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Abstract
Background: Clopidogrel is an antiplatelet agent used in the treatment of vascular diseases. It requires in vivo 

bio activation linked to the cytochrome P450. Several studies reported that paraoxonase-1 (PON1) was a crucial 
enzyme in clopidogrel activation, and that patients carrying a variant of the PON1192 gene polymorphism have a 
high risk of thrombosis. However, these reports were not confirmed by subsequent results. The present study was 
aimed at investigating whether PON1 deficiency affects the biological action of clopidogrel in mice. 

Methods: PON1-deficient mice (n = 50) and wild type animals (n = 50) received different treatments for 3 days: 
a) clopidogrel, b) aspirin, c) cilostazol, d) clopidogrel + aspirin, and e) clopidogrel + aspirin + cilostazol. Blood was
collected for the Platelet Function Analysis (PFA-100).

Results: The different anticoagulant treatments resulted in higher aggregation times in all the mice, compared 
to the internal PFA control; demonstrating the anti-platelet effect of these compounds. We did not observe any 
significant alterations on the PFA assay in PON1-deficient mice, relative to wild type animals.

Conclusion: PON1 deficiency does not influence the antiplatelet action of clopidogrel in mice, and supports the 
proposition that this enzyme is not involved in clopidogrel bio activation. 
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Introduction
Clopidogrel is an oral, thienopyridide-class, antiplatelet agent used 

in the treatment of vascular diseases, including peripheral vascular 
disease [1]. This compound is a pro-drug that requires enzymatic 
biotransformation into the active thiol metabolite to facilitate its action 
of inhibiting platelet adenosine diphosphate (ADP) P2Y12 receptor 
[2] .Early studies described in vivo bio activation of clopidogrel as a
two-step process closely linked to the cytochrome P450 (CYP) 2C19
enzyme [3]. However, Bouman et al. [4] reported that paraoxonase-1
(PON1) was a crucial enzyme in clopidogrel metabolic activation,
especially in the second-step. Their article described the first step
as an oxidation of clopidogrel to 2-oxo-clopidogrel catalyzed by
cytochromes, and the second step as a hydrolytic cleavage (catalyzed
by PON1) of the γ-thiobutyrolactone ring of 2-oxo-clopidogrel to the
pharmacologically-active thiol metabolite. They also highlighted that
individuals carrying the QQ isoform of PON1192 gene polymorphism
have a higher risk of stent thrombosis. Tselepis et al. [5] showed an
inverse association between PON-1 activity and platelet activation
following clopidogrel administration, and suggested that PON-1 is
an important determinant of clopidogrel antiplatelet efficacy in these
patients. Dansette et al. [6] reported that PON1 catalyzes the formation 
of a minor thiol metabolite, while the biosynthesis of the major
clopidogrel metabolite is CYP P450 dependent. These reports generated 
considerable controversy, and methodological concerns regarding the
Bouman et al. article have been published [7]. Subsequent studies failed 
to show any influence of serum PON1 activity or genetic polymorphisms 
on clopidogrel bio activation [8-12]. Ancrenaz et al. [12] reported that
CYP2C19, CYP2B6 and CYP3A were the most important determinants 
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in the bio activation of clopidogrel in vitro, and a retrospective study 
by Ohmori et al. [10] did not find any significant association between 
PON1192 polymorphism and clopidogrel response in patients who had 
a myocardial infarction. The present study, conducted in mice, was 
aimed at investigating whether PON1 deficiency affects the biological 
action of clopidogrel. 

Materials and Methods
The study adhered to rules for the protection of animals in research, 

and was approved by the Committee for Animal Experimentation of 
the Universitat Rovira i Virgili. Genetically modified PON1-deficient 
mice (n = 50) and wild type animals (n = 50) received an atherogenic 
diet for 24 weeks. The last 3 days before their sacrifice, they were 
subdivided into 5 groups to receive different treatments: Group I: 
clopidogrel [22 mg/kg/day]; Group II: aspirin [60 mg/kg/day]; Group 
III: cilostazol [50 mg/kg/day]; Group IV: clopidogrel + aspirin; Group 
V: clopidogrel + aspirin + cilostazol. All treatments were administered 
by oral gavage. These drugs, alone or in combination, are currently 
used for the treatment of coagulation disorders in patients with PAD 
[13,14]. Cilostazol is a phosphodiesterase inhibitor with antiplatelet 
properties which plays an important role in thrombosis prevention 
[14]. PON1-deficient animals of the C57BL/6J genetic background 
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were the progeny of mice provided by the Division of Cardiology of 
the University of California in Los Angeles [15]. Wild-type animals 
were from the C57BL/6J strain (Charles River Labs., Wilmington, MA, 
USA). Mice were bled by cardiac puncture and all the blood obtained 
(about 2 mL) was collected into citrate-containing tubes for the 
Platelet Function Analysis (PFA-100). This is an in vitro method that 
replicates the platelet aggregation process. Using a membrane coated 
with collagen which promotes platelet adhesion, the membranes are 
covered with either epinephrine or ADP to promote platelet activation. 
The PFA is a functional assay, and samples are interpreted as having an 
inhibited coagulation when the measured coagulation times are higher 
than those of the internal controls (control collagen/epinephrine: 113-
137 seconds; control collagen/ADP: 87-105 seconds). The high volume 
of sample required to perform this technique precluded other analytical 
determinations being performed in serum. 

To ensure that genetically modified mice were really PON1-
deficient, we measured PON1 lactonase activity in excised liver 
homogenates, since the liver is a key organ for clopidogrel activation 
as well as PON1 synthesis [1,16]. For this purpose 30 mg of liver 
were homogenized in 500 µl of a 25 mM Tris-HCl buffer (pH = 7.4) 
containing 100 mM NaCl, and 1% Nonidet-40, and using a Precellys 24 
homogenizer (Bertin Technologies, France). 

Results and Discussion
The different treatments produced higher aggregation times 

in all the mice, compared to the internal PFA control and, as such, 
demonstrating the anti-platelet effect of these compounds against 
collagen-induced platelet aggregation. We did not observe any 
significant alteration in the PFA assay in PON1-deficient mice, relative 
to wild type animals (Table 1). In addition, hepatic PON1 activity was 
measurable only in wild type mice, but not in PON-1 deficient animals.

PFA has been developed as a standard test for the detection 
of dysfunction within the platelet adhesion and aggregation 
pathways. One of the most common reasons for PFA prolongation 
is the administration of platelet anti-aggregants [17-19]. Collagen, 
epinephrine and ADP, under in vivo physiological conditions, promote 
substances facilitating adhesion and aggregation of platelets. This assay 
has been studied and validated in rats and mice, and closure times in 

control animals are approximately 100 seconds [20]. Our results show 
that PON1 deficiency does not produce any significant alteration in 
the anticoagulant function of the tested drugs. These results support, 
and extend, recent findings in humans. Sibbing et al. [21] analyzed the 
ADP-induced platelet aggregation in relation to PON1192 and CYP2C19 
gene polymorphisms in patients following a coronary stent insertion. 
The results showed that the PON1192 polymorphism did not influence 
platelet response to clopidogrel nor the risk of thrombosis in these 
patients. The CYP2C19 polymorphism, however, had an impact on 
the antiplatelet effect of clopidogrel and on thrombosis risk. Further, 
the results of a systematic review and meta-analysis from Reny JL et 
al. [22] did not support PON1192 genotype as a major determinant of 
the biological response to clopidogrel, nor as a risk-factor for major 
cardiovascular ischemic events in clopidogrel-treated patients.

Conclusion
We conclude that PON1 deficiency does not influence the 

antiplatelet action of clopidogrel in mice, thus supporting the 
proposition that this enzyme is not involved in its bio activation.  
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