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Editorial
Trauma continues to remain the leading cause of morbidity and

mortality in the developed countries [1]. Hemorrhage is the second
most common cause of death after trauma, only outnumbered by
traumatic brain injury [2]. Exsanguinating hemorrhage is the most
common cause of mortality in the first hour of arrival to a trauma
center and accounts for almost half of deaths in the first 24 h [3,4]. In
addition, about 20-40% of trauma deaths that occur after hospital
admission usually involve massive hemorrhage, in which death is
potentially preventable [5]. Although the resuscitation protocols and
management strategies for resuscitation of patients with
exsanguinating hemorrhage have evolved in the past two decades,
mortality among these patients remains high.

The type and site of injury are detrimental to the pathophysiology
and to the outcome of traumatic exsanguination. While a penetrating
injury rapidly provokes hypovolemia and its sequel, a blunt trauma
and bleeding from extensive tissue damage triggers a strong
inflammatory response. Trauma to the head or to the pelvis is
associated with significant mortality and morbidity particularly when
accompanied by progressive or uncompressible hemorrhage. The
pathophysiology of traumatic exsanguination encompasses four major
pillars: I) Profound depletions of cellular energy stores; II) Progressive
end-organ vasoconstriction and hypo-perfusion; III) Exaggerated
systemic inflammatory response (SIR); and IV) Obligatory fluid shifts
and failure of early fluid mobilization. These four pillars are inter-
dependent and interact in a vicious circle pattern to determine the
outcome from a traumatic exsanguination.

Traumatic hemorrhage triggers a central neuroendocrine response
that is characterized by an increased sympathetic drive and
catecholamine surge. This compensatory mechanism aims to the
redistribution of an already falling cardiac output away from large
vascular beds like the splanchnic region, skin and skeletal muscle, to
support central organs that are more vulnerable to ischemia and
hypoxia. Although ischemia and hypoxia are not identical events at the
biological and pathological level, both share a critical effect: a
decreased supply of oxygen, resulting in a failure of cellular cytosolic
energy (adenosine-5`-triphosphate, ATP) generation by oxidative
phosphorylation with the following sequel: i) Profound depletions of
cellular cytosolic energy stores [6,7]; ii) All energy-dependent
processes, including active membrane transport, cell volume
regulatory mechanisms and the endothelium-dependent control of
vascular tone in the microcirculation are compromised; iii) Osmotic
imbalances are caused by the failure to maintain normal ion gradients
leading to paradoxical cellular edema [8-10], and similar abnormalities
afflict membrane-bounded organelles including lysosomes and
mitochondria; iv) Glycolysis is stimulated from the low energy charge
(anaerobic), with the resultant accumulation of lactic acid, which
decreases the pH of the ischemic tissue; and v) Both the plasma

membrane and the organellar membranes become leaky because of
osmotic stress and increased acidity. Lysosomal enzymes are released,
and in their acidified environment, they attack cellular proteins,
glycoproteins, glycolipids, phosphate esters, and other substrates to
cause tissue injury.

Blood flow distributions among the body’s various vascular circuits
are typically altered in traumatic exsanguinations. This alteration
occurs much in accordance with the exsanguination-induced changes
in the local pressure head and the vascular resistance within the
vascular circuit. By using direct or indirect methods of blood flow
measurement techniques in different classes of traumatic
exsanguinations, numerous studies have demonstrated decreased
blood flow in the vascular circuits of different organs [11-16]. The
decrease in organ blood flow during exsanguination constitutes a
relative ischemia that is almost always associated with hypoxia as the
blood flow delivery of O2 decreases, and the O2 extraction and
utilization is also compromised by the inherent poor capillary filling
[17,18]. In traumatic exsanguination, many factors impede capillary
filling to drastically reduce the effective capillary surface area available
for O2 and nutrients exchange. Among these factors are vasomotion
and the vascular tone, the vascular endothelium status, blood rheology
and the pressure drop that directly modulate the pre-to-post capillary
resistance ratio that determine capillary filling, and hence, tissue
perfusion. The end-organ progressive vasoconstriction and hypo-
perfusion elicited during exsanguination primes the vascular
endothelium and the circulating white blood cells and platelets to
trigger a systemic inflammatory response (SIR) [19]. SIR also
originates from the damaged tissue that results from the traumatic
injury. This controlled host-response is mediated by both pro-
inflammatory as well as by anti-inflammatory cytokines, chemokines,
lipid mediators, vasoactive peptides, and by enzymatic systems to
orchestrate an acute response to tissue damage and a delayed tissue
repair process [20,21].

Obligatory fluids shifts occur during traumatic exsanguination due
to the cellular ionic disequilibrium, and to the perturbations of the
physiologic imbalance of the Starling forces that govern the trans-
capillary fluid exchange [9,10]. Several mechanisms contribute to the
cellular swelling. Depletion of cellular energy stores during traumatic
exsanguination impairs the energy-dependent Na+-K+-ATPase
function to eventually leads to Na+ accumulation and cellular swelling
[22]. Cellular swelling is also favored by the accumulation of
extracellular K+ concentration, lactic academia and as seen in the brain
by glutamate, which stimulates cationic receptors and subsequent
accumulation of Na+, depolarization and uptake of Cl- [23-26].
Remarkable Na+/H+ exchanger-mediated endothelial cell swelling was
observed in intestinal capillaries in hemorrhagic shock [8-10]. This is
presumably due to cytosolic acidosis from the increased PCO2 and the
lactic acid build up from the anaerobic glycolysis, and from the effects
of cytosolic acidification on the cell volume regulatory mechanisms
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[27,28]. As reviewed elsewhere, the cell volume changes described
herein markedly influence a wide variety of genes (for review see [29],
particularly aldose reductase and the Na+-coupled transport systems
for proteins such as inositol, betaine, taurine and amino acids. These
proteins serve cellular accumulation of osmolytes to restore cell
volume constancy [29].

In summary, the pathophysiology of concurrent trauma and
exsanguinations consists of complex interactions at the molecular,
cellular, and tissue levels of dysfunctions created by a cytosolic energy
failure and sustained by ischemic hypoxia. These dysfunctions interact
with each other in a cause-effect relationship and a vicious circle
pattern to finally result in death from cardio-circulatory arrest.
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