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Abstract 
Although it is generally accepted that blood has never been safer than today, transfusion-associated side 

effects, particularly infective, still occur. Unlike screening strategies, pathogen reduction technologies offer a 
new approach to increase blood safety by actively/directly targeting possible, also emerging pathogens or donor 
leukocytes. Advanced technologies for cellular blood products like the psoralen-based INTERCEPT BLOOD 
SYSTEM or the riboflavin-based Mirasol pathogen reduction technology system have extensively been examined 
and are on the way to enter the blood bank routine. However, as with any medical treatment, the transfusion of 
pathogen reduced blood products is not completely risk-free. Due to possible impairment of the treated blood cells 
the transfusion success is significantly lower as compared to untreated blood products. Long-term side effects 
concerning the photosensitizers and their photoproducts still remain a matter of debate. This paper outlines 
current pathogen reduction technologies but also focuses on ethical concerns associated with the employment 
of these techniques.
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Current Safety of Blood Products
Current strategies to reduce the risk of transmissible, transfusion-

associated infections rely on donor deferral and testing procedures, 
filtration or gamma irradiation of blood products to reduce the 
number of leukotropic viruses and viable donor leukocytes promoting 
adverse transfusion reactions in the recipient [1,2]. The risk-benefit 
ratio of standard blood products is mainly represented by the infection 
incidence in the respective donor population. In the E.U., risk 
estimates for traditional transfusion-associated viruses (or parasites) 
are exceedingly rare and vary between 1 and >10 millions [3,4]. In 
Germany, the estimated risk for transfusion-associated infections 
with respect to hepatitis B virus (HBV) is 1:360,000, to hepatitis C 
virus (HCV) 1:10.9 millions, and to human immunodeficiency virus 
(HIV) 1: 4.3 millions [5]. Thus, the problem concerning these viruses 
seems to be managed. However, a residual risk still remains concerning 
pathogens for which actually no detection system exists (i.e. emerging 
viruses like the arbovirus, the agent for chikungunya) or the “window 
period”, when blood levels of specific disease markers are too low for 
detection (i.e. shortly after infection). Nucleic acid testing has markedly 
reduced but not completely eliminated this period.

The Rationale for Pathogen Reduction Technologies
Meanwhile, bacterial contamination, especially of platelet (PLT) 

concentrates (PCs) due to their storage at ambient temperature 
allowing for bacterial proliferation, is recognized as the most common 
cause of transfusion-transmitted infections. Up to 0.6% of PCs from 
routine production might be bacterially contaminated [6], and the 
estimated mortality risk of severe post-transfusion sepsis ranges from 
1:230,000 to 1:625,000 donor exposures [7-9]. Thus, bacterial (not 
viral) contamination might become the driving force leading to broad 
implementation of pathogen reduction technologies (PRTs) that are 
able to inactivate small numbers of bacteria (even when anaerobic) 
below the detection limit of screening methods. The latter require time 
for the organisms to proliferate prior to detection (generally >36 hours) 
[10,11] and implicate the risk of false -positive or -negative results 
[12]. Of note, applied virus inactivation steps like solvent-detergent, 
β-propiolactone treatment or nanofiltration have markedly increased 

the safety of plasma (derivates), but are not suitable for cellular blood 
products, as they irreversibly damage cellular membranes and function.

Pathogen Reduction Technologies for Cellular Blood 
Products

Since the beginning of the 1990s, considerable progress has been 
made in the development of PRTs for cellular blood products, and some 
have already entered routine blood bank users, thus clinical practice. 
Such PRTs are based on photosensitizers, which are added during 
processing and, after being activated, generate active oxygen species 
or utilize electron transfer processes that are oxygen independent 
to predominantly damage nucleic acids (photodynamic reactions). 
Another class of agents irreversibly form covalent cross-links in 
nucleic acids (photochemical reactions) to prevent transcription, 
translation, and growing of the pathogen. The rationale for targeting 
nucleic acids is that pathogens and white blood cells require nucleic 
acid function not required for the therapeutic effects of PLTs, plasma, 
and red blood cells (RBCs). The reduction capacity should reach at 
least 4-6 log10 steps. Currently, the most intensive studied dyes with 
photodynamic properties are the essential vitamin B2 (riboflavin RB) 
and the phenothiazine derivative methylene blue (MB), while dyes with 
photochemical properties include psoralens (PS) like S-59 (amotosalen-
HCl) and S-303 or the inactine PEN110. The latter compounds also 
interfere in nucleic acids by alkylation chemistry but become activated 
by other mechanisms than an external light source, i.e. upon pH shift, 
which is important for RBCs, whose hemoglobin strongly absorbs 
ultraviolet (UV) light.

Additionally, PRTs are considered to be as effective as gamma 
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35 ml of RB (at a final concentration of 50 µM) is added to the 
respective blood product, which then is illuminated with UV light 
(265-370 nm, 4-6 min, dose 6.2 J/ml). Most of the applied energy is 
in the UVB range (280-315 nm), a lesser amount in the UVA range 
(315-400 nm). The peak wavelength (313 nm) preferentially targets RB-
induced damage to nucleic acids and does not emit energies, where 
cytochromes and other essential cofactors for mitochondrial function/
activity absorb. As an essential vitamin, RB and its photoproducts do 
not require subsequent removal from the treated blood component 
providing minimal blood cell loss.

The INTERCEPT BLOOD SYSTEM for PCs and plasma

The PS-based system is available and utilized in several European 
countries including Germany. A total of over 700,000 PS-UVA treated 
blood products have been transfused, and neither observational studies 
[26,29] nor the hemovigilance program [30,31] showed any unexpected 
safety concern. Like Mirasol PRT, the INTERCEPT BLOOD SYSTEM 
has proven sufficient reduction capacity against many pathogens (up 
to 4-7 log10 steps) including bacteria. The efficiency, with which non-
enveloped viruses can be inactivated, varies strongly. Of note, HAV is 
not susceptible to inactivation [32].

17.5 ml of amotosalen-HCl (at a final concentration of 150 µM) is 
added to plasma or PCs resuspended in InterSol (Fenwal, Deerfied, USA) 
or SSP+ (MacoPharma). Thereafter, the mixture is illuminated with 
UVA light (320-400 nm, 4-6 min, dose 3 J/cm2). Shorter wavelengths 
were shown to have detrimental effects on proteins through the 
generation of active oxygen species. After the photoreduction process, 
amotosalen and free photoproducts are adsorbed in a compound 
adsorptions device (CAD) for 10-20 min (plasma) or 4-16 hours (PCs). 
The treated blood component is then transferred into the final storage 
bag. Due to CAD treatment and several transfer steps, a volume and 
blood cell loss of about 12% may be observed [33].

UVC irradiation of PCs and plasma

The THERAFLEX UV-Platelets system is currently under 
evaluation for its efficacy and safety. The process is based on the 
application of UVC light (200-280 nm) combined with intensive 
agitation of the blood component. Since no photosensitizer needs to 
be added, toxicity-related adverse events associated with such agents 
can be excluded. The irradiation process results predominantly in 
the formation of cyclobutane pyrimidine and pyrimidine-pyrimidine 
dimers blocking the elongation of nucleic acid transcripts. Due to the 
different absorption characteristics of nucleic acids and proteins, the 
irradiation process mainly affects leukocytes and pathogens (by at 
least 4-6 log10 steps), while coagulation proteins and PLT function are 
largely preserved [34]. UVC irradiation failed to effectively inactivate 
spores (having a low impact in blood products), West Nile virus and 
especially HIV (for which screening is performed) [35,36]. Disruption 

irradiation to prevent transfusion-associated graft versus host disease 
due to the capacity to inactivate donor leukocytes [13-15].

Overview Over the Most Advanced Pathogen Reduction 
Technologies

Long-term effects of photochemicals used in current PRT 
methods (Figure 1) followed by irradiation with visible or UV light 
cannot completely be excluded even when phase-III trials have been 
performed. Additionally, photosensitizers bear the potential to induce 
immune responses in the recipient, who can form antibodies that can 
bind to the altered blood cells and cause them to be cleared from the 
circulation. Until now, such an immune response has not been reported 
for PS-UVA, RB-UV, MB-light, nor UVC irradiation but has been seen 
for S-303 and PEN110 treated RBCs [16,17]. Studies on PRT treated 
plasma or PCs are more advanced than those with RBCs or even whole 
blood (WB). This may be because bacterial contamination is highest 
in PCs. Moreover, RBCs represent a more difficult environment due 
to the absorption spectrum of hemoglobin, the higher viscosity, and 
the prolonged storage time increasing e.g. hemolysis and potassium 
leakage.

The most highly investigated technology is based on photochemical 
treatment using amotosalen-HCl and UVA (INTERCEPT BLOOD 
SYSTEM, Cerus, Corp., Concord, USA) [18-26]. More recently, 
other systems using RB-UV (Mirasol PRT system, Terumo BCT 
Biotechnologies, Lakewood, USA), MB-light (THERAFLEX MB 
Plasma system, Blood Center of the German Red Cross NSTOB, 
institute Springe, in association with MacoPharma International 
GmbH, Tourcoing, France), or UVC alone (THERAFLEX UV-Platelets 
system, Forschungsgemeinschaft der DRK Blutspendedienste (German 
Red Cross) in association with MacoPharma) have been developed but 
are not yet routinely available.

The mirasol PRT system for PCs, plasma and WB

This RB-based system is currently investigated in ongoing clinical 
trials (IPTAS, PRESS, PREPARES) and available for routine use in 
several locations in Europe and the Middle East. The system has been 
shown to be effective against a variety of clinically relevant pathogens 
(reduction up to 4-6 log10 steps). It has demonstrated 98% efficacy 
against bacterial strains responsible for most of severe infections 
following transfusion [27]. To date, the Mirasol PRT system is the 
only PRT technology that has demonstrated inactivation of the non-
enveloped viruses such as the hepatitis A virus (HAV) that is highly 
resistant to chemical and heat-mediated interventions [28]. The 
methodology is currently under development for the treatment of WB. 
Preliminary results suggest good retention of blood cell functionality 
so that PRT of all blood products using the same system may become 
achievable in the near future.

riboflavin (vitamin B2) amotosalen HCl S-303 methylene blue

H3C

H3C

O

O

O

O O O

O

O

CI

CI

N
N

N

N

N

S N

HN

N
NH

HN

CH2

OH
OH
OH

OH

H
H
H

CH2

CH3

CH3

CH3CI

H3C

+

Figure 1: Chemical structures of the most important photosensitizers.
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of disulfide bonds of the fibrinogen receptor (glycoprotein IIb-IIIa) 
described for UVC irradiation as “PLT sunburn” [37] appears to only 
be slightly increased using the THERAFLEX UV procedure as seen 
from the low increase of free thiol groups on the PLT surface [34].

Resuspended PLTs are transferred into a UVC permeable 19×38 
cm illumination bag. Then UVC irradiation (254 nm, 20-30 s, dose 
0.2 J/cm2 (1 J/cm2 for plasma)) is performed using a special UVC 
irradiation device (Mactronic, MacoPharma) where the bags are 
loosely placed on a quartz plate. Since the pathogen reduction capacity 
was shown to have its maximum at ≥ 100 rotations per minute (rpm), 
the plate is agitating at 110 rpm. After illumination, the PLTs are 
transferred into the final storage container and ready for transfusion 
without further processing.

The S-303 PRT system for RBCs

The photochemical-based PRT system for erythrocytes has the 
capacity to effectively reduce pathogens by 4-6 log10 steps but is 
currently not yet available in routine use [38]. S-303 is composed of 
an effector (an acridine moiety), a linker (alkyl chain) and an anchor 
(mustard hydrochloride moiety). It is designed to target nucleic acids, 
cross-link them via a bis-alkylating group and release a negatively 
charged nonreactive byproduct (S-300). S-300 is then captured by 
glutathione (GSH) also added to the blood component to minimize the 
non-specific reactions with proteins. A second generation system was 
developed after the observation of an unexpected immune response 
in 2 of 16 patients suffering from chronic anemia, who required more 
than a single transfusion of RBCs for therapeutic support [11]. The 
technology has also shown promise for application to WB [39]. 

30 ml of GSH and S-303 in saline are mixed with the blood product 
(to a final concentration 200 mM GSH and 0.2 mM S-303). The whole 
mixture is then transferred into a 2nd container to allow both, the 
pathogen reduction process (30 min) and the decomposition of S-303 
to S-300 (6-18 hours). After centrifugation, the supernatant is removed, 
and the treated RBCs are transferred into the final storage container 
containing additive solution for storage for up to 35 days at 4 ± 2°C.

The THERAFLEX MB (TMB) Plasma system for plasma 

In contrast to PRT treated PCs and RBCs, PRT treated plasma has 
been in clinical use for several years and proven effective in a variety of 
therapeutic settings [40,41]. More than 4 million MB treated plasma 
units including about 2 million TMB treated plasma units have been 
generated to date [42]. For most enveloped viruses the pathogen kill 
power reaches at least 6 log10 steps [43], but is considerably less for 
non-enveloped viruses. TMB treated plasma induces a reduction of 
clotting factor activities/life spans of 10-35% including ADAMTS-13 
[44]. Observational studies in Spain [45] and hemovigilance data from 
France [46], however, raise concern that MB treated plasma is probably 
less effective than quarantine plasma in the treatment of thrombotic 
thrombocytopenic purpura and may induce more severe, partly fatal 
allergic reactions.

At the start of the current TMB treated plasma system a 0.65 µm 
membrane filter (Plasmaflex PLAS4, MacoPharma) removes residual 
leukocytes, RBCs, and PLTs as well as microvesicles and microparticles. 
Thereafter, the filtered plasma flows pass a dry “pill” containing 85 
mg MB ensuring a final concentration of 1 µM for a plasma volume 
ranging between 235 to 315 ml The following illumination with visible 
light (590 nm, 20 min, dose 180 J/cm2) is achieved by sodium low-
pressure lamps or light emitting diodes in a special device (Mactronic, 
MacoPharma). After treatment, residual MB and its photoproducts are 

removed by a special filter (Blueflex, MacoPharma) to an average level 
of 2 µg/l (0.5 µg /plasma unit).

Data from Preclinical Investigations
PLTs treated with the INTERCEPT BLOOD SYSTEM or the 

Mirasol PRT system were associated with increased acidity and 
cell activation (increased p-selectin (CD62P) surface expression), 
enhanced metabolism (glucose consumption, lactate production), and 
reduced functional properties (aggregation, extent of shape change, 
hypotonic shock response HSR, etc.). Probably due to the fact that 
the applied wavelength energy differs from the absorbance energy of 
mitochondrial enzymes (370-450 nm), treatment with the Mirasol 
PRT system allowed the maintenance of the oxidative phosphorylation 
pathway, which was in contrast to amotosalen-UVA PRT treatment 
[47,48]. Mitochondrial respiration plays a critical role on PLT behavior 
during clot formation at sites of vascular injury [49]. In the absence of 
this functionality, reduced viability [50] and haemostatic effectiveness 
[51] may occur. After UVC irradiation of PCs HSR decreased by 20-
30% but recovered partly during storage [34]. All in all, in vitro quality 
of UVC irradiated PLTs was shown to be comparable to other PRTs 
[19,52-54]. 

Data from Clinical Investigations
Patients transfused with PRT treated PLTs demonstrated reduced 

post-transfusional corrected count increments (CCIs) leading to 
an average of 35% more transfusions [24,25,55]. This was mainly 
considered as the result of the lower PLT dose after PRT treatment 
due to multiple bag transfers and CAD treatment, but an intrinsic 
storage lesion development might also have contributed to this 
finding. From the frequency of bleeding events PRT treated PLTs were 
hemostatically as effective as their untreated counterparts reinforced 
by data of a hemovigilance program [30,31] and similar values for in-
vitro aggregability under flow conditions [56] relative to untreated 
PLTs. However, a recent clinical investigation on PS-UVA treated 
PCs was stopped prematurely due to significantly more hemorrhagic 
events [57]. Indeed, decreased shear induced adhesion properties of 
PS-UVA treated PLTs (although not significant) were observed in our 
investigation [51]. Hemovigilance programs are likely too underpowered 
to really detect such discrepancies that might be overcome by increased 
transfusion doses. Due to equal frequencies of adverse events, PRT 
treated PLTs were considered as safe as conventional PCs. Although 
reduced, recovery and survival rates of radiolabeled, PRT treated PLTs 
were considered as being still acceptable for transfusion [58], even after 
UVC irradiation [59]. Nevertheless, study sizes appear far too small to 
draw any firm conclusion in this respect.

Nearly all phase-III studies on S-303 treated RBCs were suspended 
when 2 of 16 chronically transfused patients developed positive cross-
match reactions to S-303 treated RBCs. The underlying low-titer 
antibodies (that also could naturally occur [60]) were directed against 
the surface-bound acridine moiety of S-303 [61]. A 2nd generation 
pathogen inactivation process was developed minimizing the amount 
of RBC-bound acridine. Preliminary results using this container (n=27) 
[38] indicated that the treated RBCs maintained sufficient viability (24 
hour recovery rates of about 88%) and did not induce positive cross-
matches [62].

Conclusions
Open questions of current PRTs still remain concerning the extent 

to which all (un)known pathogens including non-enveloped viruses 
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or prions can be reduced. Before broad implementation, it has to be 
shown, that the photosensitizers and their photoproducts are extremely 
safe, robust in daily routine, cost-effective and controllable in their 
efficacy. Toxicological studies are difficult to perform and may not 
reveal rare events like carcinogenicity that only can be detected during 
long-term observation. Any benefit gained from the use of PRT treated 
blood products may be offset by any incidence of an unanticipated 
adverse event [63]. Finally, PRTs must preserve sufficient therapeutic 
effectiveness of the treated blood cells. Compared to untreated PLTs, 
however, PRT treated PLTs seem to be functionally inferior and led to 
increased transfusion requirements due to lower CCIs. Whether CCIs 
have sufficient clinical sensitivity and specificity is still a subject of 
debate [64]. Evaluation of PLT function before and after transfusion via 
new approaches (i.e. thromboelastography) or the careful evaluation 
of bleeding events appears more appropriate highlighting the role of 
further clinical trials.
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