to perform classification of 
the current and changes of reservoir water level. The simulations 
have shown that the performances of NN for both forecasting and 
decision models are acceptably good. The results show that neural 
network classifier has performed very well on temporal data set. 
Neural network achieves 93.94% of training performance and 
100% of validation and testing performance.

Many researchers have investigated the possibility of addressing 
hydrological problems using SVMs. Effective runoff prediction 
is one of the significant aspects of successful water resources 
management and flood forecasting. In hydrology, most of physical 
phenomena tend to be nonlinear. Support vector regression is used 
to estimate the nonlinear mapping between rainfall and runoff. 
Botsis et al. [20] performed a comparison between Support Vector 
Regression (SVR) and Multilayer Feed-forward Neural Network 
(MFNN) models with respect to their forecasting capabilities. SVR 
can yield superior performance against neural networks in the 
specific catchment. SVR models have a better performance than the 
ANN models in rainfall-runoff simulation. SVR can replace some 
of the neural network models for weather prediction applications, 
but it is clear that there are still many knowledge gaps in applying 
SVR in rainfall-runoff relationship and flood forecasting.

Zakaria and Ani [21] investigate the potential of Support Vector 
Machines (SVM) model for streamflow forecasting at ungagged 
sites, and compare its performance with other statistical method 
of Multiple Linear Regression (MLR). Three quantitative standard 
statistical indices such as Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE) and Nash- Sutcliffe Coefficient of Efficiency 
(CE) are applied to examine the performances of both models. The 
performances of both models are assessed by forecasting annual 
maximum flow series from 88 water level stations in Peninsular 
Malaysia. In overall, SVM model performs better than MLR model 
in flood series prediction under the designated flood quantiles 
or return periods. Both MLR and SVM models exhibit a close 
prediction to the corresponding observed stream flow values. The 
overall comparison suggests that the SVM model outperformed the 
prediction ability of the MLR model under all designated flood 
quantiles.

Gill et al. [22] applied SVM has to study the distribution and 
variation of soil moisture, which is advantageous in predicting 
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and understanding various hydrologic processes like energy and 
moisture fluxes, weather changes, irrigation scheduling, rainfall/
runoff generation and drought. Four and seven days ahead SVM 
predictions were generated using soil moisture and meteorological 
data. SVM Predictions were in good agreement with actual soil 
moisture measurements. The performance of SVM modelling 
was compared with that obtained from ANN models and the 
SVM models outperformed the ANN predictions in soil moisture 
forecasting.

Wu et al. [23] investigated the potential of SVM’s in predicting 
soil water content in the purple hilly area and compared its 
performance with ANN time series prediction model. Relative 
Mean Errors (RME), Root Mean Square Error (RMSE) and 
Coefficient of Variation (CV) are applied as performance indices. 
The feasibility of applying SVM is to soil water content forecasting 
is successfully demonstrated. After numerous experiments, the 
authors have proposed a set of SVR parameters for predicting soil 
water content time series. The model performance also reveals that 
the SVR predictor significantly outperforms the ANN. Moreover, 
the ANN predictions are not stable and give a different result each 
time a model is trained. On the other hand, the SVM results are 
stable and unique.

Ahmad et al. [24] examined the potential of SVMs regression in 
Soil Moisture (SM) estimation using remote sensing data. The SVM 
model was developed and tested for ground soil moisture data, 
whose results addressed that SVM model, was capable of capturing 
the interrelations among soil moisture, backscatter, and vegetation 
than ANN and Multivariate Linear Regression (MLR) models. The 
statistical testing criteria used for evaluating the effectiveness of 
the SVM model during the testing phase are Root Means Square 
Error (RMSE), Mean Absolute Error (MAE), and Correlations 
Coefficient (R). Both ANN and MLR models are developed using 
the same training and testing data set used for SVM models. The 
comparison of SVM, ANN, and MLR model predictions are made 
using the statistical performance measures of RMSE, MAE, and R. 
Results from the SVM modelling are compared with the estimates 
obtained from feed forward-back propagation Artificial Neural 
Network model (ANN) and Multivariate Linear Regression model 
(MLR); and show that SVM model performs better for soil moisture 
estimation than ANN and MLR models. The authors conclude by 
suggesting that SVM technique proves to be a better alternative to 
the computationally expensive and data intensive physical models.

Decision tree modelling, specifically, is becoming more popular 
in the hydrological literature, in comparison to other learning 
models. Decision-Trees are a valid alternative to traditional 
parametric data-driven methods, such as ANNs. They can be 
adopted for any hydrological problem. Decision tree modelling has 
been investigated recently and adopted in hydrological forecasting 
due to the complex structure of ANNs.

Zia et al. [25] proposed a simplified data driven discharge (Q) 
prediction model by employing M5 decision tree learning algorithm. 
The proposed model can work with resource-constrained system 
thus making it more suitable for WSN. They propose systems that 
proactively control irrigation strategies and reuse drainage water. 
Their propose model uses 10 parameters related to crop stage, 
day of the season, slope of the field, rainfall, temperature, runoff, 
drainage. The significance of the proposed model can judged 

from the fact that it gives comparable results as compare to other 
data driven hydrological models while having fewer samples and 
simpler parameters. Khan and See [26] describe the application of 
multiple linear regression and three different data-driven modelling 
techniques to river level forecasting. Their results show that the 
data driven approaches show better performance than statistical 
approach. They also conclude that M5 model trees are capable for 
the development of transparent river level forecasting models.

 In hydrology rainfall-runoff, modelling has always been the area of 
research. Solomatine and Dulal [27] make a comparative analysis 
of two data-driven models Artificial Neural Networks (ANNs) 
and Model Trees (MTs), in rainfall–runoff transformation. The 
results show that with short lead time both techniques performed 
very well for runoff forecasting. While both techniques struggle 
to show good result for runoff predication with higher lead-time. 
The performance of ANN is slightly better than MT for higher 
lead times. The drawback of ANN is that they are not easily 
interpretable. MT based approach is very simple, very fast in 
training and its result is simple and easily interpretable.

Solomatine and Xue [28] show that the accuracy of flood prediction 
can be improved by building a hybrid model of ANN and Model 
tree. The hybrid model achieves high prediction result. In their 
research Kuzmanovski et al. [29] present application of data mining 
and machine learning techniques in the domain of agriculture for 
the prediction of water outflows over surface runoff and discharge 
through sub-surface drainage systems. The techniques are applied 
on an experimental site located in Western France. Data is collected 
related to agricultural practices, crop management, meteorological 
and water outflow. They show comparative analysis of proposed 
model and physical based model MACRO and RZWQM. The 
proposed system show better performance and overcome the 
drawbacks associated with physical model. Kuzmanovski [18] 
Address the problem of predicting the water drainage, amount of 
drained water and estimation of the critical periods of drainage 
events in an agricultural field by using machine learning and data 
mining techniques. The model use different parameters like to crop 
stage, day of the season, slope of the field, rainfall, temperature, 
runoff, drainage to measure drainage discharges from fields.

RESEARCH METHODOLOGY

Two farm scenario in two different watersheds

In this study, the machine learning task is to learn a model that 
will be able to accurately predict the irrigation runoff time from 
a “Farm A” to “Farm B”. An illustration of the two-farm system is 
shown in Figure 1.

Here the farm A is at the higher ground, while farm B is at the 
lower ground. Farm A can also be considered at watershed A, while 
farm B can be considered at watershed B. As farm A is watered by 
sprinklers, whose source is fresh stream of water as shown in the 
Figure 1. The farm A can be assumed as one watershed and given 
the name watershed A. Similarly, farm B is in watershed B. The 
outlet of farm A is connected to farm B via a gateway. The gateway is 
opened only when the machine learning algorithm predicts runoff 
time greater than zero. The water from farm A then replenishes the 
primary water source of farm B, which is subsequently transferred 
to the sprinkler system installed in farm B using pumps [30].

The whole process is shown in Figure 2 for runoff time based 
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operation. The farm A is dotted with two primary sensors named 
soil moisture sensor and water depth sensor. Additionally, there 
are further two parameter, which can be calculated by some other 
means. These include crop stage, which can be measured using 
canopy reflectance sensor, spectral reflectance sensor or Geographic 
Information System (GIS) or Unmanned Aerial Vehicle (UAV). 
Similarly, another important parameter is Time of Concentration, 
which is defined as the time required by water to flow from the 
remotest parts of farm A to the outlet. This depends on the distance 
of the path adopted by the water stream as well as the slope and 
nature of the watershed. The two famous methods for calculating 
the time of concentration are developed by Natural Resources of 
Conservation Service (NRCS) and include Watershed lag method 
and Velocity method. Hence, there are a total of four inputs which 
are required by the machine learning algorithm for calculation of 
runoff volume.

Figure 1: Two farm system.

Figure 2: System diagram of two farms on the basis of runoff time 
estimation.

When an irrigation event happens in farm A, the sensors installed 
at the farm A measure soil moisture and water depth along with 
the crop stage and time of concentration. The machine learning 
algorithms including ANN, SVM, MLR and DT are used to 
calculate the runoff time. The runoff time is the time required to 
transfer the volume of water from farm A to farm B. Only in those 
cases where machine learning algorithm calculates the runoff time 
greater than zero, the gateways installed at farm A shall be opened 
and the water would start transferring to the farm B’s water storage. 
The gateways would remain opened unless the runoff time is met. 
Then, the gateways are closed and the sensors once again initiate 
taking samples from the farm A, while also calculating runoff time 
using machine learning techniques.

It is also shown in Figure 2 that the gateway network consists of 
gateway circuitry (including motors, which drive the gateway and 
all the associated electrical drive circuit necessary to operate the 

motor) and the time measuring sensors (which can be a timer or 
stop watch). The role of gateway network is to ensure that the gates 
remain opened for only the specified time (called runoff time), 
after which the gates must be closed. So once machine-learning 
algorithm calculates the runoff time (greater than zero), the gates 
are opened by motors and the timer is reset to zero and initiates 
its operation. Its keeps running while the gates remain opened and 
water is being transferred to farm B. As soon as the timer reaches 
runoff time, it signals the gateway circuitry to drive the motors and 
close the gates. In short, gateway network makes sure that the gates 
are opened only for specified time period.

Figure 3 shows the proposed runoff time model in generic way. 
The runoff time model basically accepts the inputs parameters 
irrigation depth, Curve Number (CN) and Time of Concentration 
(TC) and outputs the runoff time parameter. Farm A has sprinkler 
irrigation deployed, it is similar like rainfall.

 

Model 1 :Runoff 
Time

1.Irrigation depth 

2.Curve number 

3.Time of 
concentration

1.Runoff time

Figure 3: Runoff time model.

Whenever irrigation happens in farm A, the irrigation depth, curve 
number (which reflects on soil moisture status of the farm and crop 
stage), and time of concentration (which reflects on water travel 
from the remote point in the water shed to the point where there 
is farm A outlet) will be considered to compute runoff time to farm B.

Machine learning algorithms require some data on which training 
of regressive models is done. In real time scenario, this data would 
be obtained from the WSN sensors placed at different points in 
the fields. However, for research simulation purposes, NRCS 
simulator is used to generate the data. NRCS is used for rainfall 
but we are assuming sprinkler irrigation system that is similar to 
rainfall and thus we are utilizing NRCS SCS Unit Hydrograph 
Convolution, which is a tool to analyze runoff hydrograph 
generation. The objective here is to assess the effect of variations in 
parameters (Depth of irrigation, Soil moisture, Crop stage, Time of 
concentration) on runoff time.

The Curve Number (CN) is an important parameter. CN can be 
calculated using conditions of soil and watershed’s cover, impervious 
area present and Antecedent Runoff Condition (ARC)/also known 
as Antecedent soil Moisture Condition (AMC). As described in 
[31], the model of urban watershed incorporates a rainfall whose 
amount is uniform over a certain time period. The mass rainfall 
can then be translated to mass runoff Q using this CN. This can 
be used in Hydrograph generation and routing procedures; since 
potential maximum retention after runoff begins, (S) (inches) is 
calculated using CN, using the relation:

1000 10S
CN

= −                                        (1)

CN has a range between 0-100. This relation, which calculates S 

can then be used to find out the value of Q as:
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Q
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−
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                                    (2)

Here P is the rainfall in inches. In essence, CN is a parameter 
that governs the runoff potential, the higher its values, the higher 
runoff potential is. Considering all the above mentioned probe 
parameters such as crops stage, time of concentration etc., the aim 
is to select only the relevant minimum amount of inputs in order 
to be able to cut the hardware cost by utilizing only the relevant 
sensors.

The TR 55 is a technical release NRCS detail documentation for 
urban hydrology for small watersheds, which in this research is 
used for curve number selection list of scenarios. A total of thirteen 
different curve numbers have been selected which are 30, 35, 40, 
45, 50, 55, 60, 65, 70, 75, 80, 85 and 90 from the Tables 1 and 2 
indicated below.

Data extraction from NRCS hydrological simulator

Data extraction is done from the NRCS simulator for inputs 
variables irrigation depth, Curve number, time of concentration 
and outputs variables Runoff volume. An authenticated database 
has been generated with random samples from entry number 1 up 
to entry number 4095. The author has written a detailed script in 
NRCS simulator to acquire the relevant variables datasets from the 
NRCS implemented in the Table 3.

The depth of irrigation is taken in range of 1 up to 15 inches, the 
curve number values selected within the range of 30 up to 90 on 
the increment of 5, time of concentration is taken 50 up to 150 
minutes with the increment of 5. The NRCS computes and further 
gives the different numeric values for runoff time unit in hour’s 
output variable ranges from 1 to 4095 samples.

Cover description Curve numbers for hydrologic soil group

Cover type Treatment Hydrologic condition A B C D

Fallow

Bare soil -- 77 86 91 94

Crop residue cover (CR)
Poor 76 85 90 93

Good 74 83 88 90

Row crops

Straight row (SR)
Poor 72 81 88 91

Good 67 78 85 89

SR+CR
Poor 71 80 87 90

Good 64 75 82 85

Contoured (C)
Poor 70 79 84 88

Good 65 75 82 86

C+CR
Poor 69 78 83 87

Good 64 74 81 85

Contoured & terraced 
(C&T)

Poor 66 74 80 82

Good 62 71 78 81

C&T+CR
Poor 65 73 79 81

Good 61 70 77 80

Small grain

SR
Poor 65 76 77 88

Good 63 75 84 87

SR+CR
Poor 64 75 83 86

Good 60 72 83 84

C
Poor 63 74 80 85

Good 61 73 82 84

C+CR
Poor 62 73 81 84

Good 60 72 81 83

C&T
Poor 61 72 80 82

Good 59 70 79 81

C&T +CR
Poor 60 71 78 81

Good 58 69 78 80

Close seeded or 
broadcast legumes or 

rotation meadow

SR
Poor 66 77 77 89

Good 58 72 85 85

C
Poor 64 75 81 85

Good 55 69 78 83

C&T
Poor 63 73 80 83

Good 51 67 76 80

Table 1: Runoff curve numbers for cultivated agricultural lands.
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Experimental Setup

The performance of Machine Learning algorithms is evaluated by 
different performance metrics using training and testing data set. 
Given a set of data, only a part of it is typically used to learn a 
predictive model. This part is referred to as the training set. The 
remaining part is reserved for evaluating the predictive performance 
of the learned model and is called the testing set. The testing set 
is used to estimate the performance of the model on unseen data. 
More reliable estimates of the performance on unseen data are 
obtained by using cross validation, which partitions the entire data 
available into n subsets. Each of these subsets is in turn used as a 
testing set, with all of the remaining data are used as training set. In 
this study 2 fold validation, 5 fold validation and 10 fold validation 
have been used. The performance efficiency of algorithms are 
also affected by the amount of training data. It is also analyzed 
that which algorithm show best and worst performance when the 
amount of training data is in abundance or scarce.

Different data division techniques are used to divide the dataset 
into training and testing data. These are 70/30 (i.e., 70% data for 
training and 30% for testing), 30/70 and k-fold techniques.

Case A (30/70): Randomly divided the entire generated data 
into two subsets. First subset had 30% of the samples generated 
and it was used to train the regressive models. The second one 

had remaining 70% of the samples and was used to analyze the 
authenticity and reliability of the created models by testing. Basic 
aim here was to gauge if there is any regression model that can 
yield state of the art results even if it has been trained on very few 
samples. Training a model on fewer samples guarantees a lower 
training time of the model. The aim is to deploy such a machine 
learning algorithm in the network that can give a precise fit on the 
testing data without having to undergo a lengthy time consuming.

Case B (70/30): In case B experimentation, the aim is to find such 
an algorithm which gives a near perfect fit on testing data without 
the need of an extensive training phase.

It is almost similar to the case A scenario, only difference is that 
here the larger chunk of data (70%) is used to train the system and 
remaining 30% for testing.

Case C (K fold): In case A and case B, a study is carried out to see the 
effect of changing ratios of training and testing data on the model 
evaluation parameters. As a last case, we will study the evaluation 
results on k- fold validation with k=2, k=5 and k=10. Similarly, after 
the application of above mentioned machine learning techniques, 
the results obtained are measured for performance evaluation with 
different metrics such as Training Time of the samples, Mean 
Square Error in the results etc.

Cover description Curve numbers for hydrologic soil group

Cover type Hydrologic condition A B C D

Pasture, grassland, or range-continuous forage 
for grazing.

Poor 68 79 86 80

Fair 49 69 79 84

Good 39 61 74 80

Meadow-continuous grass, protected from 
grazing and generally mowed for hay.

-- 30 58 71 78

Brush-brush-weed-grass mixture with brush the 
major element

Poor 48 67 77 83

Fair 35 56 70 77

Good 30 48 65 73

Woods-grass combination (orchard or tree 
farm)

Poor 57 73 82 86

Fair 43 65 76 82

Good 32 58 72 79

Woods

Poor 45 66 77 83

Fair 36 60 73 79

Good 30 55 70 77

Farmsteads-buildings, lanes, driveways and 
surrounding lots

-- 59 74 82 86

Table 2: Runoff curve numbers for other agricultural lands.

Collected Data

Depth CN TC Runoff Runoff Time

73 1 75 50 0.0303 26.8889

74 1 75 80 0.0303 28.6222

75 1 75 110 0.0303 30.3111

76 1 75 140 0.0303 32.0444

77 1 90 50 0.3204 26.8889

78 1 90 80 0.3204 28.6222

79 1 90 110 0.3202 30.3111

80 1 90 140 0.3202 32.0444

Table 3: Shows collected database from the NRCS simulator.
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Evaluation parameters

Every regression model could result in the predicted values being 
closer to the observed values [32]. For every predicted value, 
a mean value is used in the mean model, which can be used in 
the application when there are no informative predictor variables 
available. As a result, the proposed model fit is better as compared 
to the fit of the mean model. The RMSE is used as a standard 
statistical metric to calculate the model performance in climate 
research studies, meteorology and air quality. The Mean Absolute 
Error (MAE) also vastly used in model evaluations. There has been 
no final consensus made on the most appropriate metric for model 
errors from the two models [33]. In our experimental study we 
evaluated the four machine learning algorithms i.e., ANN, MLR, 
DT (Regression) and LS-SVR for runoff volume prediction. For 
each experiment, we evaluate the results by the following evaluation 
parameters:

Mean Square Error (MSE): The mean squared error determines 
how close a set of points is to a regression line. This is done by 
taking the distances from the set of points to the regression line 
and squaring them. These distances are the “errors”. The squaring 
at the end is essential to remove any negative signs and helps give 
weight to larger differences. It is referred to as the mean squared 
error as you are evaluating the average of a set of errors [34].

The smaller the value of the MSE, the nearer you are to determining 
the line of best fit. This depends on the data as well; it might not be 
possible to get a very small value for the mean squared error. The 
MSE includes both the variance of the estimator and its bias and is 
also known as the second moment (about the origin) of the error. 
MSE is the variance of the estimator for an unbiased estimator. 
Similar to the variance, MSE uses the same units of measurement 
as the square of the quantity being estimated [35].

( )2^1
1

n
i in i

MSE Y Y
=

= −∑                          (3)

Root Mean Square Error (RMSE): The Root Mean Square Error 
(RMSE) is calculated using the square root of the residuals. It 
depicts the absolute fit of the model to the data telling how close 
the observed data points presently are to the model’s predicted 
values. The R-squared is a relative measure of the fit while RMSE 
is an absolute measure of the fit. RMSE can also be interpreted as 
the unexplained variance’s standard deviation, and possesses the 
property of being in the same units as the response variable. The 
lower values of RMSE depict a better fit. RMSE is a good measure 
of how accurately the model predicts the response.

The RMSE with respect to the estimated variable Xmodel is defined 
as:

( )2
0 , ,1

n
bs i model ii

X X
RMSE

n
=

−
= ∑                  (4)

X
obs

: Observed values

X
model

: Modelled values at time/place i.

Relative Root Mean Square Error (RRMSE)

The Relative Root Mean Square Error (RRMSE) is denoted by 
dividing the RMSE by the mean observed data:

RRMSE= RMSE/mean(pred_vals) (5)

Coefficient of determination (R2): R2, is the coefficient of 
determination [36], which is used to detect how the distinct values 
in one variable can be used to explain the difference in a second 
variable [37]. R-squared has a very crucial functionality that its scale 
is intuitive which means that it ranges from zero to one, with zero 
illustrating the fact that the proposed model does not improve the 
prediction over the mean model and one means that it has a perfect 
prediction. Improvement in the regression model concludes in the 
proportional rises in R-squared [38].

( ) ( )( )
( ) ( )2 22 2

n xy x y
r

n x x n y y

−
=

   − −      

∑ ∑ ∑
∑ ∑ ∑ ∑                                    (6)

Mean Absolute Error (MAE): The Mean Absolute Error (MAE) is 
the measure of the distinguished values between two continuous 
variables [39]. It is an average/mean of the absolute error which 
uses the saw me scale as the data being calculated. It cannot be 
utilized to make comparisons between series using the different 
scales [40].

The MAE is the calculation of the forecast error in the time series 
analysis [41] and is given by:

1 1
| | | |n n

i i ii i
y x e

MAE
n n

= =
−

= =∑ ∑                                            (7)

Normalized Root Mean Square Error (NRMS): The dimensionless 
forms of the RMSE are quite handy, as the user often wants to 
compare RMSE with the distinct units. There are two methods 
for that:

Normalize the RMSE to the range of the observed data:

, ,obs max obs min

RMSENRMSE
X X

=
−

                                                       (8)

Normalize to the mean of the observed data:

obs

RMSENRMSE
X

=                       (9)

RESULTS

Case A results

The Case-A consists of all three inputs, while the training set is 
taken as 30% random data of the total data set, while 70% of the 
remaining data is dedicated for the testing purposes. The results 
are plotted in figures below:

The Case-A (Figures 4-7 and Table 4) shows that with training 
set of 30% data, except Multiple Linear Regression, all regression 
algorithms perform well and predict the output efficiently, which 
in this case is runoff time. Multiple Linear Regression seems to 
oscillate around the original values. The answer to this lies in the 
very nature of the MLR: since it is a linear regression model, it is 
more suitable for the dataset in which the data follows a linear 
trend; it assumes that there is a straight-line relationship between 
the dependent and independent variables, which is not the case 
here. Moreover, consider the average value of dependent variable 
to predict the output; since average values does not necessarily 
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The table shows that values of R-squared parameter are close to 
unity for ANN, SVM and DT. This means that their prediction 
quality is close to 100% and hence, their mean-squared and mean-
absolute errors are close to zero. DT is perfectly 1, i.e., it has 
predicted all the values correctly using its regression. Second in 
rank is ANN, whose performance closely resembles that of SVR. 
However, the training time of SVR is extremely higher than the 
remaining techniques, which offsets its better prediction capability.

Case B results

Here are the results obtained for 70% of the data samples for 
training and the remaining 30% for testing. With the increase 
in training data in Case-B (Figures 8-11 and Table 5), The figures 
above show that Artificial Neural Networks and Decision Trees 
both give a good fit on the testing data, Support Vector Machines 
are not very accurate and Multiple Linear Regression gives worst 
results. To analyze these two more closely, we look at the table of 
evaluation parameters, which makes it clear that DT approach is 
far superior that ANN one- in terms of curve fit on unseen data 
as well as the training time, since DT gives 100% accuracy because 

Figure 4: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 30/70 by ANN.

Figure 5: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 30/70 by MLR.

Figure 6: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 30/70 by SVR.

Figure 7: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 30/70 by DT.

correspond to the original value of the variable at a given samples, 
it generates errors.

Figure 8: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 70/30 by ANN.

Figure 9: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
method 70/30 by MLR.

Training 

time
MSE NRMS R2 RMSE RRMSE MAE

ANN 0.40866 0.0039693 0.036437 0.99867 0.0643003 0.0021188 -0.00041442

MLR 0.00044302 22.644 2.7521 0.35907 4.7586 0.16465 -0.83525

SVR 47.198 0.01749 0.076484 0.99335 0.13225 0.0044416 0.039149

Decision 

trees
0.011535 5.8218e-28 1.3954e-14 1 2.4128e-14 8.1142e-16 -6.8155e-15

Table 4: Holdout method 30/70 results for input parameters (I, CN, Tc) 
vs. runoff time output parameter.
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its R-squared parameter is absolute 1 and all the mean-squared (MSE, 
NRMS, RMSE, RRMSE) and mean absolute errors are close to zero.

Case C results

Case-C (Figures 12-15 and Tables 6-8) comprises identical 
regression algorithm as done in previous cases, except that the 
division of dataset for training and testing is done in a new fashion. 
Three experiments were performed using k-fold distribution, that 
is, dividing the dataset into k subsets and then using some subsets 
for training and other for testing. This generates k different results, 
which can be merged into one result by taking their mean, for each 
value of k. The results attained are listed in the table below, while 
figures show the visual content only for fold 5 of k=5, K=2, K=5.

The k=5 fold cross validation graphs are as follow:

In all three cases of k, decision tree dominates the regressive 
schemes with its close to 100% accuracy, minimum (or even 
negligible) mean-squared (MSE, NRMS, RMSE, RRMSE) and 
Mean Absolute Errors (MAE) and lower training time. In fact, 
its training time is lowest after MLR. But since MLR has shown 

Figure 11: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
70/30 ratio by DT.

Figure 10: Input parameters (I, CN, Tc) vs. runoff time output for holdout 
70/30 ratio by SVR.

Training 

time
MSE NRMS R2 RMSE RRMSE MAE

ANN 1.1536 0.0037227 0.035615 0.99873 0.061014 0.0020518 -0.00089898

MLR 0.034359 22.429 2.7645 0.3545 4.7359 0.16511 -1.0541

SVR 120.46 0.015556 0.072805 0.99403 0.12472 0.0041889 0.038056

Decision 

trees
0.25618 1.165e-26 6.3004e-14 1 1.0793e-13 3.6296e-15 -8.7922e-14

Table 5: Holdout method 70/30 results for input parameters (I, CN, Tc) 
vs. runoff time.

Figure 12: ANN performance for fivefold cross validation.

Figure 13: MLR performance for fivefold cross validation.

Figure 14: SVR performance for fivefold cross validation.

Figure 15: DT performance for fivefold cross validation.

worst performance in all scenarios, it cannot be used practically in 
these cases. The reason is already cited, that MLR is appropriate 
for datasets, which follow linear or close to linear relationship. The 
second best performance is by ANN in terms of error reduction; 
however, its training time is higher as compared to DT and SVR. 
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The SVR shows intermediate performance in terms of its accuracy, 
however, its training time is much lesser than ANN’s.

From the analysis of three cases: case A, case B and case C, it can 
be concluded that SVR performs better in terms of training time 
when used with cross-validation. The training time of SVR rises 
sharply in case of data division into two parts as in cases A and 
B. This problem resides in the kernel of SVR, which needs huge 
amount of memory as well as contributes to the complexity of this 
algorithm. SVR computes the distance function between each 
point of the dataset, which makes the computations lengthier.

In all the cases of this chapter, ANN and DT have been efficient 
in minimizing the error, but as mentioned many times before, DT 
dominates the overall results owing to its minimum training time, 
while ANN’s training time is comparatively higher. Thus, Decision 
Tree can be regarded as the best algorithm for regression.

DISCUSSION AND CONCLUSION

From the previous research, it is worth to be noticed that machine 
learning algorithms have been deployed in variety of hydrological 
problems such as flood forecasting, stream or river forecasting, 
dam or water reservoir level forecasting, rainfall-runoff predication 
and an irrigation runoff/decision support modelling, however 
from the machine learning context the algorithms that have been 
widely used previously are MLR, ANN, SVM in these hydrological 
and agriculture domains which have their pros and cons. Now 
from the current research perspective decision trees particularly 
regression tree and model trees (M5 tree) have been used in these 
areas which has shown some phenomenal results as compare to 
MLR, ANN and SVM, however the work done on model trees 
is very limited so far and is very novel that has been explored in 
the hydro agricultural domain. The pros over ANN is decision 
tree, regression tree and model tree (M5 tree) are transparent, easy 
to understand, fast to train, easily converge and good accuracy. 
The best algorithm to be used in machine learning and deployed 

on the sensor networks node depends on different factors and 
requirements including performance, computation cost, memory 
requirement and ease of use etc. Moreover, the constraints of 
limited battery power stipulates that algorithm to be used should 
consume minimum battery power and avoids an extended training 
process. MLR is the simplest of all learning methods and requires 
minimum training time and computation power. However, its 
performance is very low in cases of non-linear problems. Hence, 
the use of MLR in non-linear problems is very limited and usually 
out of question. MLR worse performance is also reflected in the 
above results having (R-square of around 0.5 and higher MSE value 
in all the cases a-c) that has been generated for the predication of 
runoff time as compare to all the other algorithms used. The least 
square support vector regression is used in this work has shown 
intermediate results in terms of R-square around 0.994, second 
highest MSE value after MLR and second highest training time 
required after ANN in case a and case b, however in terms of case 
c (k=2, k=5, k=10 fold- cross validation) its training time decreases 
sharply. The most common model of ANN uses back-propagation 
for training purposes, containing at least one hidden layer along 
with one input and output layer. However, in this work, ANN 
(levenberg-Marquardtt back propagation) has been used and the 
hidden layer contains of 10 neurons. ANN is an efficient and widely 
used algorithm which works well with the training and testing of 
all the cases a, b and c as its R-square is around 0.998 while its 
MSE is lesser than MLR, LS-SVR and only higher than regression 
tree, its training time is very much faster in case a and case b than 
LS-SVR however in case c (different k fold cross validation) the LS-
SVR training time slightly improves. Thus, in overall comparison 
MLR and LS-SVR, the ANN (LMA) performs well however its 
showcased slightly degraded performance in terms of training time, 
MSE, RMSE, NRMSE, MAE and R-square when compared with 
regression tree. The conclusive remarks are depicted from above 
graphs and tables generated from NRCS hydrological simulator 
in MATLAB tool that Decision tree (regression tree) perform very 
outstanding in this dataset collected, For case a, b and c regression 

Training time MSE NRMS R2 RMSE RRMSE MAE

ANN 1.0159 0.0037723 0.035461 0.00874 0.061416 0.0020659 0.001577

MLR 0.00062754 22.514 2.7396 0.36265 4.7448 0.16481 -0.93676

SVR 0.15821 0.015757 0.69699 0.99409 0.12553 0.0042172 0.038768

Decision trees 0.061167 2.0274e-27 2.5652e-14 1 4.4429e-14 1.4946e-15 -2.9487e-14

Table 6: Twofold cross validation result.

Training time MSE NRMS R2 RMSE RRMSE MAE

ANN 2.0547 0.0032507 0.032789 0.99891 0.056809 0.0019111 -0.0012473

MLR 0.0004821 22.531 2.739 0.36291 4.7456 0.16484 -0.93733

SVR 0.10789 0.015757 0.96761 0.99409 0.12553 0.0042172 0.038769

Decision trees 0.018101 6.3157e-27 4.5869e-14 1 7.9471e-14 2.6734e-15 4.8046e-14

Table 7: Fivefold cross validation results.

Training time MSE NRMS R2 RMSE RRMSE MAE

ANN 4.7841 0.00012743 0.0030131 0.9999 0.010712 0.0028244 4.2904e-05

MLR 0.00098281 3.357 0.51423 0.52195 1.8316 0.44753 0.2894

SVR 0.94477 1.2772 0.62925 0.90181 1.1276 0.30706 -0.12812

Decision trees 0.01831 3.2202e-05 0.0015836 1 0.0056398 0.0014837 0.00010243

Table 8: Tenfold cross validation method input parameters (I, CN, Tc) vs. runoff time output parameter.
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tree showed outstanding performance of perfect r-square value=1 
and minimum MSE=0, RMSE=0, NRMS=0, MAE=0. Thus 
decision tree (regression tree) place first ranked and an ideal 
algorithm to be deployed on the sensor node keeping in view all 
the constraints of the sensor node for the runoff time predication.
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