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Short Communication
The uncurated genome assembly data often contains DNA

contaminations, originated from exotic organisms, introduced during
DNA extraction or sequencing. It happens sometimes that it is not
removed when the sequence is deposited into public databases such as
GenBank or European Nucleotide Archive. Consequently, database
searches could lead mistaken results due to these impurities [1,2].
Human DNA is an everyday contamination, from the scientists who
extract and sequence the samples [3]. Impurities of human origin and
other laboratory contaminants such as E. coli and cloning vectors can
be effectively eliminated using highly efficient computational filters
applied to the draft sequences [4,5]. However, other contaminations, as
discussed later in the paper, are more difficult to identify. By the
spreading of next-generation sequencing this has become a common
problem due to the vast amount of reads which are generally short and
of low quality in these projects [6-8].

A further source of contamination can be the pathogens present in
the samples used for sequencing. Substantial bacterial contamination is
routinely found in existing human-derived clinical RNA-seq datasets
that likely arises from environmental sources [9]. Insect and other
arthropod sequences were identified when analysing plant
transcriptomes [10]. Just the opposite happened when the pathogen
genome was found to be contaminated by the host. This was the case
e.g. when it was discovered that the genome of the bacteria, Neisseria
gonorrhoeae included sequences of cow and sheep origin [1].

It was found by me [11] that apicortin, a characteristic protein of
apicomplexan parasites but absent in more developed animals
(Eumetazoa), was virtually found in an animal genome assembly from
the northern bobwhite (Colinus virginianus). Thus I decided to
systematically investigate this problem: sequences of the apicoplast, an
apicomplexan organelle, were used as queries in BLASTN search
against nucleotide sequences of various animal groups, searching for
possible contaminations. I found that beside the draft genome of the
bobwhite [12] that of a bat, Myotis davidii [13], contained at least 6
and 17 contigs, respectively, of apicoplast origin. This is a general
method for fast identification of genomes contaminated by DNA of
apicomplexan origin, which needs limited computation and practically
does not give false positives, as any significant hit is a clear indication
of contamination. Moreover, by comparing some contaminating
sequences with sequences of known apicomplexan parasites I was able
to construct phylogenetic trees which show the phylogenetic position
of the tentative contaminating species. Although the number of the
complete apicomplexan genomes is increasing continuously, there are
still not enough to use apicoplast sequences for constructing trees.
Thus I used two characteristic genes, often used for phylogenetic

analysis and known in many cases, 18S ribosomal RNA and the
internal transcribed spacer 1 (ITS-1). I suggested that a second
member of the Nephroisospora genus exists, which similarly to the first
member, Nephroisospora eptesici, is hosted by a bat, Myotis davidii,
and proposed its tentative name as “Nephroisospora myotisi”. Of
course, the christening of the unknown species was not accepted by the
strict rules of parasitology require the isolation and taxonomic
description of the species.

However, this idea was picked up and developed significantly by
Janus Borner and Thorsten Burmester [14]. They pointed out that
“while previous approaches have mostly focused on the removal of
contaminating sequences, the identification of parasite-derived
contaminations may also enable the discovery of novel parasite taxa
and shed light on previously unknown host-parasite associations” [14].
The high level of accuracy and sensitivity of next generation
sequencing for quantifying genetic material across organismal
boundaries gives tremendous potential for pathogen discovery.
Previously, the PathSeq program [15] was developed to identify
microorganisms by deep sequencing of human tissue, which first
subtracts all reads derived from the human host. Of course, this
method can be used only in the case of the high-quality genome data
as the human genome is. Borner and Burmeister’s new departure [14]
can be applied in a much broader field.

In the case of wild beasts, it is not possible to avoid infection by
parasites before sequencing. E.g., in the above mentioned cases, the
kidney of the bat and the muscle of the bobwhite, respectively,
contained the parasitic cysts. Unveiled contaminations of animal
genomes cause misinterpretation of data; however, if known, parasite-
originated sequences can provide useful information. Thus Borner and
Burmester [14] suggested that parasite-derived “impurities” mean
plentiful information that can help the discovery and identification of
novel parasites. They argued “that uncurated assembly data should
routinely be made available in addition to the final assemblies” [14].
They showed that sequences of apicomplexan origin were found in
many animal transcriptomes and genomes, which indicates
apicomplexan infection in the sequenced host. They extracted these
sequences from the datasets by a novel bioinformatic pipeline
(ContamFinder) and assigned to distinct taxa using phylogenetic
methods. (The softwares can be freely downloaded from https://
sourceforge.net/projects/contamfinder.) They analysed 920 datasets of
which 51 was contaminated and they recognised more than twenty-
thousand contigs derived from apicomplexan parasites. The
contaminating species were members of various apicomplexan taxa of
Haemosporida, Piroplasmida, Coccidia and Gregarinasina. A typical
finding was that in the assembly of the superseded genome of Gorilla
gorilla gorilla (western lowland gorilla) there were sequences that were
more than 99.9% identical at the nucleotide level (!) to those of
Plasmodium falciparum, including the full mitochondrial genome. For
other, less investigated parasite species, where no or only a few
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molecular data were known previously, these kinds of draft
(uncurated) genomes may represent an abundant source of the gene
repertoire of parasites.

These results have a significant importance for apicomplexan
research. Sequencing of apicomplexans is rather biased to genus of
medical or veterinary interest as, first of all, Plasmodium, then Babesia,
Eimeria, Toxoplasma etc., while for Gregarinasina, which parasitizes
only invertebrates, much less data are available. Analysis of
contaminations renders possible the identification or even the
discovery of new parasite taxa and enlightens the apicomplexan
phylogeny. Moreover, their method can be generalized and also be
applied to investigate contaminations by bacteria, viruses and other
pathogens. I agree absolutely with their final conclusion that draft
genome assembly data should also be made public.
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