
Research Article Open Access

Abouelfarag et al., Int J Swarm Intel Evol Comput 2014, 4:1
DOI: 10.4172/2090-4908.1000117

Research Article Open Access

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Keywords: Parallel metaheuristic; Ant colony optimization; Shared
memory model; Open MP; Parallel threads

Introduction
Some of the Real-life optimization problems cannot be tackled by

exact methods which would be implemented laboriously and in a time-
consuming manner. For such optimization problems, metaheuristics
are used with less computational effort to find good solution from a
set of large feasible solutions. Although other algorithms may give the
exact solution to some problems, met heuristics provide a kind of near-
optimal solution for a wide range of NP-hard problems [1].

Ant Colony Optimization (ACO) algorithm – was first introduced
in 1992 by Marco Dorigo [2] is a metaheuristic swarm optimization
technique which typically searches for an optimal path in a connected
graph. ACO is based on the behaviour of ants seeking the shortest
path between their colony and a food source. ACO was pro-posed
as a solution when suffering from limited computation capacity and
incomplete Information [3]. Ant colony optimization meta-heuristic
proved a significant performance improvement compared with other
meta-heuristic techniques in solving many NP-hard problems such as
solving the traveling salesman problem [4].

The improvement of hardware computation power encouraged the
modification of the standard metaheuristic approaches to be applied in
a parallel form.

In this paper, Open MP is used on CPU with multi-cores to measure
the performance speedup. To make the data accessible and shared for
all parallel threads in global address space, a shared memory model
is implemented in C++. Open MP is implemented with its parallel
regions, directives to control loop flow. Scheduling clause for fine
tuning. For eliminating race condition, omp critical sections have been
also implemented.

Traveling salesman problem TSP is selected as a test case. The
importance of the TSP problem comes from its history of applications
with many metaheuristics. On the other hand TSP is easy to be mapped
with similar real life problems.

The behaviour of single ant found to be similar to the salesman in
TSP. The parallelization of many ants would significantly increase the
possibility of achieving a satisfactory solution in a reasonable time.

The speedup gain in parallelization of a typical sequential TSP

with ACO depends mainly on the proper and accurate analysis of
where parallelization should be placed in the algorithm. Theoretically,
Amdahl’s law [5-7] limits the expected speedup achieved to an
algorithm by a relation between parts that could be parallel to the parts
remain serial. Therefore, a detailed analysis of the algorithm is done
in this paper to place the proper parallel directives of Open MP in the
most promising places. One target of the experiment is to assigning the
optimal number of parallel threads and tuning them dynamically with
the available number of CPU cores to get effective speed up.

This paper is organized as follows: in Section 2, the related work to
ACO and the research efforts towards its parallelization are presented.
Section 3 presents the sequential ACO algorithm mapped to TSP.
In section 4, the proposed ACO parallelization using Open MP is
presented where its sub-sections show the analysis of different elements
of Open MP and its effects on performance. In section 5, results and
performance evaluation are investigated using the TSP problem as an
implementation of parallel ACO algorithm. Finally, section 6 concludes
the research and suggests the future work.

Related Work
Many strategies have been followed to implement ACO algorithm

on different par-allel platforms. In [8], Compute Unified Device
Architecture (CUDA) is used to get the parallel throughput when
executing more concurrent threads over GPUs. The concept of master-
slave ants has been adapted. Results showed faster execution time with
CUDA than Open MP, but the main disadvantage of CUDA computing
power is its dependence on GPU memory capacity related to problem
size. Threading Building Blocks (TBB) library created by Intel also
combined with ACO to form a solution to the TSP problem [9]. This

*Corresponding author: Walid Mohamed Aly, College of Computing and
Information Technology, Arab Academy for Science and Technology, Maritime
Transport, Alexandria, Egypt, E-mail: walidmaly@yahoo.com

Received June 21, 2014; Accepted July 20, 2015; Published July 25, 2015

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance
Analysis and Tuning for Parallelization of Ant Colony Optimization Using Open MP
Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Copyright: © 2015 Abouelfarag AA et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Ant colony optimization algorithm (ACO) is a soft computing met heuristic that belongs to swarm intelligence

methods. ACO has proven a well performance in solving certain NP-hard problems in polynomial time. This paper
presents the analysis, design and implementation of ACO as a Parallel Me-heuristics using the Open MP framework.
To improve the efficiency of ACO parallelization, different related aspects are examined, including scheduling of
threads, race hazards and efficient tuning of the effective number of threads. A case study of solving the traveling
salesman problem (TSP) using different con-figurations is presented to evaluate the performance of the proposed
approach. Experimental results show a significant speedup in execution time for more than 3 times over the
sequential implementation.

Performance Analysis and Tuning for Parallelization of Ant Colony Optimization
Using Open MP
Ahmed A Abouelfarag1, Walid Mohamed Aly2*, and Ashraf G Elbialy2

1College of Engineering and Technology, Arab Academy for Science and Technology, and Maritime Transport, Egypt
2College of Computing and Information Technology, Arab Academy for Science and Technology, Maritime Transport, Alexandria, Egypt

International Journal of Swarm
Intelligence and Evolutionary
ComputationInternatio

na
l J

ou
rn

al
 o

f S
warm

 Intelligence and Evolutionary Computation

ISSN: 2090-4908

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 2 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

requires special hardware to be added to the system, while a solution
over the multi-core processors is not introduced.

Marco Dorigo and Krzysztof Socha [10] addressed that the central
component of ACO is the pheromone model. Based on the underlying
model of the problem, parallelization of this component is the master
point to the parallel ACO.

Some of ACO implementation efforts were oriented towards
the granularity, which is the relation between computation and
communication. Randall and Lewis [11] classified some general
parallelization strategies of ACO implementation with application of
these strategies to travelling salesman problem TSP. They concluded that
the parallel solution is dependent on the nature of the problem being
solved. As for TSP, the authors described five possible parallelization
strategies for ACO metaheuristics based on master/slave approach.
They proposed some rules as a guide to the parallelization of ACO met
heuristic and showing a reasonable speedup when implementing ant
tour construction in parallel using MPI model on MIMD architecture.
Parallel ants assigned to each processor and placed randomly, and
reasonable communication overhead is achieved for this technique.

Bullnheimer et al. [12] introduced the parallel execution of the ants
construction phase in a single colony. This research target was decreasing
computations time by distributing ants to computing elements. They
suggested two strategies for implementing ACO for parallelization:
the synchronous parallel algorithm and the partially asynchronous
parallel algorithm. Through their experiment, they used TSP and
evaluated the speedup and efficiency. In the synchronous parallel
algorithm, the speedup is poor for the small problem size and resulting
to “slowdown” the efficiency close to zero. While in large problem size,
the speedup is improved by increasing the number of workers (slaves).
Communication and idle time have a great effect on limiting the
overall performance. The main concept in the partially asynchronous
parallel algorithm is to reduce the communication overhead. Because of
communication reduction, improvement with this approach takes place
in the speedup and efficiency even in small size problems. The authors
conclude that the second approach, partially asynchronous parallel
algorithm, implemented the concept of parallelism with better speedup
and efficiency. The disadvantage of this model was the communication
over-head and the time consumed for the master ant waiting for the
workers to finish their task. For the current research Open MP is used
to overcome this drawback and evaluate the performance gained from
applying parallel regions.

Stützle [13], introduced the execution of multiple ant colonies, where
the ant colonies are distributed to processors in order to increase the speed of
computations and to improve solution quality by introducing cooperation
between colonies. This method would be implemented through distributed
memory model which would require a huge communication that caused
high overhead affecting the overall performance.

Ling Chen et al. [14] similarly focused on reducing the communication
overhead but with controlling the time interval of communication between
processors and ex-change information adaptively according to the
diversity of the solutions. To adaptively calculate the time interval each
communication cycle, an expected overhead would occur, especially with
huge populations.

Xiong Jie et al. [15] used message passing interface MPI with C
language to present a new parallel ACO interacting multi ant colonies. The
main drawback of this approach is the coarse-granularity where the master
node has to wait for all slave nodes to finish their work and then updates
with the new low cost solution.

This paper proposes a solution with Open MP, to get the better
performance gain of parallel regions by controlling the time-consuming
loops. Automatic barriers found in Open MP are implicit way of
distributing and collecting threads. A fine-grain has been selected as
time update of best-solution. Side effects of race condition are managed
by critical sections approach. Synchronization is done in harmony
because of dynamic scheduling, where the thread execution is divided
to a number of small chunks which are created at runtime and relative
to the iterations and work load.

The ACO Algorithm
ACO “is a met heuristic in which a colony of artificial ants

cooperates in finding good solutions to difficult discrete optimization
problems. Cooperation is a key design component of ACO algorithms”
[16]. The enforcement of the shortest path is achieved by adding more
pheromone trails by ants.

In ACO, artificial ants build a solution for a combinatorial
optimization problem by traversing a fully connected graph. ACO
algorithm is building the solution in a constructive method. The
solution component is denoted by cij, c is representing a set of all
possible solution components. When combining c components with
graph vertices V or with set of edges E the result would be the graph
GC (V,E).

In each solution component cij, a value of pheromone trail denoted
as τij is associated with it. The pheromone values are used and updated
by the ACO algorithm during the search.

By the help of pheromone values, ants move along the edges of the
graph. Incrementally, the solution building process is updated. Ants
deposit a certain amount of pheromone on the traversed edges. The
following ants would be guided by this pheromone information and
would be able to discover more areas of the search space.

ACO algorithm consists of three main procedures which are (i)
Construct Ants Solutions by all ants, (ii) Update Pheromones, and (iii)
the optional Local Search which improve the construction solution.
These three phases are explained as follows:

Construct Ants Solutions (edge selection) phase: The moving
of ants through adjacent neighbour nodes of the graph is made by a
stochastic local decision according to two main, pheromone trails and
heuristic information. The solution

Construction phase starts with a partial solution sp=ϕ. From the
adjacent neighbours a feasible solution component N(sp) ⊆ C is added
to the partial solution. The solution construction phase would be
described as a path on the construction graph GC(V,E). The partial
built solution made by an ant is evaluated to be used later in the Update
Pheromones procedure and according to this a pheromone amount is
decided to be released. Dorigo et al. [16] formed an equation for the
probability of selecting solution component:

 ()
()

.
/ , ()

.p
il

ij ijp p
ij

ij ijC N S

p C S C N S
α β

α β

τ η
τ η

∈

= ∀ ∈
∑ 	 (1)

Where τij is the deposited pheromone value in the transition from
state i to state j, and ηij is the heuristic value between i, j. Both τij, ηij
associated with the component cij. Where α and β are two parameters
which controls the parameters of τij and

ηij respectively, where α ≥ 0, β ≥ 1

Local Search (Daemon Actions) phase: is an optional phase in

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 3 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

some specific problems. This step is started after solution construction
phase and before pheromone update. The result of this step is locally
optimized solutions. This is required - as a centralized action - to
improve the solution construction phase.

Update Pheromones phase: is the most important phase where a
procedure of pheromone level is increased or decreased. After all ants
completed the solution, the following rule controls the pheromone
update:

()1 k
ij ij ij

k
τ ρ τ τ← − + ∆∑ 			 (2)

Where ρ is pheromone evaporation coefficient and ∆τ ij
k is the

amount of pheromone released by kth ants on the trip finished between
i, j

0

(,)k
ij

k
else

Q if ant is transverseedge i j
L

τ

∆ = 



 			 (3)

Where Q is a constant, Lk is tour length by the ant k.

Continues increase pheromone levels in each iteration would
produce an attractive path to the following iterations. This leads to the
trap of local optima when direct-ing all the ants to this solution and
discarding the exploration of other connections. Therefore, pheromone
evaporation activated participating in lowering pheromone levels in
each tour. Because of this, new areas would be explored in the search
space.

The ACO algorithm for TSP

In the algorithm of TSP, while the salesman heuristically searching
for the shortest path from his home city to a set of cities in a graph; he
only once visits each city. The weighted graph G = (N, A) where N is
the number of nodes representing cities, A is the connections between
cities. The connection between cities (i,j) ϵ A and dij is the distance
between (i,j). The τij representing the desirability of visiting city j
directly after visiting city i according to pheromone trails, ηij depicts
the heuristic information where ηij =1/ dij and there will be a matrix of
τij which includes pheromone trails.

The value of pheromone at initial state for TSP is:

()0 /ij minm Cτ = 			 	 (4)

Where m is the number of ants, Cmin is the minimum distance
between any i, j. When ants planning to construct its path ant k
determine the probability P of visiting the next city according t

[] []
,

[] []K
i

ij ijk K
ij i

ij ijl N

P j N
α β

α β

τ η
τ η

∈

= ∈
∑

 			 (5)

The j is the city not visited yet by ant k, both α and β are two
parameters which control the relative importance of pheromone (τij)
against heuristic information (ηij=1/dij), tabuk is the list of already
visited cities by kth ants. The update pheromone process starts after all
ants have finished their tours construction. At first, pheromone values
are lowered by a constant factor for all connections between cities. Then,
then pheromone levels are increased only for the visited connections by
ants, pheromone evaporation determined by:

τ ij ← (1 − ρ)τ ij 				 (6)
Consider ρ as pheromone evaporation rate, where 0 < ρ ≤ 1.

After number of iterations, the ants release pheromone in all visited
connections during their tour due to:

 1

m k
ij ij ijk
τ τ τ

=
← + ∆∑ 				 (7)

()k
ij tτ∆ The amount of pheromone ant k deposits on the trip

finished between i, j.

 ()
0

()k
ij

k
else

Qt if ant k traverseedge i, j
L

τ

∆ = 


 		 (8)

Where Q is a constant, Lk is tour length by the ant k.

Arnautović et al. [7,8] describes a sequential ant colony optimization
algorithm pseudo code, as shown in Figure 1:

Proposed ACO Parallelization Using Open MP
ACO is a potential candidate for parallelization for different

reasons, including:

i.	 The individual independent behaviour of ants.

ii.	 The large number of iterations required in searching and
updating pheromone trails on visited edges.

iii.	 The huge computation power needed for the single ant to
construct a solution in the graph.

Parallel ACO could be implemented with two different strategies
[5]:

•	 Coarse-grained: Single CPU is being used by many ants or even
the whole colony with rarely information exchange between
CPUs

•	 Fine-grained: Few numbers of ants are to be assigned with
each core of CPU with more communication and information
exchange between them.

The main difference between previous two approaches is the
amount of information exchange between the CPUs. Fine-grain model
needs more communication which causes an overhead consuming
most of the execution time. Coarse-grain parallelization model is most
suitable for multiple colonies of ACO implementation [6]. Fine-grain
parallelization strategy has been adopted in this paper to study the
behaviour of multithreading with relation to the multicores available in
CPU with a single colony.

 Figure 1: The pseudo code of sequential ACO [8].

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 4 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

The Open MP API library provides an effective way to manage
the shared-memory model and the communication overhead between
CPUs.

An improvement in ACO algorithm could be achieved mainly
by using multi-thread programming with multi-core processors.
The independent behaviour of each ant from other ants makes ACO
a suitable candidate for parallel/independent threads. This section
introduces an implementation for parallel ACO using Open MP
platform. A shared memory model has been chosen to get the benefit
of creating a common space sharing pheromone matrix without the
overhead of communication, especially when applying both “Construct
Ant Solutions” and “Update Pheromones” processes.

This method will decrease communication overhead where the
same memory blocks are shared between different threads. Using Open
MP parallel directive for loops can be executed using #pragma omp
parallel for with the available number of threads, and number of threads
could be specified with #pragma omp parallel for num_threads(n)
where n is the number of threads to be used. The goal of using Open
MP is to reduce the execution time and not altering the ACO algorithm
with major change. For better performance, the #pragma omp parallel
num threads (n) should be the main parallel region. While the #pragma
omp for directly before the for loops.

The main effort here is to analyse and select the places which
consume most execution time in the sequential ACO and to overcome
the problem of communication overhead by using the Open MP
directives. Using parallel regions indiscriminately would limit the
expected speedup. Fragmented parallel regions increase the overhead
of creating and terminating threads. Larger and in-place Open MP
parallel directives are better than wrapping every loop with Open MP
parallel pragmas.

Tuning optimal number of threads

One of the major questions here when implementing parallel
regions is answering the question: what is the optimal number of threads
to execute through for loops? To find the answer of this question, a
hypothesis has been adopted. The optimal number of threads would
depend on both parallel implementation of ACO and the number of
multi-cores available in the CPU. This is according to three factors.

•Amdahl’s law, which means that adding more threads, would be
neglected with no significant speedup because of sequential
part.

•Ability to assign threads to cores (CPUs). This is related to
Gustafson’s law where the optimal number of threads would
depend on how much cores available on sys-tem.

•The number of threads can be chosen to be more than the number
of cores. This is the case when a thread is in waiting/blocking
condition. Hyper threading availability in modern CPUs
provides management for many threads per core.

With the nature of the ACO, no threads will be blocked waiting for
a resource , thus we can conclude that the number of the threads will
be typically the number of cores, creation of extra threads will not be
of any benefits.

Tuning parallel regions

The pseudo code of ACO is shown in Figure 2, which simplifies the
three main components of the algorithm. The “Construct Ant Solutions”
is the function of asynchronous concurrent ants while visiting neighbour

nodes of the graph. Ants progressively build their path towards the
optimal solution with the help of “Update Pheromones” function. In
the function of “Update Pheromones” the pheromone trails are updated
with increased levels of pheromones by releasing more pheromone on
connections between nodes, or the pheromone decreased by the effect
of evaporation. Increasing pheromone levels means increasing the
probability of successive future ants in their way to find the shortest
path allowing only specific ants to release pheromone.

As shown previously by pseudo code of ACO in Figure 2, the three
main steps of the algorithm are: Construct Ant Solutions, Apply Local
Search, Update Pheromones. Through the experimental performance
analysis, parallel regions of Open MP will be implemented over the
most time consuming parts in the ACO algorithm. For this reason, those
three main parts were selected as an initial direction to parallelize the
ACO algorithm. And by getting the performance and time consumed
in each region results would reveal which part would be the most time
consuming and therefor requiring to be parallelized.

The main experimental objective here is to apply a pragma omp
parallel region to the main parts of ACO, first on Construct Ant
Solutions only and then add update Pheromone to the parallel region,
where a parallel “for” applied with “n” number of threads. At the end of
each parallel region will be an implicit automatic barrier, its mission is
to synchronize with the main thread before starting new parallel region.
Figure 3 Show places where parallel regions in blue colour, automatic
barriers exist.

Tuning Open MP scheduling clause

Three types of Open MP schedule clause could be used to control
the granularity of thread execution: static (which is the default),
dynamic, and guided:

•Static schedule is implicitly applied even if schedule clause doesn’t
appear in the code. During compile time, chunks are scheduled
to threads. Static schedule characterized by each thread in the
team is nearly exposed to the same number of iterations as
the other threads do. In addition to that, distribution of work
requires no synchronization, and nearly all threads converge
at the same finishing time. Iteration assignment to threads is
determined as a function of iteration/thread number.

•Dynamic schedule controls and organizes the delivery and receipt
of the chunk iterations over the thread at runtime. Dynamic
schedule is well used when threads are assigned to different
work load or time. Synchronization is required to dynamically
assign available thread to iterations. Hence, the speedup is the
result, signifying the fact that the available threads have no

1. procedure ACOMetaheuristic
2. Begin
3. Set parameters, initialize pheromone trails
4. while (termination condition not met) do
5. ConstructAntSolutions
6. ApplyLocalSearch % optional
7. UpdatePheromones
8. end while
9. end

 Figure 2: The pseudocode of ACO [16].

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 5 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

idle time waiting for busy or slow threads. When not specified,
default chunk size is 1.

•Guided schedule, where chunk size is first determined by
implementation, then decreased to the minimum size specified
by the developer.

The default scheduling used in parallel for is static, which distributes
the work and iterations between threads. This is not the case of
different jobs assigned to different ants. The proposed solution adds the
schedule dynamic clause to the parallel for loops to give a full control
over iteration distribution over threads. The iteration granularity is
determined by the chunk size. The main benefit of dynamic scheduling
is its flexibility in assigning more chunks to threads that can finish
their chunks earlier. The rule is, the fastest thread shouldn’t wait for
the slowest. This means that the chunk size should be considered to
obtain the most performance from load balance, synchronization and
computation costs.

Analysis of race condition hazards

The race condition would occur when many threads update the
same memory location at the same time. Obviously, ACO algorithm
would suffer from this problem, especially when two or more ants are
trying to update the pheromone matrix at the same time. One of the
ants would read the value of pheromone while the other ant is trying
to update the same value. Race condition effect would occur while
increasing or de-creasing pheromone levels by ants. To avoid data race
condition in the process of increasing/decreasing pheromone levels,
critical sections are applied.

However, in our proposed parallelization, each thread will be
responsible for up-dating the pheromone level of each edge. Thus, the
value of pheromone level is the sole responsibility of a single thread.
Accordingly, race hazards can be eliminated.

Results and Performance Analysis
In this paper, Travel Salesman Problem (TSP) NP-hard problem has

been chosen as a well-known application of the generic ACO algorithm.
In this paper, TSP parameters were initially set, and Open MP was
applied as a parallelization API. After that, results were gathered from
the experiment. Finally, the performance of ACO algorithm with Open
MP was analysed.

ACO parallelization environment

In the conducted experiment of this paper, Open MP 4.0 and Visual
Studio Ultimate 2013, ACO algorithm has been implemented in C++.
Two different computers are used. The first one is Intel® Core™ i5-
460M 2.53GHz, CPU– L3 cache 3MB, 4GB RAM. The second is Intel®
Pentium4-2.8GHz, CPU – L2 cache 1MB, 512MB RAM.

The parallel regions of Open MP with number of threads n=2, 4, 8,
16, 32, 64 are applied, utilizing 1000 ants. Different problem sizes with
40, 80, 130 cities are used to test the scalability of the parallelization.
The test and the analysis would measure the speedup to gauge the
parallelization impact on execution time and efficiency. The achieved
parallel performance is measured by using speedup which shows the
performance to determine the optimal solution in a specific computing
time:

speedup = ts / tp 					 (9)
In equation (9), ts is the time required to solve the problem with the
fastest sequential code on a specific computer, tp is the time to solve
the same problem with the parallel code using P processors on the
same computer. And the efficiency of the parallel implementation is
calculated through the equation:

efficiency = speedup / P				 (10)

The strategy of implementation described before has been put under
experiment by starting from an existing sequential implementation in
C++. Then, the appropriate Open MP directives were added, and the
necessary changes were made as discussed before.

To achieve accurate results representing real execution time, code
running was repeated ten times for every change in thread numbers,
and the average time was calculated after that. In this experiment,
Tables 1, 2, 3, 4 show the results of average execution time when
default schedule static was initially applied, then the application of
dynamic schedule with n number of threads was compared showing
the difference. By using k=1000 as number of ants, the experiment
was sequentially executed with problem size of 40 cities of the ACO
and the execution time was marked. Parallelization started with 2, 4,
8, 16, 32, and 64 threads respectively. Then, the same experiment was
repeated with different problem sizes 80 and 130 cities. The speedup
and efficiency are measured as shown in equations (9) and (10).

Analysing the results of execution times in table 2 has proved a
better performance by using 4 and 8 threads, and then no significant
speedup was noticed on adding more threads. The colony size increased
to 80 cities. A better performance took place with a leap in execution
time especially after applying dynamic scheduling clause. The same
could be addressed by increasing the problem size to 130 cities as shown
in Table 3. A fine tuning was done using schedule dynamic clause which
caused a noticed performance speedup. This is due to the dynamically
generated chunks at runtime which control the thread execution over
iterations.

After combining the results from three tables, 1, 2 and 3 in Figure

 Figure 3: The pseudocode of parallel ACO.

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 6 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

As shown in Table 7, parallel regions of Open MP wraps the most
time consuming parts of ACO algorithm. When execution time was
measured for each region, Update pheromone was found to be the most
time-consuming part. A speedup was achieved after applying Open MP
parallel. This is clearly illustrated in Figure 5 which shows a significant
time-consuming Update Pheromone function and Ant Solution
Construction is the second most time-consuming part. They both gain
significant speedup after applying parallel regions of Open MP.

The experiment repeated with different numbers of threads 2, 4, 8,
16, 32, and 64 shown in Figure 6 indicates an improvement in efficiency
which occurred as a result of increasing problem size regarding the
number of threads, since efficiency = speedup/number of threads.

As the main goal is to provide better performance through
parallelism, the experiments in this research would investigate the
optimal number of threads needed. For this purpose, a tool of thread
visualizing and monitoring the interaction and relation between threads
and cores has been used. One selected tool is Microsoft concurrency
visualizer which is a plug-in tool for Visual studio 2013. Different
numbers of threads were implemented in each run and results have
been collected and analysed in the results section.

In the current experiment, 1, 4, and 8 threads have been selected

Number of
threads

Default
Schedule Exec.

Time (sec)

Dynamic Schedule
Execution time

(sec)

Speedup
(sequential to

dynamic) efficiency

1 1.5855 1.5855 - -

2 1.2543 1.1264 1.41 0.70

4 1.0347 0.9427 1.68 0.42

8 1.0494 0.9338 1.70 0.21

16 1.0764 0.9430 1.68 0.11

32 1.0603 0.9454 1.68 0.05

64 1.0761 0.9650 1.64 0.05

Table 1: Ant colony size, 40 cities, 1000 ants.

Number of threads Dynamic Exec. Time (sec) Speed up efficiency
1 7.0755 - -
2 4.0492 1.75 0.87
4 2.7932 2.53 0.63
8 2.7204 2.60 0.33

16 2.7889 2.54 0.16
32 2.8113 2.52 0.08
64 2.8151 2.51 0.04

Table 2: Ant colony size, 80 cities, 1000 ants.

Number of threads Dynamic Exec.
Time (sec) Speed up efficiency

1 7.0755 - -
2 4.0492 1.75 0.87
4 2.7932 2.53 0.63
8 2.7204 2.60 0.33
16 2.7889 2.54 0.16
32 2.8113 2.52 0.08
64 2.8151 2.51 0.04

Table 3: Ant colony size, 130 cities, 1000 ants.

 Figure 4: The speedup with n number of threads applied on different ant
colony sizes.

4, a relative speedup for parallelization over sequential implementation
was observed especially on increasing the problem size 40, 80 and then
130 cities.

Sequential code (without Open MP) was applied on hardware
with a single core. Tables 4, 5, and 6 proved that there would be an
overhead if increasing the thread numbers was attempted on a single
core machine. Parallel regions here have no use because all threads have
to synchronize and work as if it were sequential. Similarly, the cost of
thread creation and killing is very high. Moreover, execution time was
even slower than pure sequential execution.

Number of
threads

Dynamic Schedule
Execution time (sec)

Speed up (sequential
to dynamic) efficiency

1 1.6580 - -
2 1.2362 1.34 0.67
4 1.4321 1.16 0.29
8 1.5466 1.07 0.13

16 1.5898 1.04 0.07
32 1.7845 0.93 0.03
64 1.8425 	 0.90 0.03

Table 4: Ant colony size, 40 cities, 1000 ants, with P4 2.8 GHz, Single core Intel.

Number of threads
Dynamic Schedule

Execution time
(sec)

Speed up
(sequential to

dynamic)
efficiency

1 1.6580 - -

2 1.2362 1.34 0.67

4 1.4321 1.16 0.29

8 1.5466 1.07 0.13

16 1.5898 1.04 0.07

32 1.7845 0.93 0.03

64 1.8425 0.90 0.03

Table 5: Ant colony size, 80 cities, 1000 ants, P4 2.8 GHz GB RAM Intel.

Number of threads Execution time (sec) Speed up efficiency
1 7.5460 - -
2 6.3175 1.19 0.60
4 7.5460 1.00 0.25
8 7.5140 1.00 0.13
16 8.7851 0.86 0.05
32 10.5492 0.72 0.02
64 11.4560 0.66 0.01

Table 6: 130 cities, 1000 ants, P4 2.8 GHz GB RAM Intel.

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 7 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

 Figure 5: Execution time of Parallel regions against different n threads with
same problem size.

 Figure 6: Efficiency values when using 40, 80, and 130 city sizes.

to be analysed by Concurrency Visualizer on a machine with 4 logical
cores for the following reasons:

•Finding the optimal number of threads related to the
available number of cores.

•Visualizing and analysis of concurrently executing 4
threads that’s equal to the number of logical cores.

•Visualizing and analysis of concurrently executing 8
threads that’s more than the number of cores.

•Visualizing and analysis of the behaviour of multithreads
and how they execute, block, and synchronize.

As shown in Figure 7, executing the ACO with a bigger number of
threads than the number of cores, an overhead of context switching,

synchronization, and pre-emption of the threads is detected. In
the meanwhile, Open MP gives a better utilization of the multicore
environment. Figure 8, shows a detailed view of 4 and 8 threads on
2 cores CPU with hyper-threading which are logically equivalent to 4
cores. When the number of threads is equal to the number of cores,
threads are distributed among the avail-able cores. The advantage of this
is less synchronization and pre-emption time. Most of this saved time
is assigned to execution causing the parallel threads to achieve better
speedup. Whereas, if the number of threads largely exceeds the number
of available cores, an overhead and time wasting is detected. This is
because of thread blocking, synchronization, and context switching.
This experiment shows the fact that the optimal number of threads
should not exceed the available number of cores. Consequently, if the
possibility of thread blocking does not exist, the number of threads
should be optimized according to the available number of cores, as each
thread will utilize each CPU core.

Conclusion and Future Work
In this research, parallel implementation of ACO using Open MP

API directives effectively solves the common TSP problem. Results were
evaluated, and comparison between sequential and parallel multithread
were also analysed. Open MP parallel regions achieved a speedup more
than 3X of sequential execution. The optimal number of threads was
found to be equal to the number of processors available. With TSP
sizes of 40, 80, and 130 cities, better speedup was detected with a larger
number of cities. Moreover, tuning was added to the implementation of
parallel ACO using Open MP with different schedules clauses. Dynamic
schedule was found to achieve better performance with average speedup

 Figure 7: Implementing different numbers of threads on a 2 cores CPU.

 Figure 8: The thread states percentage distribution of
executing 4 and 8 threads/2 cores CPU with hyper-threading.

number of
threads

initialize
Pheromone

Trail

Ant Solution
Construction

update
Pheromone

Overall
execution time

1 0.000135 2.414022 9.531944 12.29551
2 0.000078 1.298681 4.116056 5.677514
4 0.000072 0.836327 3.056812 4.125318
8 0.000098 0.807538 3.000157 4.054615

16 0.000086 0.828095 3.060481 4.188573
32 0.000139 0.832196 3.0479 4.137231
64 0.000217 0.869248 3.024268 4.185221

Table 7: Execution time of Parallel regions against different n threads.

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance Analysis and Tuning for Parallelization of Ant Colony Optimization Using
Open MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Page 8 of 8

Volume 4 • Issue 1 • 1000117
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

8-25% than default schedule clause especially on increasing the number
of cities. This paper shows an upper border of speedup related to the
available number of cores.

Single Instruction Multiple Data (SIMD) has a main role in
performance improvements and code acceleration. The new technology
of developing processors by Intel SSE, AVX, and AVX-512 provides
vectorization to the loops which exist in most metaheuristic algorithms.
The parallelization of these loops and using vector units available in
new processor architectures are expected to effectively improve the
performance and speedup of ACO. To this end, the future work would
be oriented to-wards using this kind of important architectures.

References
1.	 Alba E (2005) “Parallel Met heuristics: A New Class of Algorithms” Wiley

ISBN 0-471-67806-6.

2.	 Dorigo M (1992) “Optimization, Learning and Natural Algorithms,” PhD thesis,
Polytechnic di Milano, Italy.

3.	 Blum C and Roli A (2003) “Met heuristics in combinatorial optimization:
Overview and conceptual comparison”, ACM Computing Surveys (CSUR),
Volume 35 Issue 3, Pages 268-308.

4.	 Dumitrescu I and Stützle T (2003) "Combinations of local search and exact
algorithms." In Applications of Evolutionary Computing: 211-223. Springer
Berlin Heidelberg.

5.	 Xue Xue-dong (2010) “The basic principle and application of ant colony
optimization algorithm” Artificial Intelligence and Education (ICAIE) conference,
Hangzhou, China.

6.	 Dorigo M, Gambardella LM (2002). “Ant colony system: A cooperative learning
approach to the traveling salesman problem”, Evolutionary Computation, IEEE
Transactions.

7.	 Amdahl G (1967) “Validity of the single processor approach to achieving large
Scale Computing capabilities.” In AFIPS Conference Proceedings, Vol.30:483-
485, Washington, D.C, Thompson Book.

8.	 Arnautovic M (May 2013) “Parallelization of the ant colony optimization
for the shortest path problem using Open MP and CUDA”, Information and
Communication Technology Electronics and Microelectronics (MIPRO), 36th
International Convention on, 20-24 May Pages1273 – 1277, Opatija, Croatia.

9.	 Gendreau M and Potvin J (sep 2010) “Handbook of meta heuristics” Springer.

10.	Dorigo M and Socha K (April 2010) “An Introduction to Ant Colony Optimization”,
University de Libre de Bruxelles, CP 194/6, Brussels, Belgium. http://iridia.ulb.
ac.be.

11.	Randall M and Lewis A (2002) “A parallel implementation of ant colony
optimization”, J Parallel Distributed Computing.

12.	Bullnheimer B, Kotsis G and Strauss C (1997) “Parallelization strategies for the
ant system.” In R De Leone, A Murli, P Pardalos, and G Toraldo, editors, High
Performance Algo-rithms and Software in Nonlinear Optimization, volume 24 of
Applied Optimization, Dordrecht.

13.	Stützle T (1998) “Parallelisation strategies for ant colony optimization.” In AE
Eiben T, Bäck H, Schwefel P and Schoenauer M editors, Proceedings of the
Fifth International Con-ference on Parallel Problem Solving from Nature (PPSN
V) Springer-Verlag, New York.

14.	Ling C, Hai-Ying S and Shu W (July 2008)“Parallel implementation of ant colony
optimization on MPP,” pages 981 - 986 Machine Learning and Cybernetics.
International Conference on (Volume: 2) Kunming, China.

15.	Xiong J, Liu C and Chen Z (2008) “A New Parallel Ant Colony Optimization
Algorithm Based On Message Passing Interface”, Computational Intelligence
and Industrial Application, PACIIA '08. Pacific-Asia Workshop, Wuhan, China.

16.	Dorigo M and Stutzle T (2004) “Ant colony optimization” A Bradford Book, The
MIT Press, Cam-bridge, Massachusetts London, England.

Citation: Abouelfarag AA, Mohamed Aly W, Elbialy AG (2015) Performance
Analysis and Tuning for Parallelization of Ant Colony Optimization Using Open
MP. Int J Swarm Intel Evol Comput 4: 117. doi: 10.4172/2090-4908.1000117

Int J Swarm Intel Evol Comput

http://onlinelibrary.wiley.com/book/10.1002/0471739383
http://onlinelibrary.wiley.com/book/10.1002/0471739383
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471678066.html
http://www.researchgate.net/publication/230660867_Optimization_Learning_and_Natural_Algorithms_%28in_Italian%29
http://www.researchgate.net/publication/230660867_Optimization_Learning_and_Natural_Algorithms_%28in_Italian%29
http://dl.acm.org/citation.cfm?id=937505
http://dl.acm.org/citation.cfm?id=937505
http://dl.acm.org/citation.cfm?id=937505
http://link.springer.com/chapter/10.1007%2F3-540-36605-9_20#page-1
http://link.springer.com/chapter/10.1007%2F3-540-36605-9_20#page-1
http://link.springer.com/chapter/10.1007%2F3-540-36605-9_20#page-1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xue Xue-dong.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5623518
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dorigo, M..QT.&searchWithin=p_Author_Ids:37299120300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gambardella, L.M..QT.&searchWithin=p_Author_Ids:37391133900&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://dl.acm.org/citation.cfm?id=1465560
http://dl.acm.org/citation.cfm?id=1465560
http://dl.acm.org/citation.cfm?id=1465560
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6596453&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6596453
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6596453&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6596453
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6596453&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6596453
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6596453&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6596453
http://www.google.com.eg/search?tbo=p&tbm=bks&q=inauthor:%22Michel+Gendreau%22
http://www.google.com.eg/search?tbo=p&tbm=bks&q=inauthor:%22Jean-Yves+Potvin%22
http://iridia.ulb.ac.be/
http://iridia.ulb.ac.be/
file:///C:\Users\shatakshi-s\Downloads\M. Randall, A Parallel Implementation of Ant Colony.PDF
file:///C:\Users\shatakshi-s\Downloads\M. Randall, A Parallel Implementation of Ant Colony.PDF
http://www.iro.umontreal.ca/~gendron/Pisa/References/Meta/Delisle01.pdf
http://www.iro.umontreal.ca/~gendron/Pisa/References/Meta/Delisle01.pdf
http://www.iro.umontreal.ca/~gendron/Pisa/References/Meta/Delisle01.pdf
http://www.iro.umontreal.ca/~gendron/Pisa/References/Meta/Delisle01.pdf
http://cdn.intechopen.com/pdfs-wm/43016.pdf
http://cdn.intechopen.com/pdfs-wm/43016.pdf
http://cdn.intechopen.com/pdfs-wm/43016.pdf
http://cdn.intechopen.com/pdfs-wm/43016.pdf
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=4620547
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=4620547
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=4620547
http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.researchgate.net/profile/Thomas_Stuetzle/publication/36146886_Ant_colony_optimization_/links/0fcfd50be44333c223000000.pdf
http://www.researchgate.net/profile/Thomas_Stuetzle/publication/36146886_Ant_colony_optimization_/links/0fcfd50be44333c223000000.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	The ACO Algorithm
	The ACO algorithm for TSP

	Proposed ACO Parallelization Using Open MP
	Tuning optimal number of threads
	Tuning parallel regions
	Tuning Open MP scheduling clause
	Analysis of race condition hazards

	Results and Performance Analysis
	ACO parallelization environment

	Conclusion and Future Work
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	References

