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Introduction
Obesity, pandemic in USA, is associated with increased risk of

different types of cancer [1], including pancreatic cancer (PC). In the
NIH-AARP Diet and Health Study, it was observed that an excess of
body weight across a lifetime remains significantly associated with
increased risk of PC, in particular when comparing the category with
BMI>25 to BMI=8.5-22.5 [2]. Results from several preclinical models
suggest that obesity can initiate pancreatic carcinogenesis and promote
metastasis [3]. A high fat diet activates oncogenic K-Ras and Cox2,
causing inflammation and fibrosis in the pancreas, with subsequent
pancreatic intraepithelial neoplasia (PanINs) and PC onset [4]. A
recent study showed that the number of PanINs is correlated with
intravisceral fat. Moreover, the presence of PanINs was associated with
intralobular fat accumulation [5]. It appears that a fat diet leading to
pancreatic fatty infiltration could play an important role in PC [6].
Excess body weight worsens the prognosis already dismal for PC
patients [7-9]. It is estimated that in 2016, 53,070 people will be
diagnosed with PC, while 41,780 people will die of this disease,
bringing PC as the third cause of cancer related death. Lack of early
clinical symptoms and specific tumor markers are the reasons for late
diagnosis in PC [10].

Pancreatic Cancer Therapy
Surgical excision remains the primary therapy and the efficacy of

conventional chemo radiotherapy for PC is limited. Correct staging is
important for PC, since prognosis and treatment depend on this. In
recent years, PC patients without distant metastasis, but showing blood
vessel involvement and “borderline resectable” tumors have been
treated with neoadjuvant chemotherapy followed by surgical resection
of the tumor. For unresectable PC, chemotherapy has been used (e.g.,
Gemcitabine/Erlotinib, FOLFIRINOX that is a combination regimen
of oxaliplatin, 5-fluorouracil or 5-FU, Leucovorin and Irinotecan;
Gemcitabine/NAB-paclitaxel, Gemcitabine/Capecitabine and
Capecitabine/Oxaliplatin or XELOX) [11]. However, PC is
characterized by its early metastasis and resistance to standard
chemotherapy or radiation therapy. Desmoplasia, a result of the
proliferation of cancer associated fibroblasts and increased deposition
of extracellular matrix, leads to reduced elasticity of tumor tissue with
a concomitant increase in tumor interstitial fluid pressure, which
results in a decreased rate of perfusion of therapeutic agents and
consequently decreased efficacy [12]. Studies have shown that in
obesity, the crosstalk between adipocytes, tumor associated neutrophils
and pancreatic stellate cells promotes desmoplasia in mouse models of
PC, and leads to accelerated tumor growth [13].

Pancreatic Cancer Chemoresistance
Unfortunately, none of the established targeted therapy agents that

have been effective on other tumor types show similar effects on PC,
suggesting that there are unique elements in the microenvironment of
PC that facilitate its dramatic chemoresistance [14]. Studies have
indicated that various mechanisms of drug resistance are involved in
PC, such as changes in individual genes or signaling pathways, the
influence of the tumor microenvironment, as well as the actions of the
PC stem cells (PCSC) [15]. These cells are capable of dividing,
renewing themselves and differentiating into less tumorigenic cells.
Therefore, PCSC are thought to be involved in tumor recurrence post-
treatment. Although stem cells exist as a small population in the cancer
tissues, recent evidence shows that PCSC contribute to tumor
initiation, growth, metastasis, and resistance to therapy [16,17].
Furthermore, a recent study shows that apoptosis-resistant PC cells
have PCSC-like properties. These cells are characterized by their ability
to initiate sphere formation when cultured in low attachment plates.
Additionally, PCSC can express stem cell genes and respond to
epithelial to mesenchymal transition (EMT) stimulation [18].
Gemcitabine increases cell populations expressing PCSC markers
(CD24+ and CD133+) and stemness-associated genes such as Bmi1,
Nanog, and Sox2. The enhancement of stemness after Gemcitabine
treatment was accompanied by increased cell migration,
chemoresistance, and tumorigenesis [19]. Isolation of side population
(SP) cells from a human PC cell line led to their characterization as
potential PCSC. SP cells showed highly tumorigenic and metastatic
characteristics after being orthotopically injected into mice. In culture,
SP cells showed an increased resistance to Gemcitabine, but not to 5-
FU [20]. PCSC possess escape mechanisms to avoid drug effects that
are shared with normal stem cells, such as overexpression of ATP
binding cassette multidrug transporters (ABC-family of proteins).
ATP-binding cassette sub-family B member 1 (ABCB1 or P-
glycoprotein 1, also known as multidrug resistance protein 1, MDR1 or
CD243) was significantly increased in CD44+ PC cells during
acquisition of resistance to Gemcitabine. CD44 expression in PC was
correlated with higher tumor histological grade and worse prognosis
[21].

Leptin-Notch Crosstalk
A potential link between obesity and PC progression could be the

adipokine leptin, a hormone secreted from adipocytes. In normal-
weight individuals, leptin regulates food intake, body weight and
energy expenditure. Higher expression of leptin receptor, OB-R, is a
characteristic of cancer and embryonic stem cells. OB-R expression in
stem cells is mediated directly by the core pluripotency-associated
transcription factors Oct4 and Sox2 [22]. Leptin increases proliferation
and migration of human and murine PC cell lines expressing the OB-R
long and short isoforms. shRNA knockdown of OB-R partially
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abrogated the enhanced obesity-mediated growth of orthotopic PC
tumors in obese mice [23]. Moreover, the effects of obesity through
leptin signaling on cancer growth seem to be involved in
chemoresistance developed by other cancer types. Indeed, in gastro-
esophageal adenocarcinomas leptin expression was associated with
chemoresistance. Additionally, the blockade of leptin signaling with
use of a leptin receptor antagonist increased the sensitivity of gastro-
esophageal adenocarcinomas to cisplatin [24].

Three key embryonic signaling pathways: the Wnt/β-catenin, Notch
and Hedgehog pathways are up regulated in cancer stem cells (CSC)
[25]. Aberrant Notch pathway signaling has been found in CSC from
various cancer types. The inhibition of Notch pathway depleted
CD133+ glioblastoma cells and inhibited tumor growth neurosphere
formation [26]. Breast CSC show Notch4 activity [27]. The use of
siRNA and γ-secretase inhibitor (GSI) for Notch-1 inhibition
suppressed proliferation, induced apoptosis, reduced migration, and
decreased invasion of PC cells [28]. Furthermore, a Phase 1b trial for
PC using a combination of Demicizumab (OMP-21M18, a monoclonal
antibody against Notch ligand, DLL4) with Gemcitabine and Abraxane
showed some clinical benefits [25]. NF-KB is activated in
approximately 70% of PC cases. Notch and IL-1 induce NF-kB in PC
[28]. Data from mouse models of PC showed that NF-kB is required
for oncogenic K-Ras-induced tumor development. Treatments with
Gemcitabine alone or in combination with IL-1 inhibitors decreased
IL-1α-induced NF-kB activity, and reduced PC growth [29].

NILCO, RBP-Jk and Pancreatic Cancer
Leptin levels are elevated in obesity, which is a risk factor for breast,

PC and endometrial cancers. Leptin-Notch crosstalk likely plays a role

in these cancers [30-32], where it also enhances angiogenic
transformation of endothelial cells [33]. Notch, IL-1 and leptin are
known factors involved in PC growth, progression, and
chemoresistance. We have previously shown that a crosstalk between
these factors (Notch, IL-1, leptin crosstalk outcome, NILCO) occurs in
breast cancer. NILCO is essential for leptin-induced proliferation/
migration and contributes to increased tumor angiogenesis and
metastatic potential in breast cancer. Combinatory treatments of leptin
signaling inhibitor (Peg-LPrA2) and drugs designed to prevent Notch
and IL-1 oncogenic crosstalk may be advantageous for breast cancer
patients [30].

The relationship between obesity and PC involves a pleiotropic
network of regulatory factors that have not yet been fully identified. An
early study suggested that leptin inhibits the PC cell growth, but
enhanced cell migration and invasion [34]. In contrast, in a PC
xenograft mouse model, the overexpression of leptin promoted tumor
growth and lymph node metastasis [35]. We found that leptin, at
concentrations similar to those found in overweight patients (20 ng/
ml), increased proliferation of several PC cell lines (BxPC-3, Panc-1,
MiaPaCa-2 and AsPC-1). Furthermore, leptin induced PCSC and
tumorsphere formation, as well as Notch expression. Inhibition of
Notch signaling diminished the effect of leptin, suggesting leptin-
induced Notch signaling is involved in obesity-enhanced PC
progression. The specific inhibition of leptin signaling (via leptin
peptide antagonist bound to iron oxide nanoparticles, IONP-LPrA2)
significantly delayed onset and decreased growth of PC xenografts in
immunodeficient mice. IONP-LPrA2 treatment also reduced the
expression of OB-R, Notch and PCSC markers (Table 1). These data
suggest that leptin-Notch axis is involved in PCSC maintenance that
could lead to PC progression and chemoresistance [31].

 Growth PCSC Notch expression ATP-binding cassette
transporters

IONP-LPrA2 effects

BxPC-3 increased increased increased - decreased

MiaPaCa-2 increased increased increased increased decreased

Panc-1 increased increased - - decreased

AsPC-1 increased increased - - decreased

PC xenograft mouse
model

increased increased increased increased decreased

Table 1: Effects of leptin on pancreatic cancer. Note: Data show results from investigations on the effects of leptin signaling in vitro (PC cell lines)
and in vivo (heterotopic mouse model: MiaPaca-2 derived PC xenografts). Leptin increased PC growth, PCSC, the expression of Notch receptors
and ligands, and ABCB1. Specific inhibition of leptin signaling using IONP-LPrA2 diminished leptin’s effects.

Activation of Notch occurs through different proteases that lead to
the formation of an intracellular truncated Notch receptor (NICD),
which is transported to the nucleus where it binds a repression factor:
RBP-Jk (CBF1/CSL). Eventually, NICD-RBP-Jk complex acts as a
transcriptional activator inducing the expression of Notch targeted
genes [36]. RBP-Jk is an important transcriptional regulator that is
essential in Notch canonic signaling. Notch independent RBP-Jk
regulation results in DNA-transcriptional activation, while Notch
dependent RBP-Jk regulation leads to DNA-transcriptional repression
of Notch target genes. The mechanism through which this gene
facilitates transcription is thought to involve chromatin remodeling via
epigenetic regulation using histone acetylase or histone deacetylase
proteins [37]. The blockade of Notch-mediated repression of E-

cadherin reduced catenin activation, and resistance to anoikis, and
induced a series of downstream mechanisms leading to tumor evasion
of apoptosis, reduced tumor growth and diminished metastasis [38].

While it is known that Notch signaling pathway is directly involved
in an oncogenic signaling mechanism that ultimately serves to
promote tumor development, the connection between obesity in
pancreatic cancer and Notch/RBP-Jk remains somewhat of a mystery
[39]. Our data suggests that leptin induces Notch and RBP-Jk, which
was linked to increased migration and proliferation of breast cancer
cells [30]. Additionally, the loss of RBP-Jk significantly increased the
expression of factors directly associated with cancer growth, metastasis
and CSC, such as Notch3/Notch4, N-cadherin and CD24 and CD44.
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These data are relevant considering the crucial role that CSC play in
tumor initiation, metastasis and therapeutic resistance. In light of data
reported by Kulic et al. [37], showing that RBP-Jk is downregulated as
tumors grow, more research must be implemented to uncover details of
its role in PC. Once this signaling pathway is fully elucidated, the
effects of obesity (leptin)-mediated regulation of RBP-Jk, and its
impact on cancer progression may have clinical implications. It is
envisaged that meticulous investigations in adipocyte biology, tumor
microenvironment and obesity-related cancer will lead to the
identification of new therapeutic targets for cancer and metabolic
diseases [40].
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