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Abbreviations: C1 ($/piece): Machine idle cost due to loading and
unloading operations and tool idle motion time; CM ($/piece): Cutting 
cost by actual time in cut; CR($/piece): Tool replacement cost; CT($/
piece): Tool cost; dr, ds(mm): Depth of cut for each pass of rough and 
finish machining; drL, drU (mm): Lower and upper bound of depth of cut 
in rough machining; dsL dsU (mm): Lower and upper bound of depth 
of cut in finish machining; dt(mm): Depth of material to be removed; 
D, L(mm): Diameter and length of work piece;  fr,fs (mm/rev): Feed 
rates in rough and finish machining; frL, frU (mm/rev): Lower and upper 
bound of feed rate in rough machining; fsL, fsU   (mm/rev): Lower and 
upper bound of feed rate in finish machining; Fr, Fs(kgf): Cutting forces 
during rough and finish machining; Fu(kgf): Maximum allowable 
cutting force; h1, h2(mm): Constants relating to cutting tool travel and 
approach/departure time; ko ($/mm): Direct labor cost plus overhead; kt 
($/edge): Cutting edge cost; k1,μ,υ: Constants of cutting force equation; 
k2,τ,ϕ,δ: Constants related to chip-tool interface temperature equation; 
k3,k4,k5: Constants for roughing and finishing parameter relations; λ,ν: 
Constants related to expression of stable cutting region; n: Number of 
rough cuts (an integer); NU,NL: Upper and lower bounds of n; p,q,r, C0: 
Constants of tool-life equation; Pr,Ps(kW): Cutting power during rough 
and finish machining; PU (kW):  Maximum allowable cutting power; Qr, 
Qs(°C): Chip–tool interface rough and finish machining temperatures; 
QU(°C): Maximum allowable chip-tool interface temperature; q: 
A weight for Tp[0,1]; R(mm): Nose radius of cutting tool; SC: Limit 
of stable cutting region constraint; SRU(mm): Maximum allowable 
surface roughness; T,Tr,Ts(mm): Tool life, expected tool life for rough 
machining and expected tool life for finish machining; TP(mm): tool 
life of weighted combination of TR and TS; TU,TL(mm): Upper and 
lower bounds for tool life; UC $: Unit production cost except material 
cost; Vr,Vs(M/mm): Cutting speeds in rough and finish machining; 
VrL,VrU(M/mm): Lower and upper bound of cutting speed in rough 
machining; VsL,VsU(M/mm): Lower and upper bound of cutting speed 
in finish machining 

Introduction
The selection of optimal cutting parameters, like the number of 

passes, depth of cut for each pass, feed and speed, is a very important 
issue for every machining process [1]. Several cutting constraints 
must be considered in machining operations. In turning operations, 
a cutting process can possibly be completed with a single pass or by 
multiple passes. Multi-pass turning is preferable over single-pass 
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Abstract
In this paper, a new, hybrid genetic algorithm-sequential quadratic programming is used for the resolution of 

cutting conditions. It used for the resolution of a multi-pass turning optimization case by minimizing the production 
cost under a set of machining constraints. The result indicates that the proposed hybrid genetic algorithm-sequential 
quadratic programming is effective when compared to other techniques carried out by different researchers.

turning in the industry for economic reasons [2]. The optimization 
problem of machining parameters in multi-pass turnings becomes very 
complicated when plenty of practical constraints have to be considered 
[3]. Traditionally, mathematical programming techniques like graphical 
methods [4], linear programming [5], dynamic programming [6,7] 
and geometric programming [8,9] had been used to solve optimization 
problems of machining parameters in multi-pass turnings. However, 
these traditional methods of optimization do not fare well over a broad 
spectrum of problem domains. Moreover, traditional techniques 
may not be robust. Numerous constraints and multiple passes make 
machining optimization problems complicated and hence these 
techniques are not ideal for solving such problems as they tend to 
obtain a local optimal solution. Thus, meta-heuristic algorithms have 
been developed to solve machining economics problems because of 
their power in global searching. There have been some works regarding 
optimization of cutting parameters [2,3,10-14] for different situations, 
authors have been trying to bring out the utility and advantages of 
genetic algorithm, evolutionary approach and simulated annealing. It 
is proposed to use the hybrid genetic algorithm-sequential quadratic 
programming for the machining optimization problems.

The current paper focuses on the application of a new 
optimization technique, hybrid genetic algorithm-sequential quadratic 
programming, to determine the optimal machining parameters that 
minimize the unit production cost in multi-pass turnings.

Cutting process model

Decision variables: In the constructed optimization problem, six 
decision variables are considered: cutting speeds in rough and finish 
machining (Vr, Vs), feed rates in rough and finish machining (fr, fs) and 
depth of cut for each pass of rough and finish machining ( ),r sd d . 

Objective function: Based on the minimum unit production 
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cost,UC, criterion, the objective function for a multi-pass turning 
operation can be given by the equation [10]:

M I R TUC C C C C= + + +             
                                                         (1)
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Constraints 

There are some constraints which affect the selection of the optimal 
cutting conditions and will be taken into account. The constraints in 
rough and finish machining are as outlined below [10].

Rough machining:

I. Parameter bounds

Due to the limitations on the machine and cutting tool and due 
to the safety of machining the cutting parameters are limited with the 
bottom and top permissible limit.

Cutting speed: rL r rUV V V≤ ≤                                                                 (6)

Feed rate: rL r rUf f f≤ ≤
                          

                                           (7)  

Depth of cut: rL r rUd d d≤ ≤                                                                (8)

II. Tool-life constraint

The constraint on the tool life is taken as:

L r UT T T≤ ≤                                                                                                (9)

III. Cutting force constraint

The maximum amount of cutting forces Fu should not exceed a 
certain value as higher forces produce shakes and vibration. This 
constraint is given below. 

( ) ( )1r r r uF k f d Fµ υ= ≤                                                                          (10) 

IV.	 Power constraint

The nominal power of the machine UP limits the cutting process:

6120
r r

r U
F VP P

η
= ≤

                                                                                     
(11)

Efficiency 0.85η =  	

V. Stable cutting region constraint

This constraint is given as:

( ) ( )v
r r rV f d SCλ ≥                                                                            (12)

VI. Chip–tool interface temperature constraint

This constraint is given as:

( ) ( ) ( )2r r r r uQ k V f d Qτ φ δ= ≤                                                               (13)

Finish machining: All the constraints other than the surface finish 
constraint are similar for rough and finish machining [15].

I. Surface finish constraint

In the finishing operations, the obtained surface roughness must be 
smaller than the specified value, ,USR given by technological criteria, so 
that the following equation is satisfied:

2

8
s

U
f SR
R
≤                                                                                              (14)

Constraints for roughing and finishing parameter relations

3s rV k V≥                                                                                                 
(15)

4r sf k f≥             
                                                                                    (16)

5r sd k d≥          
                                                                                       (17)

II. The number of rough cuts

The possible number of rough cuts is restricted by

t s

r

d dn
d
−

=

 

                                                                                         (18)

Where L Un n n≤ ≤

( )L t sU rUn d d d= −
 
                                                                             (19)

( )U t sL rLn d d d= −                                                                             (20)

The optimization problem in multi-pass turnings can be divided 
into ( )1U Lm n n= − + sub-problems, in each of which the number of 
rough cuts n is fixed. So the solution of the whole optimization problem 
is divided into searching the optimal results of m sub-problems and 
the minimum of them is the objective of whole optimization problem.

Genetic Algorithm (GA)

Genetic algorithm is a global optimization method, is developed 
to solve the general optimization problem. GA simulate biological 
evolution process; Darwin’s theory of survival of the fittest.

The solution of an optimization problem with genetic algorithm 
begins with a set of potential solutions or chromosomes (usually in 
the form of bit strings) that are randomly selected. The entire set of 
these chromosomes comprises a population. The chromosomes evolve 
during several iterations or generations. New generations are generated 
utilizing the crossover and mutation technique. Crossover involves 
splitting two chromosomes and then combining one-half of each 
chromosome with the other pair. Mutation involves flipping a single 
bit of a chromosome. The chromosomes are then evaluated employing 
a certain fitness criteria and the best ones are kept while the others are 
discarded. This process repeats until one chromosome has the best 
fitness and is taken as the optimum solution of the problem [16].

The computational procedure involved in maximizing the fitness 
function 1 2 3( , , ,...., )nf x x x x in the genetic algorithm can be described 
by the following steps [17].

1. Choose a suitable string length l nq= to represent the n design 
variables of the design vector X. Assume suitable values for the 
following parameters: population size n, crossover probability pc, 
mutation probability pm, permissible value of standard deviation 
of fitness values of the population (Sf)max 

to use as a convergence 
criterion, and maximum number of generations imax 

to be used an a 
second convergence criterion.
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2. Generate a random population of size m, each consisting of a 
string of length l nq= . Evaluate the fitness values  ,   1,2,..., ,iF i m=
of the m strings.

3. Carry out the reproduction process.

4. Carry out the crossover operation using the crossover probability 
pc.

5. Carry out the mutation operation using the mutation probability 
pm 

to find the new generation of m strings.

6. Evaluate the fitness values  ,   1,2,..., ,iF i m= of the m strings of 
the new population. Find the standard deviation of the m fitness 
values.

7. Test for the convergence of the algorithm or process. If 
max( ) ,f fs s≤ the convergence criterion is satisfied and hence the 

process may be stopped. Otherwise, go to step 8.

8. Test for the generation number. If maxi i≥ , the computations 
have been performed for the maximum permissible number of 
generations and hence the process may be stopped. Otherwise, set 
the generation number as 1i i= +  and go to step 3.

Basic genetic algorithm operations

There are three basic operators found in every genetic algorithm: 
reproduction, crossover and mutation [18].

Reproduction: The reproduction operator allows individual 
strings to be copied for possible inclusion in the next generation. 
The chance that a string will be copied is based on the string’s fitness 
value, calculated from a fitness function. For each generation, the 
reproduction operator chooses strings that are placed into a mating 
pool, which is used as the basis for creating the next generation.

There are many different types of reproduction operators:

1. Proportional selection: This method will only work with fitness 
values above zero (non-negative) and scaling may sometimes be 
necessary. It has been shown that proportional selection performs 
poorly compared with other selection schemes in many GA 
problems.

2. Tournament selection: Choose t individuals at random from the 
population and copy the best individual from this group into the 
new population. Repeat N times.

3. Truncation selection: With truncation selection that has a 
threshold of T between 0 and 1, only the fraction T best individuals 
can be selected. They all have the same selection probability.

4. Linear ranking selection: The individuals are sorted according to 
their fitness values and the rank N is assigned to the best individual, 
the rank 1 assigned to the worst. The selection probability is linearly 
assigned to the individuals according to their rank and a selection 
equation.

5. Exponential ranking selection: This follows the same 
methodology of linear ranking selection, the only difference being 
that the probabilities of the ranked individuals are exponentially 
weighted.

One always selects the fittest and discards the worst, statistically 
selecting the rest of the mating pool from the remainder of the 
population. There are hundreds of variants of this scheme. None are 
right or wrong.

Crossover: Once the mating pool is created, the next operator in 
the GA arsenal comes into play. 

The GA selects two strings at random from the mating pool. 
The strings selected may be different or identical, it does not matter. 
The GA then calculates whether crossover should take place using a 
parameter called the crossover probability. If the GA decides not to 
perform crossover, the two selected strings are simply copied to the 
new population.

If crossover does take place, then a random splicing point is chosen 
in a string, the two strings are spliced and the spliced regions are mixed 
to create two new strings. These child strings are then placed in the new 
population.

Mutation  : Selection and crossover alone can obviously generate 
a staggering amount of differing strings. However, depending on the 
initial population chosen, there may not be enough variety of strings 
to ensure the GA sees the entire problem space. Or the GA may find 
itself converging on strings that are not quite close to the optimum 
it seeks, due to a bad initial population. Some of these problems are 
overcome by introducing a mutation operator into the GA. The GA 
has a mutation probability, which dictates the frequency at which 
mutation occurs. Mutation can be performed either during selection 
or crossover. For each string element in each string in the mating pool, 
the GA checks to see if it should perform a mutation. If it should, it 
randomly changes the element value to a new one.

Encodings and optimization problems: Usually there are only 
two main components of most genetic algorithms that are problem 
dependent: the problem encoding and the evaluation function. 
Consider a parameter optimization problem where we must optimize 
a set of variables either to maximize some target such as profit, or to 
minimize cost or some measure of error. We might view such a problem 
as a black box with a series of control dials representing different 
parameters; the only output of the black box is a value returned by an 
evaluation function indicating how well a particular combination of 
parameter settings solves the optimization problem.

Sequential Quadratic Programming (SQP)
The sequential quadratic programming, solve the general nonlinear 

programming problem. The problem is stated as follows:

( )

( )
( )

                            

inf sup

                 min

    0,    1,...,

                  0,    1,...,

                  

nx

i

j

f x

subject to g x i n

h x j n m

x x x

∈


 = =


≥ = +


≤ ≤

R

                                              (21)

Where all problem functions are assumed to be continuously 
differentiable. The method, based on the iterative formulation and 
solution of quadratic programming subproblems, obtains subproblems 
by using a quadratic approximation of the Lagrangian and by linearizing 
the constraints. That is,
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Where kB is a positive definite approximation of the Hessian and 
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kx is the current iterate. Let kd be the solution of the subproblem. A 
line search is used to find a new point 1 kx + ,

1 ,    [0,1]k k
kx x d+ = + α α∈                                                                   (23)

Such that a “merit function” will have a lower function value at the 
new point.

Hybrid GA-SQP
SQP requires a smaller number of objective and constraint 

function calls than GA. It can also find accurate optimum results as 
it is a deterministic algorithm. However, due to the fact that SQP uses 
gradient information in its search algorithm, it tends to be trapped in 
the local optimum and suffers from noise in objective or constraint 
functions [19]. In contrast, GA search more globally and have more 
chance to find a global optimum. J. H. Holland [20] suggested that GA 
should be used to perform the initial global search. The results are used 
to guide the local search.

In order to benefit the global search ability of a GA and the accurate 
local search of a SQP, they are used as a complement of each other 
[21,22]. To do so, the GA stopping criteria are set so that the GA would 
stop prematurely e.g. with a low generation, a low population or a high 
tolerance. It is assumed that the GA should find its optimal results near 
the true global optimum. The GA results are therefore used as an initial 
point for the SQP algorithm. The SQP proceeds the local search and 
find its local optimum, which is the global optimum sought (Figure 1).

Advantages and Drawbacks of the Optimization 
Methods

The advantages and drawbacks of the optimization methods are 
mentioned in (Table 1).

Application Example
Now an application example is considered to demonstrate and 

validate the hybrid GA-SQP method for the optimization of process 
parameters of the multi-pass turning operation. The parameters used 
for the numerical application are mentioned in (Table 2).

Results and Discussion
The genetic algorithm was run with these parameters: 

−	 Population size: 20,

−	 Scaling function: Rank (The scaling function converts raw 
fitness scores returned by the fitness function to values in a 
range that is suitable for the selection function). 

−	 Selection function: Roulette.

−	 Reproduction: Elite count: 2,

−    Crossover fraction: 0.8,

−    Mutation: randomly generates directions that are adaptive with 
respect to the last successful or unsuccessful    generation. A 
step length is chosen along each direction.

−    Crossover: Scattered (creates a random binary vector. It then 
selects the genes where the vector is a 1 from the first parent, 
and the genes where the vector is a 0 from the second parent, 
and combines the genes to form the child).

−    Migration
 
fraction: 0.2,

−    Migration interval: 20,

−    Number maximal of iterations: 100.

Several GA generations are performed in order to identify the most 
promising areas and then the SQP optimization algorithm is applied 
using as an initial guess the best individual found by the GA. It should 
be noted that in this approach the GA is used to specify a good initial 
guess for the SQP algorithm.

The results found by the hybrid GA-SQP are mentioned on (Table 3).

We find that the lowest value is 1.9308$ under which the minimum 
number of rough cuts (n=1) is taken.

The performance of the hybrid GA-SQP and others can be seen in 
(Table 4).

According to Table 4 one notices that the hybrid GA-SQP yield 
much better results than the others algorithms. Thus the hybrid GA-

 Start 

Initialize a population of chromosome 

Fitness scaling  

Selection  

Crossover and mutation 

Elitist model (replace the worst chromosome with 
the best of previous generation) 

Reach the maximum 
generation 

Use the quasi global optimal solution obtained by 
GA as the initial point to make further 

optimization by SQP 

End 

Yes 

   

No 

   

 
Figure 1: Flowchart the Hybrid GA-SQP.

Method Advantages Drawbacks

SQP

−	 High accuracy
−	 Small number of function 

evaluations
−	 Performs well with 

constrained problems

−	 Local method
−	 Needs gradient 

information
−	 Continuous variables
−	 Needs initial point

Meta-heuristic 
method’s

−	 Global method
−	 Robust, no gradient need
−	 Continuous and discrete 

variables

−	 Low accuracy
−	 Large number of 

functions evaluation

Hybrid GA-SQP

−	 Able to find global optimum
−	 High accuracy
−	 Less evaluations than GA 

alone

−	 Needs gradient 
information

−	 Continuous variables

Table 1: Advantages and drawbacks of the optimization methods.
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SQP can tackle the optimization of multi-pass turning operations 
problem efficiently to achieve better results in reducing the unit 
production cost.

Conclusion
This paper presents a hybrid GA-SQP optimization for solving 

the multi-pass turning operations problem. The results obtained from 
comparing the hybrid GA-SQP with those taken from recent literature 
prove its effectiveness.

The results of the hybrid GA-SQP are compared with results of 
genetic algorithms, simulated annealing, particle swarm intelligence, 
scatter search, ant colony approaches.

The hybrid GA-SQP obtain near optimal solution, it can be used for 
machining parameter selection of complex machined parts that require 
many machining constraints. Also, it can be extended to solve the other 
metal cutting optimization problems such as milling, drilling etc.
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Parameter Values Parameter Values Parameter Values

D(mm) 50 L(mm) 300 D1(mm) 6

VrU(m/min) 500 Vrl(m/min) 50 frU(mm/rev) 0.9

frL(mm/rev) 0.1 DrU(mm) 3.0 DrL(mm) 1.0

VsU(m/min) 500 VsL(m/min) 50 fsU(mm/rev) 0.9

fsL(mm/rev) 0.1 DsU(mm) 3.0 DsL(mm) 1.0

P 5 q 1.75 R 0.75

K 108 μ 0.75 υ -1

η 0.85 λ 2 ν 0.95

k2 132 τ 0.4 φ 0.2

δ 0.105 R(mm) 1.2 K0 ($/mm) 0.5

C0 6 × 1011 h1 7×10-4 h2 0.3

TL(min) 25 tc(min/piece) 0.75 te(min/edge) 1.5

PU(kW) 5 TU(min) 45 Fu(Kgf) 200

SC 140 SRU(μm) 10 Qu(ͦC) 1000

k3 1.0 k4 2.5 k5 1.0

kt($/edge) 2.5

Table 2: Machining data [10].

N

Cutting parameters (Rough 
machining)

Cutting parameters (Finish 
machining)

UC($)
Vr

(m/min)
fr

(mm/rev) 
dr

(mm) 
Vs

(m/min)
fs

(m/rev)
Ds

(mm)

1 94.4640 0.8660 3.0000 162.2890 0.2580 3.0000 1.9308

2 182.9710 0.4520 2.4996 217.3229 0.1794 1.0009 2.5840

3 145.6160 0.9000 1.6670 191.3630 0.2580 1.0000 2.6450

4 157.2560 0.9000 1.2430 171.6070 0.2580 1.0260 3.1230

5 166.5110 0.9000 1.0000 191.3630 0.2580 1.0000 3.4585

Table 3: The optimized turning parameters.

Algorithms Unit cost ($)

FEGA [11] 2.3084

SA/SP [10] 2.2795

PSO [12] 2.2721

GA [13] 2.2538

SS [14] 2.0754

GA-based approach [3] 2.0298

GA-SQP 1.9308

Table 4: Results of optimization using different algorithms.
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