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Introduction
Therapeutic drug monitoring (TDM) is commonly used to 

individualize drug therapy. The goal of therapeutic drug monitoring is to 
optimize treatment efficacy and minimize toxicity or side effects, using 
measured drug concentrations. Not all drugs need to be monitored 
by TDM. Some criteria for TDM are: a relationship exists between 
drug concentrations and treatment efficacy or toxicity, a thorough 
understanding of the pharmacokinetics and pharmacodynamics of 
the drug in individual patients and populations and availability of 
reliable drug assays. Some examples of drugs therapeutically monitored 
in clinical practice are: cyclosporine [1,2], sirolimus, tacrolimus, 
mycophenolic acid [3], anti-cancer agents [4], aminoglycosides [5], 
vancomycin [5] and antifungal agents [6].

Dosage formulation and adjustment in TDM is based on estimating 
one or more relevant pharmacokinetic parameters and thereby 
determining the level of exposure to the drug. Dosing adjustments 
can be made to achieve the targets set or the desired level of exposure. 
However, in most drug therapies, the level of exposure cannot be 
directly measured. For these drugs, exposure indices are used which 
correlate well with the exposure to the target. Traditionally, these were 
single blood concentration levels of the drug. However, many studies 
have questioned the correlation between single blood levels and drug 
exposure. In addition, reduced underdosing and toxicity are suggested 
in methods other than single level monitoring [7,8]. The area under the 
concentration time curve (AUC) is accepted to be better correlated with 
clinical efficacy than trough levels for many drugs [2,7-10]. The AUC 
represents the concentration-time curve over the entire dosing interval 
and thus the AUC represents the complete exposure to the drug. Other 
exposure indices have been used, such as maximum concentration 
[11,12], concentration level at a specific post dose interval [13] or 
AUC of a part of the dosing interval [11,14,15] as a measure of drug 
exposure. Any exposure index can be estimated using the right tools 
and measurements.

Therapeutic drug monitoring has evolved from the simple 
measuring of drug levels (peak and trough) to the practice of estimating 
an exposure index and hereby predicting subsequent levels of exposure 
and making dosage recommendations. Later the focus shifted to the 
minimization of the number of measurements to reduce patient burden 

and costs. In neonates even to reduce morbidity due to the negative 
effect of repeated skin breaking and taking a relatively large amount 
of blood [16,17]. This minimization of the number of measurements, 
or samples, needed has a diverse nomenclature in the literature [18]. 
Some of the terminology used is: limited, optimal, minimal and sparse 
sampling. All of these refer to the same process of minimizing the 
number of samples, while maintaining adequate estimation precision. 
We will use “optimal sampling” for the remainder of this article. We 
describe the methodology used in the literature for determining 
optimal sampling times.

Multiple Regression Analysis
Optimal sampling times are classically determined by multiple 

regression analysis (MRA) [13,19]. In an experimental setting, a large 
number of measurements over an interval are made in a number of 
patients. The dosing schedule and sampling times must be identical in 
all patients. Optimal sampling times are then determined by multiple 
regression of all sampling time points, resulting in an equation in the 
form of:

0 1 1 2 2........AUC M M Ct M Ct Mi Cti= + × + × + ×   (1)

Where AUC is the target parameter to be calculated, M0 is a 
constant which signifies the intercept on the y-axis. Cti are the blood 
concentrations measured at time ti. Mi are the associated coefficients as 
determined by multiple regression analysis. 

The advantage of this approach is the simplicity of the resulting 
equation. Several disadvantages derive from the inflexibility of the 
method. Only in exact replicates of the dosing schedule can the equation 
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Abstract
Therapeutic drug monitoring has evolved from simple concentration measurements to estimating the level of 

exposure of to the drug and making dosage recommendations. Optimal sampling strategies are commonly used in 
therapeutic drug monitoring to optimize drug therapy. Optimal sampling strategies aim to determine the sampling 
times which will produce the most accurate estimation of pharmacokinetic parameters or exposure indices. The 
methodology used to create optimal sampling strategies is diverse and heterogeneous. Multiple regression analysis 
has been surpassed by Maximum A Posteriori Bayesian (MAPB) estimation in terms of accuracy and flexibility. An 
optimal sampling strategy using MAPB estimation is created by either selecting sampling times from a predetermined 
set of sampling times or using Fisher information to calculate times with the most information on the parameters to 
be estimated. Validation of the strategy is required, preferably by resampling statistics for its efficient use of data. 
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be used. Also, if a sampling time is missed, the equation and all previous 
measurements are useless. 

Maximum A Posteriori Bayesian Estimation
Maximum A Posterioiri Bayesian (MAPB) estimation [20] has 

been increasingly used in pharmacokinetic parameter estimation. 
MAPB estimation is based on Bayes’ theorem: the concept that 
prior information can be combined with new data to produce an 
“A Posterioiri” maximum likelihood estimate. In pharmacokinetic 
parameter estimation, the prior information is the distribution of 
pharmacokinetic parameters over a given population, usually in the 
form of a population pharmacokinetic model. The new data are the 
data obtained from the individual patient of whom the individual 
pharmacokinetic parameters are to be estimated. These are in the 
form of drug concentration measurements and possibly other patient 
specific data (covariates) such as height, weight, age and renal function. 
The general equation for MAPB estimation, assuming no covariance 
between parameters, is:

 ( ) ( )2 2
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Where n is the number of observed plasma concentrations, m is 
the number of parameters, Ppop and Ppt are the parameter estimates 
of the population model and the patients’ individualized model, 
respectively; Cobs represents the observed plasma concentrations 
and Cpt represents the patients’ predicted concentration; SD Ppop 
represents the standard deviation of the population PK model of the 
estimated parameter and SD Cobs represents the standard deviation 
of the observed plasma concentrations, or the residual error. Residual 
error is mostly measurement, or assay, error, but can also be influenced 
by model misspecification and dosing errors. Specialized software 
is needed for MAPB estimation. Eqaution (2) is called the objective 
function. This function must be minimized by an optimization 
algorithm, i.e. an mathematic algorithm searching for the minimum 
of the function by changing the individual pharmacokinetic estimates, 
Ppt in this equation. MAPB estimation is often part of a integral PK 
software program with more capabilities than only MAPB estimation, 
such as NONMEM, ADAPT [21], MW\Pharm [22], USC*PACK and 
others.

Optimal Sampling Methods Using MAPB Estimation
In general, determining optimal sampling times can be performed 

in two ways: selecting the optimal times from a collection of previously 
determined available times or by mathematical methods incorporating 
Fisher information [23].

Selecting sampling times

For this method, a dataset consisting of patient records with an 
identical rich sampling schedule is required. A rich sampling schedule 
is a schedule in which samples are taken over the entire time interval 
of interest. The dosing interval should be identical in all patients, but 
the dose or the number of the dosing interval can have any value. This 
dataset is usually obtained in a pharmacokinetic experiment in which 
few patients are sampled at (many) predetermined timepoints. 

When the starting dataset is obtained, all combinations of one or 
more sampling times are tested for their performance in estimating 
pharmacokinetic parameters, often termed predictive performance. 
The predictive performance is determined by comparing the individual 
pharmacokinetic parameter estimates obtained from the tested 

combination of sampling times with reference values. These reference 
values can be obtained by several methods, including the trapezoidal 
method, MAPB estimation with all available samples or non-linear 
least squares of all sampling times [18]. The predictive performance 
is quantified by determining the bias, precision or coefficient of 
determination of the estimates compared to the reference [18,24], 
where precision has some theoretical advantages [24].

Fisher information

The use of Fisher information [23] is a method of measuring the 
amount of predictive information a variable carries about a parameter. 
In optimal sampling the Fisher information is the amount of information 
about one or more pharmacokinetic parameters at the sampling times. 
Determinant (D)-optimality is the most often used optimality criterion 
using Fisher information [18]. In D-optimality, the determinant of the 
Fisher Information Matrix (FIM) is used. The FIM is determined by:

              1TFIM P R P− =                                                     (3)

Where P is the Jacobian matrix, PT the transpose of the Jacobian 
matrix and R-1 is the inverse of the variance matrix, signifying the 
weights attached to the measurements. The Jacobian matrix has the 
following form in D-optimality:
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Where C (P*,tm) is the concentration of drug in a PK compartment 
as a function of parameter P at time t.

The determinant of the FIM is maximized by varying the sampling 
times. This is achieved by an optimization algorithm such as the Nelder-
Mead simplex [25], although any robust global optimization algorithm 
can be used. When the optimal sampling times are determined a 
separate analysis must be performed to determine the predictive 
performance.

D-optimality has some disadvantages. The sampling times are 
dependent on the input pharmacokinetic parameters, which are 
usually population means or medians. Incorporating PK parameter 
distributions is possible by using methods like ED, EID or API 
optimality [26,27]. These methods maximize the expectation of some 
form of the detFIM over the population distribution. The simplest 
method of maximizing the detfim over a distribution is by Monte Carlo 
sampling [28].

Validation
Validation of the optimal sampling strategy is the process of 

confirming adequate accuracy of the sampling times in determining 
individual pharmacokinetic parameters. Validation is traditionally 
performed by splitting the data into two groups: a training group and 
a validation group [29,30]. The training group is used to determine the 
optimal sampling times by any of the above described methods (MRA, 
MAPB selection or Fisher information). With Fisher information, the 
training group can be used to determine the population pharmacokinetic 
model parameters, or population means. The validation group is then 
used to determine the predictive performance of the sampling strategy.

Data splitting has one main disadvantage [31]. Only a part, usually 
half, of the data is used to determine the optimal sampling times. When 
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only a small number of patients is available, resampling statistics or a 
Monte Carlo simulated dataset can be used for validation.

As mentioned, resampling statistics can be used for optimal 
sampling strategy validation. Here, a dataset is split into a training 
group and a validation group several times, to ensure each patient is in 
each group a number of times. Variation of resampling statistics are: the 
jackknife method, bootstrapping and cross validation [32]. This is an 
efficient use of patient data, as every patient is used for determining the 
optimal sampling strategy as well as validating the strategy.

Conclusion
Optimal sampling strategies in pharmacokinetics have a diverse 

methodology. This is a result of many different available software 
programs and personal preferences of researchers. Using MAPB 
estimation has some very important advantages over multiple regression 
analysis, especially concerning flexibility. Selection of sampling times 
or using Fisher information for determining sampling times have both 
been used often in the literature and have produced sampling strategies 
with adequate precision. In the currently described methodology, only 
optimal sampling strategies using Fisher information can be called 
truly optimal. Other sampling stragies are bound to a combination of 
predetermined sampling times used in a pharmacokinetic experiment 
with rich sampling. Validation is an important part of building an 
optimal sampling strategy, which is, however, often omitted [18]. 
Resampling statistics make the most efficient use of available data for 
validation.
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