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Introduction
Amlodipin (AM), 2[(2-aminoethoxy) methyl]-4-(2-chloro-

phenyl)-1, 4-dihydro-6-methyl-3, 5-pyridine carboxylic acid, 
3-ethyl, 5-methylester (Figure 1) [1] is a dihydropyridine derivative
with calcium antagonist activity. It is used in the management of
hypertension, chronic stable angina pectoris and prinzmetal variant
angina [2]. AM inhibits the transmembrane influx of calcium ions into
vascular smooth muscle and cardiac muscle [3]. Atorvastatine (AT) is
chemically described as [R-(R*,R*)]-2-(4-fluorophenyl),β,δ-dihydroxy-
5-(1-methylethyl)-3-phenyl-4-[(phenylamino) carbonyl]-1H-pyrrole-
1-heptanoic acid (Figure 1) [1]. AT is a selective, competitive inhibitor
of HMG-CoA reductase, the rate-limiting enzyme that converts
3-hydroxy-3-methylglutaryl-coenzyme A to mevalonate, a precursor of
the sterols, including cholesterol. It is used to reduce LDL-cholesterol,
apolipoprotein B, and triglycerides and to increase HDL-cholesterol in
the treatment of hyper-lipidaemias [3].

There are several combined commercial product of these two drugs 
[4]. Many methods have been reported for the determination of either 
AM [5-11] or AT [12-17] alone or in combination with other drugs in 
pharmaceutical dosage forms or individually in biological fluids. 

Only two papers have reported simultaneous determination of 
AM and AT which are based on HPLC [4,18]. However, none of the 
reported analytical methods describe simultaneous determination of 

AM and AT using spectrophotometrics methods. To our knowledge, 
this is the first report for the simultaneous determination of both 
AM and AT in pharmaceutical preparations. The present manuscript 
describes a simple, rapid, precise and accurate spectrophotometric 
method using partial least squares (PLS) as a multivariate calibration 
method for the simultaneous determination of AT and AM in the 
pharmaceutical preparations.

PLS is a useful chemometrics tool for analysis of complex mixtures, 
because it enables rapid and simultaneous determination of each 
component in the mixture, with minimum sample preparation and 
without the need for lengthy separations [19,20]. 

Continuous wavelet transformation (CWT) with zero-crossing 
has been applied for multi-component determination [21-23]. The 
importance of CWT comes from the transformation of the original 
signal to the other forms.

Theory
Partial least squares (PLS)

PLS is a predictive two-block regression method based on estimated 
latent variables (LVs) and is applied to the simultaneous analysis of two 
datasets (e.g. spectra and concentration) on the same objects [19,24]. 

The purpose of the PLS is to build a linear model enabling the 
prediction of desired characteristics e.g. concentration (involved in y) 
from measured spectra (involved in X). There is a linear model y=Xb 
in matrix notation where b contains the regression coefficients that are 
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Abstract
A simple spectrophotometric method for simultaneous determination of amlodipin and atorvastatine in 

pharmaceutical preparation is proposed based on the partial least squares and continuous wavelet transformation. 
The resulted partial least squares models were employed for prediction of the two drugs in two brands of combined 
pharmaceutical preparations which resulted in percent recoveries of 100.7 and 101.4 for amlodipin and 98.6 and 
100.1 for atorvastatine. In the best conditions, the results of percent recoveries by continuous wavelet transformation 
zero-crossing were: 110.3 and 109.0 for amlodipin and 99.7 and 99.7 for atorvastatine for brand 1 and 2, respectively. 
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Figure 1: Structural formula of (a) amlodipin and (b) atorvastatine. 
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determined during the calibration step, and X is the matrix of collected 
spectra. PLS was firstly applied to evaluate near infrared (NIR) spectra 
by Martens and Jensen [24] and is now used routinely in academic 
institutions and industry to correlate instrumental measurements with 
related chemical/physical data.

Interestingly, multivariate method PLS1 is advantageous and 
appealing for the determination of analytes in complex matrices, 
because calibration does not require knowledge of the concentrations 
of all other components except the analyte of interest. However, 
interferences should be present in the calibration set in order to be 
modeled and taken into account during the prediction step.

Continuous wavelet transformation (CWT) 

A wavelet is a waveform of effectively limited duration that has an 
average value of zero. Wavelet analysis is the breaking up of a signal 
into shifted and scaled versions of the original (or mother) wavelet 
[25,26].

The continuous wavelet transform (CWT) is defined as the sum 
over all wavelength (λ) of the signal (f(λ)) multiplied by scaled, shifted 
versions of the mother wavelet function Ψ:

C(scale, position) = ( )f λ+∞
−∞∫ ψ(scale, position, λ) dλ= 1 ( )f

s
λ+∞

−∞∫

ψ(
s

λ τ− ) dλ    (1)

The result of the CWT is many wavelet coefficients C, which are 
a function of scale (s) and position (τ). Multiplying each coefficient 
by the appropriately scaled and shifted wavelet yields the constituent 
wavelets of the original signal. We have already seen that wavelet 
analysis produces a wavelength-scale view of the signal. Now, we 
introduce scaling and shifting wavelets. Scaling a wavelet simply means 
stretching (or compressing) it. This is shown by scale factors. The scale 
factor works exactly the same with wavelets. Shifting is shown by τ.

The wavelet is placed at the beginning of the signal at the point 
which corresponds to the first wavelength. The wavelet function 
at scale “1” is multiplied by the signal and then integrated over all 
wavelengths. The final result is the value of the transformation, i.e., 
the value of the continuous wavelet transform at first wavelength and 
scale s=1. In other words, it is the value that corresponds to the point 
τ=0, s=1 in the wavelength-scale plane. The wavelet at scale s=1 is then 
shifted towards the right by τ amount to the location λ=τ, and the 
above equation is computed to get the transform value at λ=τ, s=1. This 
procedure is repeated until the wavelet reaches the end of the signal. 
One row of points on the wavelength-scale plane for the scale s=1 is 
now completed. Then, s is increased by a small value. Note that, this is a 
continuous transform, and therefore, both τ and s must be incremented 
continuously. When the process is completed for all desired values of s, 
the CWT of the signal has been calculated. 

At every location, it is multiplied by the signal. Obviously, the 
product is nonzero only where the signal falls in the region of support 
of the wavelet, and it is zero elsewhere (zero-crosses points). If the 
signal has a spectral component that corresponds to the current value 
of s (which is 1 in this case), the product of the wavelet with the signal 
at the location where this spectral component exists gives a relatively 
large value. If the spectral component that corresponds to the current 
value of s is not present in the signal, the product value will be relatively 
small, or zero.

For quantitation by CWT in binary mixtures, calibration of each 

analyte in the mixture can be performed by modelling CWT-signal 
against concentration at zero-crosses of the second component. 

In this study, Mexican hat (Mexh) and Morlet were used as mother 
wavelets which the former gave better results. 

In this study, Mexican hat (Mexh) and Morlet were used as mother 
wavelets which the former gave better results. 

Statistical measures and figures of merits of the PLS model 

Quantitatively, all model performances of PLS are expressed 
in terms of root mean square error of cross-validation (RMSECV), 
root mean square error of prediction (RMSEP), and cross-validated 
correlation coefficient (Q2) [27]: 
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In all of these expressions, ic , îc , and meanc  are the real and 
predicted concentration of the component, and mean of the real 
concentrations, respectively. It must be mentioned that ic  and îc  
in Eq. (2) are those in calibration set and ic , îc , and meanc   in Eqs. 
(3) and (4) are those in validation set. m and n are the number of the
samples in the calibration and validation sets, respectively. RMSECV
was calculated in a leave-one-out approach. The F statistic was used to
make the significance determination of the number of LVs and to avoid
over-fitting [28].

Selectivity, sensitivity, and limit of determination can be calculated 
and used for method comparison or to study the quality of a given 
analytical technique. 

One method for calculation of the figures of merits of the 
multivariate calibration methods relies on net analyte signal (NAS) 
calculations. The method was extended to inverse multivariate methods 
like PLS by Lorber [29]. In this definition, LOD is defined as

( , )LOD rα β δ= ∆   (5)

where Δ(α,β)  is the noncentrality parameter of a non-central 
t-distribution, which can be calculated numerically or taken from
statistical tables [30] and δr is an estimate for the standard deviation of
the measurement errors.

NAS calculations also allow estimation of other figures of merit 
such as the selectivity for kth component [31]:

*
k

k

s
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s
=   (6)

and its sensitivity
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b
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where b is the vector of final regression coefficients, which can be 
obtained by any multivariate method. sk is the pure spectrum of the 
analyte (kth component) in unite concentration and *

ks  is the NAS of
the analyte. 

Another useful parameter is analytical sensitivity γ. It may be 
defined, in analogy to univariate calibration, as the quotient:

SEN
r

γ
δ

=   (8) 

Experimental
Apparatus and software 

An Agilent 8453 UV-Vis spectrophotometer with diode array 
detector connected to a computer equipped with ChemStation 
software was used for recording of the absorption spectra of the 
compounds and their samples in the spectral range of 200-320 nm. 
The treatment of the absorption spectral data was performed by using 
MATLAB 6.5 software (MATLAB 6.5, The Mathworks Inc., Natick). 
PLS multivariate calibrations were performed using a series of m-files 
written in MATLAB environment. 

Standard solutions 

All solutions were prepared with analytical-reagent grade 
chemicals. Stock solutions of the pure compounds (AM and AT) were 
separately prepared by dissolving 20 mg of AM and AT in 100 ml 
mixture of methanol-water (20:80, v/v) in a calibrated flask. Standard 
calibration solutions in the studied concentration ranges were obtained 
by appropriate dilution of the above standard solutions. 

Analysis of tablet formulations

Ten tablets of AM-AT co-formulation (two different brands) were 
accurately weighed and grounded to fine powder and a sample of the 
powder equivalent to the amount of a tablet was accurately weighed 
and transferred into a 100 mL volumetric flask. 20 mL of methanol was 
added and the mixture was stirred for 30 min at room temperature. 
Then, it was diluted to volume with doubly distilled water and mixed. 
This solution was filtered through a Whatman paper. A 10 mL aliquot 
of filtrate was transformed in a 100 mL volumetric flask and completed 
to the mark with methanol-water mixture (20:80, v/v) and mixed. This 
sample was then submitted for the analysis. 

Results and Discussion
Figure 2 displays the UV absorption spectra for AM and AT in the 

standard solutions recorded between 205 and 310 nm. As can be seen 
they overlap severely. In order to find the linear dynamic range for each 
compound, possible concentration levels of the related compounds 
were tested (0.1–100.0 mg L-1 for AM and 0.3–100.0 mg L-1 for AT). 
Individual calibration curves were constructed with more than 25 
points as absorbance versus drugs concentrations in the dynamic 
linear ranges and were evaluated by linear regression [32]. Statistical 
characteristics of the regression equations of individual calibrations 
using absorption UV spectra are shown in table 1.

Determination of amlodipin and atorvastatine in synthetic 
binary mixtures using PLS multivariate calibration

AM shows a maximum absorbance at 246 nm and that of AT has 

been located at 240 nm. For the both drugs, there exists an increasing 
trend of absorbance toward lower wavelengths (Figure 2). It is evident 
that spectra strongly overlap, making difficult the simultaneous 
determination of both drugs by classical methodology due to their 
severe mutual interference. Therefore, we expected that the use of 
multivariate calibration could be a better resource to circumvent 
spectral overlapping and mutual interference problems.

For simultaneous determination by PLS, 28 calibrations and 12 
external test samples containing both AM and AT were prepared. 
Dividing the samples into calibration and validation sets was carried 
out by Kennard-Stone algorithm [33]. The concentration of AM and 
AT lye in their known linear absorbance-concentration ranges. In table 
2, the concentrations of standard calibration and external test samples 
have been represented. In order to evaluate the performance of the PLS 
models, 12 external test samples were considered in the validation set. 
The spectrum of each standard mixture was recorded in the wavelength 
range of 205 to 310 nm with 1 nm intervals. Therefore, the X matrix for 
calibration is of 28×106 and the matrix for external test set is of 12×106 
dimensions. 

Models were internally validated employing the well-known leave-

Figure 2: Absorption spectra of (a) 10 mg L-1 amlodipin and (b) 10 mg L-1 
atorvastatine in methanol-water mixture (20:80, v/v). 

Parameter AM AT

Sample number 28 36

Linear range (mgL-1) 0.3-40.0 0.1-100.0

Intercept of calibration curve 5.2×10-3 2.3×10-2

Slope of calibration curve 3.7 ×10-2     2.8×10-2

Standard error of intercept 2.1×10-3    2.9×10-3

Standard error of slope 1.3×10-4 8.5×10-3

Correlation coefficient 0.997 0.997

Limit of detection (mgL-1) 1.1×10-2 6.2×10-2

Limit of quantitation (mgL-1) 3.7×10-2 0.2

Table 1: Parameters resulted from univariate calibration for AM and AT.
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one-out procedure, and the number of latent variables for prediction 
was chosen in agreement with the Haaland-Thomas criterion [28]. The 
statistical parameters and figure of merits found upon application of 
the PLS to calibration and external test sets have been given in table 3. 
High Q2 and R2 values and low RMSECV and RMSEP values indicate 
the validity of the multivariate calibration and the analytical method. 

Determination of amlodipin and atorvastatine in synthetic 
binary mixtures using CWT zero-crossing

Two wavelet families of Mexican hat (Mexh) and Morlet (Morl) 
were tested to find the optimal signal processing function for obtaining 
reliable results in determination of the investigated analytes. Mexh was 

selected as optimal mother wavelet for transformation of absorption 
spectra.

The absorption spectra of the standard solutions of the AM and AT 
with different concentrations recorded in the wavelength range 205–
310 nm were transferred to wavelet domain in MATLAB 7.1.

The optimum value of scaling factor for determination of AM and 
AT in their binary mixture was found as a=10. Figure 3 shows the 
graphs of CWT for calibration sets of AM and AT obtained by Mexh 
(a=10) on the absorption spectra. Calibration graphs of AM were ob 
tained by measuring the CWT signals at 238, 268, 269, and 270 nm 
where the CWT signals of AT zero crosses at 235, 256, 309, and 310 
nm. Linear regression analyses and their statistical results have been 
reported in table 4. Application of these calibration models to synthetic 
binary mixtures in table 1 (the external test set) gave the results (Table 
5). 

Assay of pharmaceutical formulations 

 The methods developed were applied for the estimation of AM and 
AT in pharmaceutical preparations. 

The calibration models were validated for accuracy and precision 
with five times determination of tablets contents. The precision is 
expressed as the RSD%. The percentage recoveries and other statistics 
have been presented in tables 6 and 7 for PLS and CWT zero-crossing 
methods, respectively. As the data in table 6 show, the amounts of 
drugs were found to be within the range of 98.6-101.4% relative to 
the declared content by PLS method. None of the tablet excipients 
were found to interfere with the analyte determination. The analysis 
of tablets in most cases yielded RSD% values below 2. The results, 
contained in table 6, show that the proposed method is accurate and 
precise for both analytes. 

Comparison between PLS and CWT zero-crossing methods

By comparing the results contained in tables 3 and 5, it is clear 
that the statistical parameters of PLS (Q2 and RMSEP) are significantly 
better than those of CWT analysis. The better performances of PLS can 
be attributed to its multivariate character. CWT is only a preprocessing 

AM (mgL-1) AT(mgL-1)

No. Calibration set

1 5.9 19.3
2 3.3 10.8
3 9.7 26.6
4 9.8 12.7
5 5.2 25.8
6 8.3 16.5
7 3.8 12.4
8 6.9 21.8
9 9.7 20.4
10 3.5 17.6
11 9.2 17.1
12 2.4 21.2
13 8.9 10.2
14 7.7 26.3
15 5.3 26.9
16 4.6 10.7
17 4.7 18.3
18 9.4 19.3
19 6.4 25.8
20 4.1 22.8
21 6.1 18.1
22 6.3 20.8
23 4.9 12.7
24 7.8 28.6
25 8.2 18.8
26 5.9 11.1
27 7.2 26.6
28 6.9 19.6

External test set
1 6.3 27.9
2 8 10.9
3 8.5 27.7
4 5.8 27.8
5 9.3 16.5
6 5.3 11.6
7 6 24.5
8 7.5 20.8
9 7.9 18.1
10 9.1 17.5
11 7.4 17.7
12 6.9 24.5

Table 2: Composition of the 40 binary mixtures of AM and AT used for PLS 
calibration and external test set.
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Figure 3: CWT signals of AM (dotted lines) and AT (solid lines) with 
concentrations of (1) 1.0, (2) 3.0, (3) 4.0, (4) 5.2, (5) 6.8, (6) 8.0, (7) 10.0, (8) 
16.0, (9) 20.0 and (10) 35.0 mg L-1.
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Analyte NuNumber of LVs RMSECV RMSEP 2Rtest
2Qtest SEL SEN LOD γ

AM 4 0.087 0.169 0.987 0.981 0.354 0.300 0.496 68.804

AT 3  0.267 0.927 0.980 0.974 0.348 0.956 0.156 219.010

Table 3: Performance characteristics of PLS upon application to the calibration and external test set in Table 2.

Analyte λ (nm) Dynamic linear range (mg L-1) Regression equation R2 LOD (mg L-1)

AM

238 1.7-20 S=0.019CAM -0.0125 0.981 0.074

268 1.7-20 S=-0.0229CAM +0.0187 0.967 0.011

269 1.7-20 S=-0.0228CAM +0.0183 0.968 0.010

270 1.7-20 S=-0.0224CAM +0.02 0.965 0.010

AT

235 3.6-35 S=-0.019CAT -0.0283 0.991 0.079

256 2.2-35 S=0.012CAT -0.0184 0.986 0.037

309 2.2-35 S=-0.0167CAT +0.0098 0.991 0.013

310 2.2-35 S=-0.018CAT +0.008 0.993 0.010

Table 4: Statistical results of calibration curves at zero-cross points for AM and AT.

method and the analyses are eventually performed on the transformed 
data as zero order data. Results of PLS are better than those of CWT 
even at its best circumstances (λ=238 and 256 nm for AM and AT, 
respectively).

If we consider the results of CWT zero-crossing in the two 
mentioned wavelengths in application to real pharmaceutical samples, 

the results of PLS are yet better. This statement is especially true 
in determination of AM. Also, in all of the other wavelengths, PLS 
performances are better for AM. However, for AT determination in 
pharmaceutical preparations, recoveries of CWT zero-crossing in the 
other wavelengths are comparables with those of PLS. 

For a more precise statistical comparison of the two methods t 
values were calculated [32]. For AM, t values of 512.51 and 243.25 and 

λ (nm) RMSEP 2Rtest
2Qtest

AM

238 0.281 0.960 0.953

268 0.506 0.914 0.849

269 0.498 0.917 0.854

270 0.524 0.909 0.838

AT

235 1.107 0.968 0.966

256 0.968 0.975 0.974

309 1.075 0.972 0.968

310 1.027 0.974 0.971

Table 5: Statistical performances of CWT zero-crossing in external test set 
prediction.

Brand 1 Declared content (mg) Founda (mg) Recovery% RSD%

AM 5 5.04 ± 0.05 100.7 0.81

AT 20 19.72 ± 0.61 98.6 3.07

Brand 2 AM 5 5.07 ± 0.04 101.4 0.80

AT 20 20.02 ± 0.38 100.1 1.88
aMean of five determinations
Table 6: Results of application of PLS models on the spectra of the pharmaceutical 
preparations.

λ (nm) Declared content (mg) Founda (mg) Recovery% RSD%
AM

Brand 1
238 5 4.34 ± 0.06 86.9 1.41
268 5 5.54 ± 0.02 110.8 0.38
269 5 5.52 ± 0.02 110.4 0.37
270 5 5.51 ± 0.02 110.3 0.37

Brand 2
238 5 4.28 ± 0.11 85.6 2.68
268 5 5.45 ± 0.10 109.0 1.75
269 5 5.45 ± 0.08 109.1 1.41
270 5 5.47 ± 0.06 109.4 1.08

AT
Brand 1

235 20 20.88 ± 0.03 104.4 0.15
256 20 19.52 ± 0.03 97.6 0.16
309 20 19.93 ± 0.01 99.7 0.04
310 20 19.79 ± 0.01 98.9 0.07

Brand 2
235 20 20.88 ± 0.03 104.4 0.13
256 20 19.51 ± 0.02 97.5 0.12
309 20 19.93 ± 0.01 99.7 0.04
310 20 19.78 ± 0.01 98.9 0.06

a Mean of five determinations.
Table 7: Results of application of CWT zero-crossing method on the spectra of the 
pharmaceutical preparations.
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for AT, 1.78 and 1.97 were obtained in analyzing Brand 1 and Brand 2, 
respectively. It must be mentioned for this comparison the best results 
of CWT zero-crossing have been used. Considering 5 determinations 
in each case, the degree of freedom will be 8 with the tabulated t value of 
2.36 (p=0.05). Therefore, the accuracy of the PLS method is significantly 
better than that of CWT zero-crossing in AM determination but there 
is no significant difference in determination of AT. 

Due to its multivariate character, PLS is not largely affected by 
fluctuations raised from random errors (noise) from one determination 
to another. Therefore, it is more accurate than CWT zero-crossing 
method which uses signal at only single wavelengths. 

RSD% values obtained with two methods in AM determinations 
are comparable but in pharmaceutical analysis for AT, CWT zero-
crossing method seems to be more precise than PLS. 

Conclusions 
In the rare reports published, the methods for the simultaneous 

determination of amlodipin and atorvastatine recommend analysis by 
HPLC. Nonetheless, these methods are time consuming and require 
the use of large volumes of HPLC-grade solvents. In this paper, a novel 
analytical method for the simultaneous determination of amlodipin 
and atorvastatine in pharmaceutical preparations by using partial least 
squares was demonstrated. Results of application to pharmaceutical 
preparations indicate that this method can be easily and conveniently 
used for the routine quality control of the drugs in pharmaceutical 
dosage forms. Also, the method can be used instead of the conventional 
HPLC in order to minimize cost of analysis and the toxic wastes 
produced during the analysis. 

PLS results were compared with those of CWT zero-crossing 
method. The results indicate the superiority of PLS method. 
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