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Abstract
The world is facing the problem of petroleum crisis and is in need of some immediate resolutions. The perception 

of sustainable development as a means to integrate the environmental, social and economic objectives of the society 
has been greatly developed in order to maximize human well-being in the present system without compromising the 
ability of future generations. Development that is not sustainable will inevitably lead to negative social, economic and 
environmental repercussions (OECD 2001). Energy is the crucial need of mankind and in addition is the priceless gift 
offered by the nature. The continuous rise in the use of fossil fuel and the extinguishing petroleum stocks have led 
us to rethink about the use of renewable energy sources that will also reduce carbon dioxide (CO2) emissions. Bio-
fuels, such as ethanol, are generally considered renewable since the CO2 emitted into the atmosphere is recaptured 
by the growing crop in the next growth cycle. The most important issues relevant to the conversion of carbohydrates 
to ethanol are the cost and availability of substrate. Consequentially it is worthy to develop an economical process 
which allows the use of cheap substrates for successive conversion to ethanol. Hence, there is still need for cutting 
edge research to be done on an effective, economical, and efficient conversion process. The present study was 
conducted to optimize the ethanol production potential of maize (Zea mays). In order to achieve maximum ethanol 
production the experiments were conducted by optimizing three fermentation variables i.e. pH, temperature and 
substrate concentration which were optimized at different conditions using Response Surface Methodology (RSM) by 
design-expert software (version 8. 0.7.1 Stat-Ease Inc; USA). Parameters were optimized by central composite design 
observing the effect of combination of two variables and keeping the one constant on ethanol production. During the 
experiments, the maximum ethanol production was 74.6 g/L at conditions: pH 5.8, temperature 31°C and substrate 
concentration 160 g/L. The RSM is a better method for optimization of parameters as it is less labor intensive and more 
accurate than the classical methods. It reduces the number of fermentation batches. The adequacy of all the models 
was found to be significant at 99% as coefficients of determination were found to be (0.9923) (0.9735) (0.9662).
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Introduction
Energy is vital need to sustain life. The demand for fossil fuels is 

continuously increasing but at the same time and petroleum stocks are 
extinguishing. This problem has led us to move around about the use 
of renewable energy sources. These renewable sources reduce carbon 
dioxide (CO2) emissions. At present, biofuels come out to be used as 
the best possible economical substitute for petroleum-based fuels. Bio-
fuels, such as ethanol, are renewable because the CO2 released into 
the atmosphere is recaptured in the next growth cycle by the growing 
crop. The most primitive organic reaction that man learned to carry 
out is the fermentation of sugar into ethanol. The man-made ethanol is 
known from ancient times and its history is very long. Ethanol is very 
potent psychoactive substance and is used in history as a recreational 
drug. Ethanol, both liquor and a fuel, has been around in the form of 
Moonshine Whiskey in Scotland since 15th Century. In the year 1796, 
Johann Tobias Lowitz obtained pure ethanol by filtering distilled 
ethanol through activated charcoal. Ethanol is not a novel fuel as it was 
used as a major lighting fuel in 1850s. To raise money for the war, a 
liquor tax was imposed on ethanol during the Civil War. As a result, 
the tax increased the price of ethanol to a great extent that it could no 
longer compete with other fuels such as kerosene in lighting devices. 
This tax declined the ethanol production sharply and production levels 
did not begin to recover until the tax was repealed in 1906.

The cost and availability of substrate are the most important issues 
relevant to the conversion of carbohydrates to ethanol. For the long 

term planning various cellulosic substances appear to be striking as raw 
materials but currently are not competitive as substrates for ethanol 
production. Starchy materials, however, have been proposed and have 
proven viable as a substrate for ethanol production. The key to success 
of conversion of starch into sugars is the availability of highly active 
enzymes, suitable strain and the optimization conditions of substrate 
concentration, temperature and pH. More than a decade ago USA 
began a hard line search to find a practical source of renewable fuel to 
meet its voracious energy demands. Alternative fuels such as starch-
based ethanol, cellulosic ethanol, and biodiesel are all considered to 
be potential solutions in a national effort to reduce gasoline usage by 
20 percent over the next ten years [1,2]. Corn-based ethanol emerged 
as an early leader due to the abundance of corn and the popularity of 
ethanol-gasoline mixtures. The Energy Tax Act of 1978 created ethanol 
tax credits in an effort to decrease USA’s susceptibility to oil. Between 
1979 and 1986, domestic production of ethanol rose considerably in the 
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USA, from a mere 20 million US liquid gallons (over 75 million liters) 
to 750 million gallons (around 2.84 billion liters) [3]. In 1990, small-
scale producers received an additional tax credit of 10 cents per gallon. 
By 2004, the US ethanol production had grown even more. The Energy 
Policy Act of 2005 was another important step in corn ethanol history. 
It mandated an annual consumption of 7.5 billion gallons of ethanol by 
2012. Two years later, the mandate was increased to 15 billion gallons 
of corn ethanol by 2015.

The present study was accomplished using Response Surface 
Methodology (RSM). It is a major process optimization tool that is used 
to determine the optimum values of a variety of factors significant for 
the process. RSM is a compilation of statistical techniques to design 
experiments, evaluate the effects of variables and thereby, seeking the 
optimum conditions. It is mostly used in optimization of different types 
of fermentations and bioprocesses [4-6]. The major advantage of RSM 
is the confined sets of experimental runs that are required to provide 
sufficient information for statistically acceptable results, in addition, its 
suitability for multiple factor experiments and examination of common 
relationship between various factors under experiment towards finding 
the most suitable production conditions for the bioprocess and forecast 
response. This is a group of techniques that are used to study the 
reaction between one or more measured dependent factors (responses) 
and a number of input (independent) factors.

Materials
• Maize genotypes: Genetically pure seeds of seven single cross

hybrids of maize were procured from Directorate of Maize 
Research, IARI campus, PUSA, New Delhi.

• Fermenting Yeast: The fermenting yeast (Saccharomyces
cerevisiae MTCC 4043) used in the present study was procured 
from IMTECH, Chandigarh. 

• Commercial Enzymes: Alpha amylase was procured from
HI-MEDIA chemicals having activity1:2000 I.P.Units.
Glucoamylase was procured from SRL, New Delhi. The enzyme 
has activity 64 units/mg.

• Fermentor: An applikon fermentor having capacity 3 L was
used in the experiment.

• Distillation unit: A fractional distillation apparatus was used
in the present study.

Experimental set-up
The experiments were conducted by making combinations of the 

variables using two factorial composite design of RSM [7]. Initially, the 
pH and temperature effects were observed on ethanol concentration. 
Nine experiments for fermentation were conducted using Central 
Composite Design (CCD) (design expert software). Further, the effect 
of temperature and substrate concentration was observed on ethanol 
concentration using the same method. Again, nine experiments 
were conducted by CCD (design expert software) for fermentation 
batches. Finally, the effect of pH and substrate concentration on 
ethanol production was observed. Subsequently, nine experiments 
were conducted using CCD (design expert software) performed for 
fermentation.

RSM is a three factorial design where contour plots are generated by 
linear or quadratic effects of key factors and a model equation is derived 
that fits the experimental data to calculate optimal responses of the 
system. To calculate optimum values of three factors (pH, temperature 
and substrate concentration) selected for CCD. An optimization study 

seeks a solution to an objective (minimization and maximization of an 
analysis feature parameters) while being constrained by a set of model 
dimensions and other analysis feature parameters. In order to maximize 
the ethanol production effective factors, the levels were selected based 
on previous studies. The selected variables include pH, temperature 
and substrate concentration. High (+) and low (-) values of these three 
variables were examined. A Central Composite Design was constructed 
which gave different values in the form of a matrix, for the selected 
variables.

Optimization by central composite rotable design

For the optimization of process parameters, statistical experimental 
design advance approach was used to provide information on the 
interactive effect of variables; finally, verification of experiments is 
used to validate the results under specific experimental conditions 
[8]. The influence of temperature, pH and substrate concentration on 
ethanol production was determined using RSM. The results of two level 
factorial experiment designs with five replications of the central point 
and six axial points are summarized in Tables 1-3 with alpha value of 
1.414 and 13 runs. The effect of each factor and their interactions were 
analyzed using the analysis of variance (ANOVA). RSM is being widely 

Run Factor 1
A: pH

Factor 2
B: Temp (⁰C)

Response 1
Ethanol (g/L)

1 7.2 31.00 36
2 5.8 31.00 76.4
3 5.8 18.27 52
4 5.8 43.73 47
5 4.8 40.00 57.8
6 4.3 31.00 59.7
7 6.8 22.00 44.7
8 4.8 22.00 58.2
9 6.8 40.00 42

Table 1: The combined effect of two factors i.e. pH and temperature in 9 
combinations. Standard order 2 represents the maximum ethanol concentration.

Run Factor 1
A: temp (⁰C)

Factor 2
B: Substrate (g)

Response 1
Ethanol (g/L)

1 22.00 140.00 57
2 31.00 188.28 61
3 18.27 160.00 52
4 40.00 140.00 53.5
5 31.00 160.00 74.6
6 43.73 160.00 47
7 31.00 131.72 68
8 40.00 180.00 50
9 22.00 180.00 55

Table 2: The combined effect of two factors i.e. temperature and substrate 
concentration in 9 combinations. Standard order 5 represents the maximum 
ethanol concentration.

Run Factor 1
A: pH

Factor 2
B: Substrate (g)

Response 1
Ethanol (g/L)

1 5.80 160.00 74.6
2 5.80 188.28 61
3 4.80 180.00 57
4 7.21 160.00 36
5 6.80 140.00 48.2
6 4.39 160.00 59.7
7 6.80 180.00 43
8 5.80 131.72 68
9 4.80 140.00 60.1

Table 3: The combined effect of two factors i.e. pH and substrate concentration in 
9 combinations. Standard order 1 represents the maximum ethanol concentration.
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used in optimizing different types of fermentations and bioprocess. 
RSM is applied to evaluate the effect of pH, temperature and substrate 
concentration on ethanol production by making combination of 
variables.

Central composite design (CCD) is the most common experimental 
design used in RSM, and the design exhibits equal certainty in all 
directions from the center. The F-test analysis of variance (ANOVA) 
was used to check the statistical significance of model equation. 
Experimental data was analyzed via response surface methodology in 
order to fit the following second order polynomial equation generated 
by Design Expert software (Trial VERSION 8.0.7.1 Stat-Ease Inc; USA). 
Second order coefficients were generated via regression. The response 
was initially fit to the factors via multiple regressions. The quality 
of the fit of the three models was evaluated using the coefficients of 
determination and analysis of variance. The three quadratic response 
surface models conducted by Central composite design were fit to the 
following equations:

I. 2 276.40 7.85 1.25 0.57 13.78 12.95Y A B AB A B= + − − − − −

 Where, A=Temperature, B=pH, Y=Ethanol concentration

II. 2 274.60 1.95 1.92 0.37 13.33 5.83Y A B AB A B= + − − − − −

 Where, A=Temperature, B=Substrate concentration, Y=Ethanol 
concentration

III. 2 274.60 7.43 2027 0.53 14.47 6.07Y A B AB A B= + − − + − −

Where, A=pH, B=Substrate concentration, Y=Ethanol 
concentration.

Process methodology

Maintenance of culture: Saccharomyces cerevisiae MTCC 4043 was 
maintained by subculturing it every 15-20 days on YEPD agar plates 
and incubated in a BOD incubator at 30°C, pH 5.4 for 24 hours.

Inoculum preparation and inoculation: The inoculum for yeast 
was prepared in YEPD liquid medium. A loop full of strain MTCC 4043 
was inoculated in the liquid medium. The culture was incubated in a 
BOD incubator at 30°C 150 rpm for 24 hours. This inoculum was used 
10% in the sterilized corn mash.

Process of conversion of corn to ethanol: In the present study, 
ethanol is made through dry milling process [9,10]. However, ethanol 
can be made both by dry and wet milling of corn. In dry milling the 
entire corn kernel is processed without separating out the various 
component parts of the grain such as the germ. Water is added to form 
the slurry to which the enzymes are added to convert the starch to 
dextrose, a simple sugar. It is cooked at high temperatures to reduce 
bacterial levels, and then it is cooled and transferred to fermenters 
where yeast is added to convert the sugars to ethanol. Cooking and 
fermentation converts the starch in the grain to sugar and ethanol [11]. 
Left behind is the ‘stillage’-comprising of protein as well as fiber. This 
stillage is sent through the centrifuge that separates the solid matter and 
soluble which are concentrated to syrup of 30% solids by evaporation. 
The solid matter and syrup are combined and dried together to produce 
a co-product called distiller’s dry grain with soluble (DDGS). DDGS is 
a high quality, medium protein, nutritious feed ingredient widely used 
in beef and dairy cattle, poultry and swine feed.

Grinding

The whole corn kernel was grinded to very fine powder.

Fermentation

The substrate was dissolved in 1000 ml distilled water in the 
fermentation vessel. The vessel was autoclaved along with slurry. When 
the temperature of fermentation vessel after autoclaving reaches to 
60-70°C, α-amylase [12] was added in the fermentation vessel. The 
pH, temperature and substrate concentration of the vessel was set in 
accordance with different matrix design from RSM (Tables 1-3). After 
5 hrs, glucoamylase along with the 24 hrs old culture of S. cerevisiae 
MTCC 4043 was added in the vessel. The fermentation cycle was run 
for 72 hrs. The sample was filtered and distilled after 72 hrs.

Results and Discussion
Matrix designs of combination of variables conducted by central 

composite analysis: Tables 1-3 describe the results of two level factorial 
experiment designs with five replications of the central point and six 
axial points.

ANOVA for Response Surface Quadratic Models

Analysis of variance of quadratic model (i)

ANOVA and regression coefficients are listed in Table 4. The model 
F value of 310.89 implies that model is significant (with only 0.01% 
chance that the value could occur due to noise). Values of probability 
less than 0.050 indicate model terms are significant. In this case linear 
factors (A,B), quadratic factors (A2,B2) are significant terms. Values 
greater than 0.100 indicate model terms are not significant. If there are 
many insignificant model terms (not counting those required to support 
hierarchy), model rejection may improve the model. Both the quadratic 
and linear effect of temperature and pH are significant. The effect of pH 
is more significant than temperature. These data analysis also validate 
the inference that can be drawn from 3-D contour plots as shown in 
Figure 1 which represents the effect of pH and temperature on ethanol 
production. The “Predicted R-Squared” of 0.9681 is in reasonable 
agreement with the “Adjusted R-Squared” 0.9923 (Table 5).”Adequate 
Precision” measures the signal to noise ratio. A ratio greater than 4 is 
desirable. The ratio of 43.110 indicates an adequate signal (Table 5). 
This model can be used to navigate the design space.

Source Sum of Squares df Mean Square F Value P Value Prob<F
Model 2707.84 5 541.57 310.89 <0.0001 significant.
A-pH 493.24 1 493.24 283.15 <0.0001

B-temp 12.93 1 12.93 7.42 0.0296
AB 1.32 1 1.32 0.76 0.4125
A2 1320.00 1 1320.00 757.76 <0.0001
B2 1166.63 1 1166.63 669.71 <0.0001

Residual 12.19 7 1.74

Lack of Fit 12.19 3 4.06

Pure Error 0.000 4 0.000

Core Total 2720.03 12

Table 4: Analysis of variance of quadratic model 1 (Partial sum of squares type III).

Std. Dev. 1.32 R-Squared 0.9955
Mean 59.95 Adj R-Squared 0.9923
C.V. % 2.20 Pred R-Squared 0.9681
PRESS 86.71 Adeq Precision 43.110

Table 5: Standard deviation and correlation coefficients.
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Analysis of variance of quadratic model (ii)

ANOVA and regression coefficients are listed in Table 6. The model 
F value of 89.23 implies that model is significant (with only 0.01% 
chance that the value could occur due to noise). Values of probability 
less than 0.050 indicate model terms are significant. In this case both the 
linear factors A, B and quadratic factors (A2,B2) are significant terms. 
Values greater than 0.100 indicate model terms are not significant. If 
there are many insignificant model terms (not counting those required 
to support hierarchy), model rejection may improve the model Figure 
2. The quadratic effect of temperature and substrate is more prominent
than linear effect. It can also be concluded from the table that effect of 
temperature is more pronounced than substrate concentration. These 
data analysis also validate the inference that can be drawn from 3-D 
contour plots as shown in Figure 3 which represents the effect of pH 
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Figure 1: Response surface and contour plot showing the effect of pH and temperature on ethanol production.
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Figure 2: Predicted vs. Actual response of experimental run under Central Composite Design.

Source Sum of Squares df Mean 
Square F Value P Value

Prob<F
Model 1415.36 5 283.07 89.23 <0.0001 significant.
A-temp 30.31 1 30.31 9.55 0.0175

B-substrate 29.64 1 29.64 9.34 0.0184
AB 0.56 1 0.56 0.18 0.6863
A2 1236.33 1 1236.33 389.73 <0.0001
B2 236.55 1 236.55 74.57 <0.0001

Residual 22.21 7 3.17

Lack of Fit 22.21 3 7.40

Pure Error 0.000 4 0.000

Core Total 1437.57 12

Table 6: Analysis of variance of quadratic model (Partial sum of squares type III).
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and temperature on ethanol production. The “Predicted R-Squared” 
of 0.8902 is in reasonable agreement with the “Adjusted R-Squared” 
0.9735.”Adequate Precision” measures the signal to noise ratio. A ratio 
greater than 4 is desirable. The ratio of 24.310 indicates an adequate 
signal (Table 7). This model can be used to navigate the design space.

Analysis of variance of quadratic model (iii)

ANOVA and regression coefficients are listed in Table 8. The model 
F value of 69.71 implies that model is significant (with only 0.01% chance 
that the value could occur due to noise). Values of probability less than 
0.050 indicate model terms are significant. In this case both the linear 
factors A, B and quadratic factors (A2,B2) are significant terms. Values 
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Figure 3: Response surface and contour plot showing the effect of temperature and substrate concentration on ethanol production.
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Figure 4: Predicted vs. Actual response of experimental run under Central Composite Design.

greater than 0.100 indicate model terms are not significant. If there 
are many insignificant model terms (not counting those required to 
support hierarchy), model rejection may improve the model (Figure 4). 

Std. Dev. 1.78 R-Squared 0.9846
Mean 62.81 Adj R-Squared 0.9735
C.V. % 2.84 Pred R-Squared 0.8902
PRESS 157.91 Adeq Precision 24.310

Table 7: Standard deviation and correlation coefficients.

Source Sum of 
Squares df Mean Square F Value P Value

Prob<F
Model 2050.95 5 410.19 69.71 <0.0001 significant.
A-pH 441.30 1 441.30 74.99 0.0001

B-substrate 41.40 1 41.40 7.04 0.0328
AB 1.10 1 1.10 0.19 0.6782
A2 1442.50 1 1442.50 245.13 <0.0001
B2 256.73 1 256.73 43.63 0.0003

Residual 41.19 7 5.88

Lack of Fit 41.19 3 13.73

Pure Error 0.000 4 0.000

Core Total 2092.14 12

Table 8: Analysis of variance of quadratic mode (Partial sum of squares Type III).
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The quadratic effect of temperature and substrate is more prominent 
than linear effect. It can also be concluded from the table that effect of 
temperature is more pronounced than substrate concentration. These 
data analysis also validate the inference that can be drawn from 3-D 
contour plots as shown in Figure 5 which represents the effect of pH and 
temperature on ethanol production. The “Predicted R-Squared” of 0.8600 
is in reasonable agreement with the “Adjusted R-Squared” of 0.9662. 
“Adequate Precision” measures the signal to noise ratio. A ratio greater 
than 4 is desirable. The ratio of 23.849 indicates an adequate signal (Table 
9). This model can be used to navigate the design space (Figure 6).

Discussion
In the present study, the 23 factorial Central Composite Designs 

(CCD) of RSM using design expert software (trial version 8.0.7.1, 
STATE EASE, USA) was applied to optimize the conditions of pH, 
temperature and substrate concentration. The CCD enables to locate 
the correct values of temperature, pH and substrate concentration for 
maximum ethanol production. CCD was successfully used to optimize 
the key factors that influence the final ethanol concentration in 
fermentation of corn flour using the SSF method. The main advantages 
of applying multi factorial experiments are that such an approach 
considers the interaction between the nonlinear natures of the response 
in short experiments.

Three design matrixes were made by CCD; thirteen batches for 
each matrix were run in a 3 L fermenter. The first matrix designs 
conducted by CCD include combined effect of variables, temperature 
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Figure 5: Response surface and contour plot showing the effect of pH and substrate concentration on ethanol production.
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   Figure 6: Predicted vs. Actual response of experimental run under CCD.

Std. Dev. 2.43 R-Squared 0.9803
Mean 62.00 Adj R-Squared 0.9662
C.V. % 3.91 Pred R-Squared 0.8600
PRESS 292.92 Adeq Precision 23.849

Table 9: Standard deviation and correlation coefficients.
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and pH while the substrate concentration remained constant at 160 g. 
The second matrix design conducted by CCD includes combined effect 
of variables temperature and substrate concentration at constant pH 
5.8. The third matrix design conducted by CCD includes combined 
effect of variables pH and substrate concentration at constant 
temperature 31°C. The maximum ethanol production (74.6 g/L) was 
achieved at combination–pH 5.8, temperature 31°C. However, the 
minimum ethanol concentration (36 g/L) was obtained at pH 7.21 and 
temperature 31°C in the first quadratic model. The maximum ethanol 
production (74.6 g/L) was achieved at temperature 31°C and substrate 
concentration 160 g. The minimum ethanol production (47 g/L) was 
found to be at temperature 43.7°C and substrate concentration 160 
g in the second quadratic model. The maximum ethanol production 
(74.6 g/L) in this experiment was found to be at pH 5.8 and substrate 
concentration 160 g. The minimum ethanol production (36 g/L) was 
reported at pH 7.21 and substrate concentration 160 g in the third 
quadratic model.

The microbial culture is highly effective at pH 5.8. At higher pH 
yeast produces acids rather than alcohol [13,14]. Also at acidic pH there 
are no chances of bacterial contamination. Yadav et al. [15] found an 
increase in alcohol concentration, productivity as well as efficiency with 
an increase in pH from 4.0-5.0 and found that the optimum pH range for 
S. cerevisiae strain HAU-1 to be between pH 4.5-5.0. The temperature 
was also found to be having profound effect on ethanol concentration. 
The highest ethanol was observed at a temperature of 31°C. At high 
temperature there might be the thermal deactivation of enzymes 
as well as yeast which might be responsible for lesser production of 
ethanol. Torija et al. [16] observed different responses to fermentation 
temperatures (15-35°C) on mixed strain population of S. cerevisiae. 
Some strains performed better at higher temperature, while others did 
so at lower temperature. Alcohol yield was higher at lower temperature 
while at higher temperature secondary metabolite production increases. 
It is clearly depicted from the results that substrate concentration also 
plays a vital role in ethanol production during fermentation process. 
At high substrate concentration there is lower heat and mass transfer 
rate during fermentation process which will inhibit the growth of yeast. 
At high substrate concentration the growth parameters are inhibited 
due to high medium osmolality [17]. High substrate concentration also 
causes inefficient fermentation [18]. In the present study, the maximum 
ethanol production was observed at substrate concentration 160 g/L, 
followed by 140 g/L and 180 g/L.

In the first quadratic model, the effect of pH is more significant 
than temperature. In the second quadratic model, the quadratic effects 
of both the variables were more significant than the linear effects. 
However, the linear effect of temperature was a slightly more than 
substrate concentration on ethanol production. The effect of pH was 
found to be more profound than substrate concentration in the third 
quadratic model. It can be established that the change in pH has more 
profound effect on ethanol production followed by temperature and 
substrate concentration. 

The values of adjusted R2 in all the three quadratic models were 
high (0.9923), (0.9735) and (0.9662) which are the supporters to high 
significance of the models. The Coefficient of Variation (CV) indicates 
the degree of precision with which the treatment is compared. Usually, 
higher the value of CV, lower is the consistency of the experiment. 
Here, the values of CV i.e. (2.20%), (2.84%) and (3.91%) indicates 
the reliability of the experiments performed. Adequate precision is 
a measure of signal to noise ratio (43.550), (24.310) and (23.849) 
indicates a better precision and reliability of the experiments carried 

out. A ratio greater than 4 is desirable. In the present study, the ratio of 
(43.550), (24.310) and (23.849) indicates an adequate signal to use the 
models for prediction purposes. 

The maximum ethanol production (78 g/L) during the first 
experiment i.e. by changing one variable at a time was found to be 
at conditions-pH 5.5 and temperature 35°C. It was found from the 
statistical analysis of the results that ethanol concentration was effected 
more by pH followed by substrate and temperature. This is due to 
the fact that at high pH yeast cannot survive, rather than ethanol it 
produces acids.

Conclusion
This study concluded that ethanol concentration is greatly affected 

by the parameters such as pH, temperature and substrate concentration. 
The outcome of this study has undoubtedly indicated that RSM is 
an effective method for optimization of fermentation process. RSM 
confines the number of experimental runs and is less labor intensive. 
Therefore, smaller and less time consuming experimental designs could 
generally be sufficient for the optimization of many processes. The 
adequacy of all the models was satisfactory as correlation coefficients 
were (0.9923) (0.9735) and (0.9662). The optimum conditions as stated 
by further numerical analysis of the responses using the Design Expert 
Software revealed that the maximum ethanol production was achieved 
at pH 5.8, temperature 31°C and substrate concentration 160 g. The 
RSM results also depicts that all the models were significant at 99% 
significance level.
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