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Abstract
Minimal processing techniques like osmodehydration have been finding a significant place in post-harvest practices of fruits 

and vegetables. Osmodehydration is adopted for extending shelf life of certain fruits. The overall effectiveness of the process 
is determined by process parameters affecting the mass transfer phenomena. In the present study this technique has been 
extensively applied on Litchi (Litchi chinensisSonn), a sub-tropical fruit. The process has been effectively modeled and the 
findings of the result suggest that sugar concentration and temperature significantly influence the process. Developed model could 
adequately predict the equilibrium point. The effective diffusion coefficients for water loss and solid gain obtained for the process 
ranged from 0.23 to 0.348×10-10 m2s-1 for water loss and from 0.0428 to 0.0721×10-10 m2s-1 respectively.

Osmotic Dehydration of Litchi Using Sucrose Solution: Effect of Mass 
Transfer
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Introduction

Central preoccupation of the Food Processing Industry is, 
ensuring the supply of safe product, for consumption. Presently, the 
industry has a renewed interest in minimal processing techniques 
for preservation of food quality especially the fruits and vegetables. 
Litchi (Litchi chinensisSonn), is an important sub tropical evergreen 
fruit crop belonging to family Sapindaceae. Being exacting in climatic 
requirement it is confined to few areas of India, China etc. Annual 
production of litchi in India is about 50,000 tons. It is a means of 
livelihood of small and marginal farmers native to the locality. The food 
value of litchi mainly lies in its sugar content and presence of vitamins 
like: vitamin B, Riboflavin, Vitamin C etc. It makes an excellent raw 
material for canned fruit, squash, pickles, preserved wine, dried litchi 
etc. Litchi possesses poor shelf life (2-3 days under ambient conditions) 
and therefore needs specific treatment before packaging and being 
transported to long distances. With proper post harvest treatment 
(precooling, sulfuric acidification, storage at low temperature) it can be 
preserved for only 2-3 weeks. Also, the existing chemical preservation 
methods have been restricted; hence, there is an immediate need for 
alternative methods.

Contextually osmotic dehydration is one of the varied and most 
adopted techniques in vogue, for extension of the shelf life of food 
products. It is the phenomenon of removal of water from lower 
concentration of solute to higher concentration levels, across a semi 
permeable membrane, finally resulting in equilibrium state on both 
sides of membrane [1]. The process is executed by immersing the 
sample in a hypertonic solution [2,3]. In the industry it is adopted 
as a pretreatment process for freezing, freeze drying, vacuum drying 
etc. The process finds increased application in preservation since, 
it lowers water activity without altering the nutritional, flavor and 
textural integral characteristics of the initial product [4]. Further, the 
low operational temperatures also prevent the enzymatic and oxidative 
browning thereby enhancing the storage life of the product [5,6].

Osmotic dehydration process is a multicomponent diffusion 
process that involves three types of counter mass transfer phenomena. 
These include, water outflow from the food tissue to the osmotic 
solution, solute transfer from the osmotic solution to the food tissue 
and leaching out of the food tissue’s own solutes (sugars, organic acids, 
minerals, vitamins) into the osmotic solution [7,8]. The latter transfer 
is quantitatively negligible compared with the other two types. Thus, 

the driving force in this process is the difference in the osmotic pressure 
of solutions on both sides of the semi-permeable membrane.

The diffusion of water and low-molecular weight substances from 
the tissue structure during the osmotic dehydration is accompanied by 
the counter-current diffusion of osmoactive substances [9]. All these 
mass exchanges between the osmotic solution and foodstuff have an 
effect on the overall quality of the dehydrated product i.e. nutritional 
value, texture, color and taste. Hence, diffusion, osmotic processes, flux 
interactions, and tissue shrinkage should all be taken into account for 
accurate description of the mass transfer phenomena during osmotic 
dehydration. Water diffusivity rate from a sample and uptake of 
solids is dependent on several factors such as types of osmotic agent, 
concentrations of osmotic agent, processing temperatures, agitation 
or stirring process, pretreatment methods and presence of coating if 
any [10-13]. Efforts have been made by researchers to increase the rate 
of osmotic mass transfer for reducing the processing time [14-17] and 
minimizing the uptake of osmotic solids, as it can severely alter the 
organoleptic and nutritional profile of the product [18-20]. Thus an 
understanding of the various underlying factors affecting the process 
and their modeling is essential for process optimization. The mass 
transfer process has been modeled based on the theories of Fickian 
diffusion, irreversible thermodynamics, multicomponent diffusion, and 
hydrodynamic flow. Evaluation of the long-term equilibrium and the 
distribution of the phases in the tissue provide a better understanding 
of the phenomena that control the mass transfer processes in osmotic 
dehydration.

Hence the present work has been undertaken to study mass transfer 
parameters during osmotic dehydration of litchi. It also includes 
examination of the predictive capacity of modified Fick’s model of 
diffusion presented in earlier reports [21,22].
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Mathematical Basis of the Osmotic Dehydration 
Modeling Studies

In the studies reported, mass transfer in osmotic dehydration 
of fruits at atmospheric pressure has been modeled either by a 
phenomenological approach using Crank's model (which is a Fick's 
law solution) or empirically, using models developed from polynomial 
equations, mass balances, or relations between process variables (i.e., 
Magee's, Azuara's, and Page's models). Most of the models for mass 
transfer evaluation during the osmotic process are based on the 
mathematical solutions of Fick’s Law of Diffusion. Crank has reported 
that it could be used for the determination of the water and sugar 
diffusion coefficients [22]. Similar applications have been made for 
varied range of foods [23-28]. Several reports on process kinetics of 
the dehydration process showing a good fit to the experimental data 
for various fruits and vegetables are available [29,30]. For all of these 
models, experimental data are required to determine the values of their 
adjustable parameters for specific processing conditions. Comparative 
evaluation of the various models have demonstrated that Azuara's and 
Page's models yield better correlations (with mean absolute errors less 
than 1.26% for ML and 0.46% for SG) than Magee's and Crank's models 
(with mean absolute errors of up to 2.98 and 1.68% for ML and SG, 
respectively). A two-parameter equation, developed by Azuara et al. 
from mass balance considerations, has been used in these latter models 
to predict the kinetics of osmotic dehydration and the final equilibrium 
point [31]. The model was tested using kinetic data from different 
experiments. Model was able to predict water loss and solids gained 
over long periods of osmotic dehydration. The final equilibrium point 
could also be estimated using data obtained during a relatively short 
period of time. 

Simple equations were obtained when the model was related to 
Fick’s second law for unsteady one-dimensional diffusion through a 
thin slab, and diffusion coefficients were readily estimated from these 
equations. 

The mass balance of water inside the food sample is given by 
equation (1): 

WL WL WS∞= −                    (1)

where, WL is the fraction of water lost by the sample at any time, 
WL∞ is the fraction of water lost by the sample at equilibrium and WS is 
the fraction of water that can diffuse out, but remains inside the sample 
at time t. 

In equation (1) WL∞ has a fixed value for the established conditions 
of temperature and concentration. On the other hand, WL and WS are 
functions of the rate of water loss and time. A relationship between WL, 
WS, and a constant (S1) related to the water loss is given by equation (2):

1

1

( )
1

S t WLWL
S t

∞=
+

                  (2)

in which S1 is a constant related to the water loss and t is time.

When t→ ∞ (at equilibrium), WL tends to the asymptotic value 
WL∞. The values of S1and WL∞can be calculated by a non-linear 
estimation program or by linear regression, using experimental data 
obtained during a short time and the linear form of equation (2). 

Similar equations can be written for the gain of soluble solids by 
the product: 

2

2

( )
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S t
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+

                    (3)

in which SG is the fraction of soluble solids gained by the food 
at time t; SG∞ is the fraction of soluble solids gained by the food at 
equilibrium, and S2 is a constant related to the rate of soluble solid 
incoming to the food sample. 

Based on Fick’s second law, Crank proposed an equation for one 
dimension diffusion in a flat sheet in contact with an infinite amount of 
solution. Its simplified form when “t” is small is given by equation (4): 

1
2

22( )tWL Dt
WL lπ∞

=                    (4)

in which WLt is the amount of water leaving (WL) or solute entering 
(SG) the food sample at time t; WL∞ is the amount of water leaving or 
solute solids entering the sample at infinite time (WL∞ or SG∞); D is 
the effective diffusion coefficient; and L is the half thickness of the slab. 

From equation (4), equation (5) is obtained, which is a simple 
expression from which D can be easily calculated at different times. 
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                   (5)

in which Si= S1or S2; 
modelWL∞ is the equilibrium value obtained from 

Equations (2) or (3); ExpWL∞ is the equilibrium value experimentally 
obtained; Dt is the effective diffusion coefficient at time t, which can be 
readily obtained.

The theoretical equilibrium value (X∞ model), and the constant, S, 
are estimated using the experimental data (Xt) and linear regression:

,mod ,mod

1

t

t t
X SX X∞ ∞

= +                  (6)

The expression presented by Azuara et al. was tested on data 
pertaining to the osmotic treatment of apple, pineapple and beef and 
fishes [31]. Rate constants and diffusion coefficients for the initial 

stages of the process are determined from plots of tX
X∞

vs.t ½

1
2tX Kt

X∞

=                      (7)

Where, 
1

2
22( )DK

L
=

Π  , Xt is the amount of solute entering/water 
leaving the sample at time t; X∞, amount of solute entering/water 
leaving the sample at equilibrium; D, diffusion coefficient for solute /
water flow; L, half-thickness of slab; t, time.

Based on this model Crank and Azuara et al. presented an 
expression from which the diffusion coefficient can be calculated at 
different times during the osmotic process, and not just only for the 
initial stages of dehydration.

Materials and Methods
Sample preparation

Litchi was procured from local markets of Kolkata. The fruit 
samples were purchased in batches to avoid variation in samples. 
Samples were washed thoroughly, manually peeled, de-seeded and cut 
into slices 0.5mm thick. Samples were gently blotted with tissue paper 
to remove adhering surface water and weighed.

Aqueous sugar solutions of required 0Brix (30-500 Brix) were 
used as osmotic dehydration media. Sugar solution was prepared by 
dissolving appropriate amount (30, 40 and 50 g) of sugar per 100 g of 
solution. 

Osmotic dehydration

Dehydration i.e. the osmotic process was carried out at different 
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sucrose concentrations (30-500Brix). Trials were conducted by keeping 
the solution temperatures (30-50°C) with agitation of 90 rpm. The 
slices were placed in 250 ml beakers containing the osmotic solution 
and maintained inside a temperature-controlled bath. In order to avoid 
significant dilution, subsequent decrease of the driving force during the 
process, the mass ratio of osmotic medium to fruit sample was kept at 
20:1. Samples were removed from the solution at 15, 30, 45, 60, 75, 90, 
120, 150, 180 and 240 min after immersion, drained and the excess of 
solution on the surface was removed by absorbent tissue paper. 

Average moisture and dry matter content of the samples were 
determined by AOAC, method by drying the dehydrated samples 
at 70°C for 24 h in an oven [32]. All the experiments were done in 
triplicate and the average value taken for calculations. 

Water loss (WL) has been expressed as the net water loss from the 
freshly peeled and sliced litchi samples after osmotic dehydration based 
on initial sample mass. Solid gain (SG) has been defined as the net solid 
uptake by the litchi sample, based on initial sample weight [33]:

( )% [ ] 100i o

i

M M
WL

W
−

= ×                  (8)

( )0% [ ] 100i

i

S S
SG

W
−

= ×                   (9)

in which Mi is the initial moisture content (g); Mo is the moisture 
content of osmotically treated sample (g); Si is the solids content of 
osmotically treated sample (g); So is the initial solids content (g); Wi is 
the initial total sample mass (g).

 Using the experimental measurements the moisture loss and solid 
gain were calculated and also estimated as functions of the solution 
concentration and temperature. Curves of water loss and solid gain as 
a function of time were constructed using experimental data. Values 
for the parameters like drying rate, sugar gain rate were estimated. 
The resulting experimental data has been evaluated for fitting a 
representative Azuara model equation. With the model equation, 
the diffusion coefficient was calculated at different times during the 
osmotic process including the initial stages of dehydration. Equilibrium 
values of moisture and solid content and effective diffusivities were 
determined from the developed model equation. Likewise the time 
dependent diffusivities were also evaluated.

Results and Discussion
Percentage Water loss and Solid gain

 For the experimental samples the % water loss and % solid gain 
were calculated using equations (8) and (9) respectively. The values 
were estimated for samples treated at different 0Brix, varied temperature 
and kept at distinct duration of time. Graphical representations of the 
observations have been represented in Figures 1-3. 

 Significant WL was observed during first 150 minutes which 
gradually decreased with time till equilibrium point. As may be 
observed the same pattern was obtained for samples at varied 0Brix 
solution. This can be attributed to the large osmotic driving force 
between the fruit and the surrounding hypertonic medium. This result 
corroborates with those obtained by several research groups studying 
osmotic dehydration of cantaloupe, mango slices, apricot and guava 
cubes [34-37].

 It was observed that the solid content of litchi slabs was also 
significantly affected by sugar concentration of immersion solution, 
temperature and time as depicted in the Figures 4-6. From Figures, it 

may be observed that there was a rapid increase in solid gain during 
the first 150 minutes and then the decrease was gradual with time. 
The increase in solid gain with increasing sucrose concentration is 
comparatively lower than the corresponding water loss under the same 
conditions. For 3 hour osmosis period the highest water loss (0.53 g 
water/gm solid) and solid gain (0.92 g solid/gm solid) were observed 
with 500Brix sucrose solution, while the lowest water loss (0.35 g water/
solid.) and solid gain (0.048 g solid/g solid.) was with 300Brix sucrose 
solution.

 These results indicate that some benefits in terms of faster WR 
and WL could be achieved by choosing a higher concentration of 
medium. However, a much greater SG is also observed and reported 
elsewhere. This finding also confirmed that highly concentrated sucrose 
solution (500Brix) is a mass transfer rate limiting parameter during 
osmotic dehydration process. Lazarides et al. noted that at increased 
temperatures, high rates of WL during the osmotic dehydration of 
apples seem to prevent the development of proportionally high rates of 
counter current sucrose diffusion [38]. They added that whenever it is 
desirable to achieve higher water removal and lower solids gain, a higher 
process temperature (within allow-able limit) should be used. This may 
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Figure 1: Water loss in different Brix solutions at 30°C.
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Figure 2: Water loss in different Brix solution at 40°C.
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Figure 3: Water loss in different Brix solution at 50°C.
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be explained since osmotic dehydration is a two way diffusion process 
which is strongly dependent on temperature. Similar observations on 
the influence of temperature on osmotic dehydration rate were made 
and reported [39,40]. While temperature can be advantageously used 
to complete osmotic dehydration rapidly, it should be noted that higher 
temperature may adversely affect colour and flavor. Consideration of 
these and other factors such as tissue integrity lead Pointing et al. to 
suggest a maximum temperature limit of 490C for osmotic dehydration 
[41].

Rate of change in moisture content (MC) and content (SC)

Rate of removal of moisture is a characteristic of prime importance 
to every dehydration process as it is indicative of process effectiveness. It 
is also suggestive of the productive duration of the process. MC data for 
litchi slabs were used to calculate the rate of change in moisture (Rate 
MC). This was done by calculating the difference in MC (g H2OgDM-1) 
between consecutive sampling times (t, t+1), and dividing this value by 
the time interval (min). A plot of the rate of change in moisture (dM/dt) 
in litchi slabs vs. immersion time has been shown in Figures 7-9.

Generally, during the first hour, the higher the solution 
temperature, the higher the drying rate. It may further be observed 
that rate is highest at the beginning and declines rapidly within the first 
hour of dehydration.

Drying rates were highest for slabs at 500C, and lowest for slabs at 
30°C. Initial rates of dehydration averaged 0.0086, 0.0088 and 0.0119 
g H2Og DM-1 min-1) for dehydration at 30, 40 and 50°C respectively 
by 500 Brix. Beyond 2h of dehydration, rate changes were negligible 
regardless of sugar solution temperature. Also In the plots given it may 
be observed that there are no periods of constant water removal and 
therefore no constant rate period. Rates declined with declining MC. 
This means that the drying rate of slabs was dependent on the moisture 
concentration inside the lichhi. 

It is generally accepted that mass transfer during osmotic 
dehydration of fruits is governed by internal diffusion, that is, 
movement under the influence of a concentration gradient. Where a 
constant rate of drying does occur, the period is brief and does not 
exceed tens of seconds [42]. As also shown by Lenart and Lewicki for 
the osmotic dehydration of fruit, the relationship between rate and MC 
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Figure 4: Solid gain in different Brix solution at 30°C.

 

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0 100 200

So
lid

 g
ai

n 
(g

m
/g

m
 in

iti
al

 
so

lid
)

Time (min)

30 degree
Brix
40 degree
Brix
50 degree
Brix

Figure 5: Solid gain in different Brix solution at 40°C.
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Figure 6: Solid gain in different Brix solution at 50°C.
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Figure 7: Drying rate in Brix at 30°C.
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0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

6.2 6.4 6.6 6.8

D
ry

ig
n 

ra
te

 (g
m

/g
m

 so
lid

. 
M

in
)

Moisture (gm/gm dry solid)

30 degree Brix

40 degree Brix

50 degree Brix

Figure 9: Drying rate in Brix at 50°C.
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of litchhi during the falling rate period is firstly exponential in character 
[43]. However, when the MC falls below a certain critical value, in this 
case approximately 6.6 g H2Og DM-1, the plot was linear.

 High rates of WL and solids gain during the initial stages of 
dehydration followed by drastically lower rates have been attributed 
to the large initial osmotic driving force between the sample and the 
surrounding hypertonic solution, structural changes such as shrinkage 
leading to the compaction of the surface layers of the tissue and the 
decreasing availability of free or loosely bound water leading to the 
progressively slower moisture removal as the process goes on [43,44]. 

Diffusion coefficient vs time at different temperatures

The diffusion coefficients for WL in litchi slabs were calculated at 
different times during the osmotic process using eqn 2.The observations 
made have been represented in Figures 10-14. Diffusivities were 
significantly affected by immersion time and immersion solution 
temperature. Generally values were highest approximately after 1 h of 
dehydration. Thereafter there is initially a rapid decline followed by a 
gradual decline. The diffusion coefficients for WL increased as sucrose 
temperature increased. As shown in figures water diffusivity values for 
the first hour of dehydration averaged 6.7, 7.5 and 7.9×10-10 m2s-1 for 
dehydration by 30, 40 and 500 Brix, respectively at 300C. The results 
were found to be comparable with the results of model no. 2, which 
is applicable only to the initial stages of dehydration. The advantage 
of using this approach is therefore the ability to calculate diffusivities 
for the entire duration of the osmotic treatment and not just the initial 
stages. As shown in figures, there is a similar tendency at 40 and 50°C.

Similar observations have been for the first hour of dehydration 
averaged 8.5, 8.6 & 11.5×10-10 m2s-1for dehydration by 30, 40 and 500 Brixas 
reported by Azuara et al. where data of Favetto et al. [21,24] for the 
salting of beef was modeled and the diffusion coefficient estimated .It was 
found that it was not constant for the duration of the diffusion process. At 
85°C, D-values decreased from an initial value of 4.0-1.5×10-5cm2s-1 in 3 h. 
At 30°C, D-values increased from an initial value of 0.5-1.0×10-5 cm2s-1 in 3 h.

Rate constants and diffusion coefficients

The experimental data obtained at varied conditions was tested 
with Model no: 1and model no:2 to estimate the rate constants and 
diffusion coefficients When the solution given by Crank for a well-
stirred solution was applied to the WL and SG by litchi slabs, the t1/2 
law given in eqn 1 could be applied satisfactorily to the linear section of 
the data which corresponds to the first 2 h of dehydration. The slopes 
of these plots have been given in Table 1.

 At higher the temperature of the osmotic treatment, slope of the graph 
was steeper and the value of constant K was also higher. Increasing the 
sucrose solution temperature from 30 to 50°C resulted in an increase in 
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Figure 14: Diffusion coefficients (D) for sugar gain in litchi slabs at 50°C.

the constant for moisture diffusion from 0.0632-0.084 min0.5 at 300Brix, 
which was almost one and half fold increase. While the constant for water 
diffusion was 0.074-0.086 min0.5 when sucrose solution was of Brix 400 it 
varied from 0.082-0.088 min0.5 at 500 Brix sucrose solution.

Likewise based on the approach of using Crank’s solution for a 
well-stirred solution, presented by Azuara et al. the plot of t/WL vs. t 
based on the straight line equation (eqn 3) was used to generate S-values 
(intercept) and equilibrium values (slope). The obtained values have 
been given in Table 2.
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 All r2-values were > 0.99. S-values, which are related to the rate of 
WL, increased from 0.0194 to 0.033 min-1 as sugar solution (from 30 
to 500 Brix) temperature was increased from 30 to 50°C. The S-value is 
a measure of the rate of the diffusion process, with 1/S being the time 
taken for half the diffusible material to diffuse in or out. For example, 
for WL at 30°C, this corresponds to 70 min, while for WL at 50°C, this 
corresponds to 35 min.

Conclusion
The rate of water loss and sugar gain during osmotic dehydration of 

litchi was directly related to the sugar concentration and temperature. 
Since the experimental equilibrium conditions were not completely 
reached in short processing times, the Azuara et al. model was used 
to predict the equilibrium point. When the predicted values were 
compared to the experimental ones it was found that the model 
adequately describes the experimental values, especially for water 
loss. The osmotic dehydration or the process time to attain a specific 
water loss can be predicted using the proposed model when the model 
parameters are known. 

The Azuara equation well described the experimental data and also 
well predicted water loss and solid gain. The effective diffusion coefficients 
obtained from the Azuara equation ranged from 0.23 to 0.348×10-10 m2s-1 

for water loss and from 0.0428 to 0.0721×10-10 m2/s for solids gain.
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