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Description
Every year, approximately 3 to 5 of 100.000 people are newly 

diagnosed with a glioblastoma (GBM). The current standard of care 
is the surgical resection, radiotherapy and chemotherapy. However, 
despite this aggressive treatment, the median survival time is only 12 to 
15 months after initial diagnosis [1,2]. Patients with recurrent disease 
normally have a life expectancy of only a few weeks. The ineffective 
treatment of GBM is based on its characteristics: GBM grow highly 
invasively making completely surgical resection impossible, show 
massive neoangiogenesis, generate a immunosuppressive tumor 
micro-milieu, and a subpopulation of extremely resistant glioma cells, 
named brain tumor initiating cells (BTICs) or glioma stem like cells 
(GSCs) remain stem cell characteristics. Beside this, physical barriers 
hamper the effective distribution of anticancer drugs. In this regard 
there is no defined treatment standard in case of disease progression 
during or after standard radiochemotherapy. Thus, the development 
of new concepts in the treatment of GBM is of particular importance. 
A variety of preclinical as well as clinical trials have shown that viruses 
can be used as potent agents in the treatment of cancer, also for the 
treatment of glioma. These either wildtype or genetically engineered 
viruses of different origin such as adeno-, parvo-, herpes-, reo-, 
measles, semliki-forest, coxsackie or vaccinia virus can replicate in and 
subsequently kill tumor cells, but not non-neoplastic cells. Due to these 
skills, those viruses are named oncolytic viruses (OVs). Additionally, 
OVs can contain therapeutic genes triggering either the patient´s anti-
tumor immune response or modulating the GBM microenvironment, 
or coding for prodrug suicide genes [3-6]. In many clinical trials 
it has also been demonstrated that the use of OVs is safe related to 
toxicity and adverse side effects [7-9]. However, the clinical efficacy of 
GBM oncovirotherapy has not yet achieved the promising preclinical 
laboratory results. To address this mismatch, one should mentioned 
the complex interaction between cancer cells, OV infection and 
replication, the adjacent tumor microenvironment, chemotherapy as 
well the patient´s immune system, indicating that not only OVs play a 
role in the efficient (onco)lysis of GBM cells. 

Recent reports have presented strong evidence for a significant 
role of oncolytic virotherapy in the activation of anti-tumor immune 
responses [10,11]. Virus-mediated induction of immune responses can 
tilt the suppressive effects of immune evasion mechanisms induced by 
GBM cells by several mechanisms. Viruses can influence the (immune 
suppressive) micro-milieu of the tumor. Oncolysis can lead to the 
secretion of danger molecules from the lysed tumor cells such as high 
mobility group B1 (HMGB1), heat shock proteins (HSP) or Y-box protein 
1 (YB-1). HMGB1, as a consequence of immunogenic cell death, is 
released, binds to and activates toll like receptors on dendritic cells (DC), 
thus controlling the initiation of immune responses through processing 
and presentation of tumor-derived antigens [12,13] as well as inducing 
GBM regression [14]. Extracellular HSP70 acts as a danger signal and 
regulates immune function, including antigen cross presentation, DC 
maturation and natural killer (NK) cell activities [15,16]. YB-1 is a 
potent tumor antigen that could induce host immune responses against 
the tumor [17,18] and is involved in inflammatory responses through 
up-regulation of the chemokines CCL-2 and CCL-5 [19], both showing 

chemotactic properties for T cells and activation of NK cells. Beside the 
induction of danger protein secretion, therapeutic administration of 
OVs can enhance the expression of major histocompatibility complexes 
(MHC) on the surface of tumor and immune cells, facilitate the 
presentation of otherwise inaccessible tumor-specific immunogenic 
peptides on antigen presenting cells (APC) and push, via inflammatory 
processes, the production of inflammatory cytokines. It has been 
shown recently that OVs also attack and lyse GSCs/BTICs [20], cells 
that are mainly responsible for the propagation of GBM [21,22] and 
an important source for the presentation of tumor antigens [23]. In 
this regard, OVs might potentiate the immune attack also against these 
highly resistant cells. Overall, OVs might drive anti-GBM immune 
responses and can initiate anti-GBM immunity.

Regarding to the immunosuppressive character of GBM, 
oncovirotherapy of this tumor entity might have not yet achieved its 
full potential. Programmed cell death protein 1 (PD-1), expressed on 
lymphocytes, is an immune checkpoint surface receptor and mediator 
of immune suppression whereas its ligand PD-L1 is expressed on 
antigen presenting, and also on tumor cells [24]. Engagement of 
PD-1 inhibits T cell function and promotes apoptosis [25,26]. In 
GBM, the common loss of tumor suppressor phosphatase and tensin 
homolog (PTEN) function increases PD-L1 expression on the surface 
of GBM cells and subsequently induces immunoresistance. Blocking 
this interaction has been shown to enhance anti-GBM immune cell 
activity and to prolongate the survival of GBM bearing mice [27,28]. 
Another important immunosuppressive checkpoint molecule is the 
cytotoxic T-lymphocyte-associated protein (CTLA)-4, that is expressed 
on the surface of T helper cells and transmits an inhibitory signal. 
The combination of cancer vaccination with a CTLA-4 blockade 
has been a preclinical strategy for now several years. In this context, 
it has been demonstrated that glioma cell vaccination and CTLA-
4 blockade is an effective strategy to treat intracranial gliomas in 
immunocompetent mice [29]. The ability of OVs to locally stimulate 
inflammation and direct tumor lysis positions them well as therapeutic 
partners in combination (immune)therapies. In this regard Zamarin et 
al. showed that blocking immune-repressive proteins in combination 
with virotherapy markedly increases the infiltration of activated 
immune effector cells into the tumor mass and leads to rejection of 
pre-established distant tumors and protection from tumor rechallenge 
in poorly immunogenic tumor models [30,31]. In other studies 
using melanoma mouse models, Quetglas et al. have demonstrated 
synergism of oncolytic virotherapy using IL-12 expressing Semliki 
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forest viruses and blockade of PD-L1 [32]. Additionally, Engeland et al. 
have demonstrated that the blockade of PD-L1 and CTLA-4 enhances 
the therapeutic effect of oncolytic measles viruses [33]. Started end of 
2014, a first clinical trial is testing the therapeutic effects of Ipilimumab, 
a humanized IgG monoclonal antibody that blocks CTLA-4, in 
combination with CAVATAK™ (Coxsackievirus A21), in the treatment 
of advanced melanoma (https://clinicaltrials.gov; NCT02307149) and 
it remains exciting to see the benefit of this combined treatment in 
the outcome of melanoma patients. To further enhance the immune-
stimulatory effect of an oncovirotherapy approach anlongside with the 
blockade of immune-repressive molecules such as PD-L1 or CTLA-4, 
one could think about using tumor vaccination strategies such as the 
use of bispecific antibodies targeting death receptors and GBM specific 
antigens [34] or of the hybridoma/stem cell fusion technique [23,35]. 
In addition to OV-based tumor cell lysis and immune stimulation 
and to the reversal of the immunosuppressive GBM micro-milieu by 
blocking PD-L1 or CTLA-4, vaccination techniques allow the patient´s 
immune system to further recognize and destroy tumor cells.

In conclusion it is clear that immune responses induced by 
oncovirotherapy dedicate the benefit of this treatment. In future 
studies, combination of OVs with approaches to further overcome 
the immunosuppressive effect of GBM such as the use of checkpoint 
inhibitors as well as regulating the balance between anti-tumor and 
anti-virus immune responses and the use of tumor vaccination provide 
a strong rationale for the clinical exploration of these oncoviro-
immunotherapy strategies and will hopefully assure maximum benefits 
for GBM patients.
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