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Introduction
Since the completion and publication of the Haemophilus 

influenzae genome sequence in 1995 [1], systems biology has marched 
into a new phase featuring comprehensive analysis of biological 
systems. High-through put experimental studies such as genomics, 
proteomics, metabolomics, etc., (collectively referred to as omics) have 
transformed molecular cell biology from a field in which one gene 
or protein is studied at a time into a data-intensive pursuit in which 
whole organelles and pathways are studied simultaneously. A variety of 
omics sub-disciplines, each with its own set of instruments, techniques 
and software has begun to emerge. The omics technologies that have 
driven these new areas of research include DNA, RNA and protein 
microarrays, mass spectrometry, next generation sequencing and a 
number of other platforms that enable high-throughput molecular 
analyses [2]. Numerous algorithms and workflows have arisen to 
analyze omics data. The increasing complexity of the algorithms and 
the changeable workflow for analysis impose significant challenges 
for the analysis process. Fast deployments of new algorithms as well 
as assembly of predefined, easy-to-apply methods are important 
requirements for an omics data analysis framework. OmicsMiner is 
an organized collection of state-of-the-art data preprocessing and 
mining methods, and places an emphasis on simplifying the practical 
employment and combination of preprocessing methods and analysis 
algorithms.

Background
High-throughput analysis technologies such as DNA/RNA/protein 

microarrays, mass spectrometry and next generation sequencing 
provide a large amount of various types of biological data for 
bioinformatics research [2]. As a result, a variety of omics disciplines, 
each with its own set of instruments, techniques and software, has 
emerged and numerous algorithms and methods have been proposed 
to handle these types of data. Defining a globally applicable protocol for 
addressing omics data is challenging since the precise data format and 
processing requirements varies for each discipline, and the decisions 
about using which methods to apply (and in what combination) 
depend on the type of data, purpose of analysis and observations made 
during the analysis itself. Thus, instead of a single standard pipeline, 
there would be great value in having an integrative framework capable 
of handling a broad range of different data forms, supporting the 
flexible design of customized analysis workflows and facile deployment 
of new algorithms.

Motivation
The tremendous success of new high-throughput technologies in 

omics disciplines is mostly due to their unprecedented capability to 
acquire an ever growing number of analytical measurements (which 
analysts refer to as features) in rather low-cost experiments. This 
allows for the simultaneous investigation of a large number of genomic 
(or other molecular) loci. However, along with the huge number of 
features, another common characteristic of those biological data is a 
limited number of distinct samples.

Those two major characteristics of omics technologies present a 
major problem for mining the data: how does one find the features that 
are most sensitive and relevant to phenomena of interest? To achieve this, 
numerous methods have been developed for the purpose of filtering of 
the large data matrix and eliminating the superfluous features. The aim 
of these filters is to find a sub-matrix whose information content largely 
encapsulates the whole original matrix. Some filtering methods have 
been developed specifically for a single form of omics data, while others 
are more general. Some require corresponding specific preprocessing 
steps and some need to be combined with other particular methods for 
better performance. Most of these methods are available only as stand-
alone programs or proof-of-concept implementations. Nevertheless, 
there is frequently a tangible benefit for combining several of these 
methods to process the results of a normal experiment. The choice of 
which methods to use and in what order depends on the nature of the 
data, the experimental conditions and on observations made during the 
analysis itself. Thus, bioinformaticians need an integrative framework 
which can process heterogeneous datasets, provide access to commonly 
(and easily) applicable algorithms, support convenient deployment of 
new algorithms, facilitate specification of specific pipelines for different 
data types, and enable cross-validation across different algorithms or 
pipelines. 
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Abstract
OmicsMiner is a computational platform providing systematic access to state-of-the-art data processing and mining 

methods with the goal of facilitating the design of customized pipelines for processing a diverse range of biological data 
sets. Many built-in methods are provided for preprocessing, feature selection, clustering and classification of complex 
datasets. The platform supports convenient integration of additional algorithms that can further expand its functionality. 
OmicsMiner also provides convenient and concise interactive graphical user interfaces for data processing. OmicsMiner 
is a Java program that is platform-independent and does not require installation. It is available at http://www.bcf.ku.edu/
software.shtml
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Related work

There has been research effort directed towards this end and 
various applications have been developed for addressing a range 
of data types [3-8]. However most of those approaches adhere to a 
narrow focus dictated by discipline-specific requirements. There do 
exist several general analysis frameworks such as BioWeka [9], Galaxy 
[10], Bioinformatics Computational Journal [11] and Taverna [12] or 
libraries like Bioconductor [13], Bioperl [14] and KD3 [15] that can 
have a more diverse range of data forms. Several of these frameworks 
are briefly described below. MultiExperiment Viewer (MeV) is a 
microarray data analysis tool inside the TM4 suite. It is an open-
source software including algorithms for clustering, visualization, 
classification, statistical analysis and biological theme discovery [8]. 
BioWeka [9] is an extension library implemented within the Weka 
framework [16] that supports biological data formats and alignments 
and is licensed under GNU General Public License. EMMA2 [4] is 
an open-source platform to store and analyze microarray data. Its 
database can manage raw experimental data and relevant biological and 
technical information. It is a collection of various algorithms including 
normalization and pre-processing, statistical inference, cluster analysis, 
data integration and visualization features. Automatic analysis is also 
enabled by specification of pipelines. Gene Pattern [6] is a genomic 
analysis web application for gene expression analysis, proteomics, SNP 
analysis and some other common data processing tasks. It also allows 
the creation of multi-step pipelines. KD3 (Knowledge Discovery in 
Databases Designer) is a workflow-oriented software suite covering the 
complete database knowledge discovery process and offers a variety of 
implemented methods, algorithms and workflows that can easily be 
extended by adding new customized components (so called functional 
objects) [15].

Contribution

Customization of these frameworks or libraries for user-specific 
applications requires the development of interface utilities or web-
based applications which handle data outside of a local system. This 
requirement can be a burden for biologists, and web-based analysis 
can raise data security issues. Therefore we propose a general data 
analysis framework, called OmicsMiner, which can handle a variety 
of biological data forms within local system using a flexible workflow 
design to enable customization without the need for complex 
programming. OmicsMiner implements an organized collection 
of state-of-the-art data processing and data mining algorithms that 
address preprocessing, feature selection, clustering, classification and 
visualization (Figure 1). Additional algorithms can easily be included 
into the framework to expand the functionality of OmicsMiner 
provided that they are written in compliance with its interfaces. The 
OmicsMiner architecture has been designed with an emphasis on 
flexibility; supporting a broad range of biological data formats and 
enabling specification of customized workflows that combine various 
existing and new analysis algorithms. OmicsMiner is distributed as a 
stand-alone Java application with a graphical user interface for easy 
manipulation and data management. Since KD3 [15] and Weka [16] 
classes provide basic common functionalities, many components of 
OmicsMiner are based on KD3 functional objects and Weka classes. 
However we have augmented the suite with new utilities suited for 
handling different types of omics data not supported in KD3 and Weka.

The main features of omicsminer can be summarized as follows:

Flexibility in pipeline design: Users can freely design specific 
workflows for a data set of interest. Since each algorithm in the 

framework is modular, any new workflow can be defined by choosing 
and ordering available modules. The designed workflow can be saved 
for later use or further adaptation.

Capability to handle broad range of data type: OmicsMiner can 
handle any type of numerical data set as input if it is provided in one of 
the supported formats described in Section 2.3. It also supports the raw 
microarray image format (.CEL format) and an abstract data format 
shared among data mining tools. It also supports convenient export of 
data and processed information in a variety of different formats.

Modular implementation with Java beans: All operators are 
modularized and implemented as Java beans and can be easily 
configured during runtime. New algorithms can be incorporated into 
the framework with little effort if they follow the relevant interfaces.

Data visualization: OmicsMiner provides a variety of common 
ways to visualize data so that user can easily analyze and interpret the 
data.

Outline

This remainder of this work is organized as follows. Section 
2 describes the OmicsMiner system in detail, beginning with a 
discussion of the central system features and an overview of the 
pipeline architecture. Pipeline components are discussed in detail 
and typical usage patterns are summarized. Section 3 presents a 
series of experimental studies performed using OmicsMiner. Each 
study is described in terms of the data sources, feature sets, and the 
experimental protocols observed. Results from studies are evaluated in 
terms of predictive performance and selected feature relevance.

Methods
This section describes the OmicsMiner system in detail. First the 

salient features of OmicsMiner are presented and then an overview of 
the system architecture is given. The major aspects of OmicsMiner are 
then reviewed: data formats, preprocessing, feature selection, and data 
mining (including classification, clustering, statistical analysis, and 
visualization). Finally, common activities in OmicsMiner are briefly 
described.

System features

The OmicsMiner system boasts several key features to manage data 
and streamline analysis, described here.

Figure 1:
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Data-oriented: Using a data-oriented design, the focus of 
programming is on the data itself. The ordering of operations is not 
explicitly specified in the framework, but is defined by the analyst 
who uses it and by the requirements of the data. Functionality in this 
framework entails transferring data from one functor object to another 
object and from one kind of format to another format. These functor 
objects are ideally suited for processing the input data and creating 
some specific kind of output data. 

Functor objects: All the functionalities and algorithms in this 
framework are implemented as objects. One object is designed for each 
unique algorithm. These objects can be easily added into a pipeline 
and assembled together into the framework and implemented along 
with current objects. In OmicsMiner, all the functor objects are 
implemented as Java beans and can be easily configured during runtime 
of the application. Thus, new algorithms can be readily combined into 
the framework provided that adhere to the Java beans criteria and are 
configured according to the relevant interfaces of the framework.

Pipeline design for specific dataset: While microarray data is not 
the only form that OmicsMiner can handle, it is a common medium 
for high throughput experiments, thus our design has been tailored 
to support a variety of different microarray formats. For microarray 
data, there are different supported analytical platforms including DNA, 
oligonucleotide, SNP, MMChips, Protein, Tissue, Cellular, Chemical 
compound, Antibody, and Carbohydrate arrays (glycoarrays). 
Assembly of objects into a customized sequence (i.e. a pipeline) permits 
one to preprocess, filter, mine, validate and visualize each data format 
in a manner suitable for that format. Pipeline design and reuse is thus a 
major feature of the whole OmicsMiner framework architecture; users 
who design and optimize specific pipelines for particular datasets can 
save those predefined pipelines as templates for later analysis or other 
applications. 

Different views of data: In OmicsMiner, users can view data in 
several different forms, including data table, feature summary, graph 
view, execution results. Additional data view panels can later be easily 
combined into this framework.

Pipeline overview

OmicsMiner supports the design and configuration of pipelines for 
automated streamed data processing. Additional algorithms can easily 
be combined into the framework to extend OmicsMiner’s functionality 
provided that they are written using the interfaces implemented in the 
framework. This results in the availability of convenient and concise 
project-specific interactive graphical user interfaces for data processing. 
The most common protocols to analyze omics data generally include 
the following steps: preprocessing, inference or classification and 
validation [17]. 

Data formats

OmicsMiner allows the user to import data from different types of 
data file formats since biological data comes in many distinct formats. 
So far, the following data formats are supported:

ARFF: ARFF is a special format Weka uses for its datasets. Since it 
is commonly used in several major data mining tools, we support it in 
OmicsMiner.

CSV and excel: Large amounts of biological data are stored in 
these kinds of formats. The framework can also load files containing 
tab-separated values.

CEL: Cell Intensity File. The .CEL files contain the information 
from the scanning images of the hybridized microarrays. OmicsMiner 
allows user to read multiple CEL files as a microarray data matrix and 
to add the class labels to each sample for using the following facilities to 
analyze the experiment data.

In order to be imported correctly, the input data should correctly 
adhere to one of the above format specifications. Using a well-formed 
data file as input will result in correct implementation of the pipeline 
and will yield valid output. Some limitations may exist on the size of 
the data set that can be imported; however. The maximum number of 
samples that can be loaded into OmicsMiner at one time will depend 
on the available RAM assigned to JVM in the computer running 
OmicsMiner and the number of features available to characterize each 
sample.

Generally, there are two kinds of data which can be analyzed in 
OmicsMiner. One kind has class label information, which can be used 
in classification and supervised feature selection. The other lacks class 
label information, and can be used in clustering and unsupervised 
feature selection. Normally, for csv and excel files, OmicsMiner needs 
data to be in the form of a matrix with feature labels. Sample identifiers 
may be present but will not be used in the program.

Preprocessing

OmicsMiner supports common dataset preprocessing methods 
such as feature or sample normalization, Log-transformation and 
Z-Transformation. Some basic data set handling methods are also 
included in the framework, such as the ability to sort by row or 
column, and merge data sets from different data files. For the merge 
component, if the mergeCols property is true, the datasets must have 
the same number of features; if mergeCols is false, the datasets must 
have the same number of samples. For raw microarray intensity data, 
OmicsMiner implements standard preprocessing steps integrated in 
loading process: background correction, normalization, pm correction, 
and summarization. For each microarray preprocessing step, 
OmicsMiner provides multiple algorithms and the user can choose any 
combination of preprocessing methods when loading microarray files.

Feature analysis

Analysis of sample features, including selection and transformation, 
is a critical component of data mining. OmicsMiner includes a broad 
range of built in tools for this purpose. Here the available algorithms 
are presented and briefly described.

Feature selection: Selection of relevant features for data mining is 
a common task before proceeding with analysis of biological data. This 
is especially true in the case of gene expression levels, where the large 
number of features may degrade the performance of many analysis 
tools. The following feature selection approaches are available.

Biomarker identifier (BMI): the BMI, which was originally 
applied on metabolic data, combines various statistical measures such 
as the discriminatory performance, discriminatory space, and variance 
of metabolites’ concentrations at the state of disease to calculate an 
evaluation score for feature ranking [18].

ANOVA (one way analysis of variance for every attribute): is a 
technique used to compare means of two or more groups (using the F 
distribution). This technique can be used only for numerical data [19].

Information gain: evaluates the worth of an attribute by measuring 
the information gain with respect to the class [20].
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Kruskal-wallis feature selection: a non-parametric method to 
compare groups [21].

Relieff: Evaluates the worth of an attribute by repeatedly sampling 
instances and considering the value of the given attribute for the nearest 
instances of the same and different classes [22].\

Chisquared test: evaluating attributes individually by calculating 
the chi-squared statistic.

Feature selection evaluation: In Feature Selection Evaluation, we 
simultaneously calculate the scores for features using multiple feature 
selection algorithms like BMI, Information gain, reliefF to enable 
convenient comparison of the features scores. 

Fold-change calculation is also combined in several feature 
selection methods for features scores’ comparison.

Principal component analysis: When a reduction in the data 
dimensionality is important, but selection of individual features is not 
desired, data transformation is often employed. Principal Component 
Analysis (PCA) is a common tool for this purpose. PCA transforms a set 
of potentially correlated features into a set of orthogonal, uncorrelated 
ones. The transformed features are arranged by decreasing variance, 
thus selection of only the first few principal component features 
yields a data set that describes the original samples with much lower 
dimensionality.

Correlation analysis: OmicsMiner implements Linear Correlation 
Finder to analyze correlation between different features in the 
biological data set using Spearman and Pearson. OmicsMiner also used 
Correlation Matrix to calculate Spearman and Pearson correlation 
matrices among all the features. In both of cases, users need only set the 
α significance level, but can also set the attribute name filter to reveal 
the correlation coefficients for those specific features.

Data mining

While all pipeline components presented thus far are important, 
data mining is the ultimate goal of the OmicsMiner system. Here a 
number of mining and discovery tools included with OmicsMiner are 
described.

Classification and regression: Data classification or prediction 
refers to the process of learning a function that maps data samples 
to two or more discrete classes. Classification is studied by a wide 
variety of researchers for just as many purposes, and hence there exist 
numerous classification methods. OmicsMiner has included some of 
the most popular and relevant classifiers for omics data prediction. 
Regression is similar to classification except that the learned function 
maps a body of samples to a numerical trend instead of a discrete class.

Clustering: Clustering is one of the most common tasks in 
microarray analysis. OmicsMiner offers several clustering methods 
with different optimization criteria including the well-established 
partitioning methods such as k-means, hierarchical clustering and 
Ordering Points To Identify the Clustering Structure (OPTICS) [23] 
using the corresponding KD3 functional object. All clustering methods 
can be performed with a wide range of parameters such as choosing 
Manhattan distance or Euclidean Distance, setting the number of 
clusters in k-means, using single or complete linkage in hierarchical 
clustering, and so on.

Statistical testing: Outlier detection and normal distribution test 
are implemented in this part. Statistical tests include Student’s t-test 

and ANOVA as well as non-parametric tests such as Wilcoxon rank 
sum and Kruskal-Wallis test.

Visualization

OmicsMiner supports some mode of visualization for the 
analysis associated with every functor object. This includes mapping 
dendrograms for hierarchical clustering, reporting feature correlation 
in Cartesian form, plotting a score histogram for each feature selection 
algorithm and cluster feature distribution graphs in clustering 
methods, etc. We also provide several specialized plotting functions for 
PCA analysis and ROC curves.

Using omicsminer

OmicsMiner is a general tool for data analysis; however the most 
common usage patterns are envisioned to include several fundamental 
activities. These basic OmicsMiner activities are described here in brief.

Starting omicsminer: Since OmicsMiner is developed in Java 
platform and distributed as a jar file, it can be started just by going to 
the directive and using command line “java -jar OmicsMiner”. If user 
needs to process a large dataset, then -Xmx option should be used to 
specify the heap size for JVM and the actual size of that should depend 
on the configuration of user’s computer.

OmicsMiner also combines some functionality in R, like loading 
CEL (for raw microarray images) formats files. In order to use this 
functionality, users need to add environment variables for the installing 
folders of R. To simplify OmicsMiner usage, a bash file has been written 
to serve this function. Having referenced the bash file, users can go to 
the OmicsMiner directory and use the command line /run.

Pipeline designing: Pipeline designing in OmicsMiner is very 
straightforward. After starting OmicsMiner, one selects the first 
functor object in left tree structure panel (normally it is LoadData), 
sets the parameters of this object and then clicks add to add it into the 
pipeline indicator panel. Figure 2 shows a sample pipeline consisting of 
three functor objects. The user can then select other functor objects and 
finish the configuration of a pipeline.

Pipeline modification: Modifying pipeline allows users to add or 
eliminate functor objects in current pipeline as well as to modify the 
parameters of a specific functor object.

Figure 2:



Citation: Zhou Z, Netzer M, Lee IH, Handler M, Manickam VA, et al. (2012) OmicsMiner: A Biological Data Mining Framework. J Data Mining in 
Genom Proteomics 3:115. doi:10.4172/2153-0602.1000115

Page 5 of 8

Volume 3 • Issue 2 • 1000115
J Data Mining in Genom Proteomics
ISSN:2153-0602 JDMGP an open access journal

Loading and saving pipelines: After creating or modifying a 
pipeline, users can just click save button to save the pipeline for future 
use. Later, the pipeline can be loaded using the load button.

Running the pipeline: When a pipeline is established, users can 
click run to execute the pipeline in a flow manner.

Saving the data: Users can save the result data set as a csv or xls file 
for future use.

View data from different aspect: User can have different views of 
data using the combo box on the top of data view panel.

Experimental Results
In order to evaluate the effectiveness of OmicsMiner for common 

data analysis tasks, we have performed a series of experimental studies 
highlighting several important components of the OmicsMiner 
architecture. Each study is described below, with discussion of data 
sources, features, experimental protocol and results.

Cancer cell feature selection

To demonstrate the flexibility of pipeline design in OmicsMiner, we 
first performed classification experiments on two cancer cell prediction 
data sets. Lung cancer accounts for the most cancer-related deaths and 
it is essential for effective treatment to identify lung-cancer-associated 
genes [24]. Two expression data sets were obtained and an OmicsMiner 
pipeline was used to perform feature selection on cell samples with the 
goal of distinguishing their phenotype (normal or cancerous).

Data sources: The first data set used contains gene expression 
levels obtained from GlaxoSmithKline (GSK), which has released the 
genomic profiling data for over 300 cancer cell lines via the National 
Cancer Institute’s cancer Bioinformatics Grid® (caBIG®). The raw 
microarray data is available at https://cabig.nci.nih.gov/caArray_
GSKdata/. We used data from 65 samples of small-cell carcinoma 
tissue and 41 samples of adenocarcinoma. The second data set is the 
Notterman Adenoma Dataset from Princeton University [25]. This 
dataset contains expression levels of 2000 genes taken from 62 different 
samples.

Feature selection: For both data sets, features represent gene 
expression levels. For the GSK data set, we compared BMI and ReliefF 
for feature selection after log-transformation. For the Notterman data, 
information gain, BMI, ANOVA, and KruskalWallis feature selection 
methods were employed.

Results: The feature selection results for the GSK data are 
presented in Figures 3 and 4. The ranking of features with BMI for this 
data produced two relatively high quality features, with the remaining 
features contributing less predictive ability. Using ReliefF to select 
features produced a distinctly different profile, with a large number of 
features ranked with relatively similar importance.

For the Notterman data set, Table 1 shows the top selected genes 
by ANOVA, BMI, Information Gain and KruskalWallis Feature 
Selection, and Figures 5 and 6 show the top ranked features by BMI 
and information gain. The results for this data set using BMI are again 
distinct from those obtained for the GSK data using BMI. Where 
the GSK data contained just a pair of highly ranked features, for the 
Notterman data BMI produced a number of features with similar if 
not identical scores. Information Gain, on the other hand produced a 
single high quality feature, while the remaining features were scored 
much lower.

Clustering gene expression levels

Clustering is another common task in omics data analysis. In this 
experimental study, we use the cellular gene expression levels to group 
cells according to phenotype.

Data sources: Gene expression levels were obtained from a public 
archive of the functional genomics database, ArrayExpressDB (http://
www.ebi.ac.uk/arrayexpress/ ). The data used Affymetrix Rat Genome 
230 2.0 platform. The investigated data set applied in this work 
comprises data of 7 individuals divided into two classes: control (n=3) 
and FSH-treatment (n=4). The number of measured gene expressions 
is 31,099.

Feature selection: BMI feature selection was used to reduce the 
very large dimensionality of this data set.

Clustering: Hierarchical clustering was performed on the gene 
expression levels of all individuals.

Results: From the Figure 7, we can see that hierarchical clustering 

Figure 3:

Figure 4:

https://cabig.nci.nih.gov/caArray_GSKdata/
https://cabig.nci.nih.gov/caArray_GSKdata/
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
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on selected features can differentiate the two classes with very high 
precision.

Feature selection for drug bioavailability

Bioavailability is a measure of the fraction of an administered 
pharmacological compound that reaches systemic circulation. 
Bioavailability depends on a range of different physiological and 
physicochemical effects, including compound solubility, capacity for 
intestinal absorption and amenability to distribution into plasma, 
thus modeling molecular bioavailability profiles must account for a 
variety of different attributes that affect molecular disposition within 
a variety of different biochemical environments. We arbitrarily 
classified compounds as being bioavailable if more than 50% of the 
dose was available. In this experimental study, we used OmicsMiner 
to select features relevant to the bioavailability of a number of chemical 
compounds.

Data sources

In our work, we used a data set reporting the human oral availability 
of nearly 800 compounds, as compiled by Hou et al. [26]. In our 
training set, we have total 580 chemical compounds with quantitative 
bioavailability data, and described each compound via 248 molecular 
features.

Feature selection

The feature set used to predict bioavailability profiles included a 
variety of structure-based and physicochemical properties computed 

from the Volsurf suite of volumetric and surface-projection descriptors 
[27], and the BCUT molecular diversity parameters [28]. We used 
OmicsMiner to calculate the BMI and ANOVA scores.

Results: Figures 7, 8 and 9 present the feature selection results for 
the bioavailability study. The results for feature selection with BMI 
indicate a number of features with similar importance. Analysis with 
ANOVA, on the other hand, yields a pair of high scoring features with 
the remaining features scoring much lower overall.

Discussion
The current version of OmicsMiner offers a combination of 

algorithms that can be applied at different stages of the data analysis 
process, with the aim of exploiting the simplicity of program interface 
and the comprehensiveness of the functor objects. The core structures 
have been optimized to improve performance and simplify the addition 
of new functionality, thus enabling analysis of different types of omics-
data. Among the features of this framework are flexible data import and 
export options, the ability to create and save specific pipelines for given 
types of data, a simple and convenient user-interface, matrix operations 

ANOVA BMI IG KWT
AF001548 U10099 AB000584 L08246
Z23090 X07820 AB000895 U02388
M12125 L40402 AB002365 U71374
X13839 X05839 AB002533 X16665
X15882 J03626 AB003698 AB000584
M11313 L20321 AF000959 AB000895
AB000584 X98225 AF001548 AB002365
M81757 M91368 AF005887 AB002533
M24194 U66464 AF006087 AB003698
L17131 L02785 AJ000480 AF000959
L25286 U57452 D00632 AF001548
X15880 HG2417-HT2513 D00654 AF005887
X00351 U24186 D10522 AF006087
J02783 L42379 D10667 AJ000480
D14662 X63454 D11428 D00632
Y00339 HG2981-HT3127 D13370 D00654
HG3044-HT3742 L20348 D13413 D10522
HG1612-HT1612 X92689 D13641 D10667
M61906 M26692 D13666 D11428
X14813 M57609 D13748 D13370
X78565 M58525 D14530 D13413
D87433 X99133 D14659 D13641
J04456 U04636 D14662 D13666
X01677 X85372 D14874 D13748
HG1153-HT1153 H46990 D15049 D14530
S82362 U41518 D16294 D14659
M34458 S67070 D17408 D14662
X74295 M87313 D21267 D14874
U50360 X61079 D23660 D15049
U12465 M83216 D23673 D16294

Table 1: Top Selected Genes for Notterman Data Set.

Figure 5:

Figure 6:
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for convenient set sorting and merging, new statistical methods for the 
identification of differentially expressed genes (or other applications 
with comparable data formats), online data transformations (e.g. 
ZTransforming, normalization and log-transformation) and many 
more.

Conclusion
OmicsMiner is a flexible framework for the analysis of various 

kinds of omics data. Biological data analysis methods ranging from 
preprocessing and normalization to novel statistical and machine 
learning methods have become highly sophisticated and new methods 
are published almost daily. The OmicsMiner framework can integrate 
such new methods and readily combine them into analysis pipelines, 
thus providing a convenient environment for biological data analysis. 
We have written OmicsMiner to instill flexibility for a diverse range 
of current applications, and for future expansion based on emerging 
algorithms and protocols. Among the large number of components 
are an automated processing framework, dynamic pipelines, and 
efficient feature selection methods. The suite consistently adheres to 
the aim of combining the simplicity of the program interface and the 
comprehensiveness of the functor objects toward effective and facile 
usage. Our future development will focus on direct support for next 
generation sequencing (NGS) data analysis. Currently, OmicsMiner 
can handle NGS data that has been pre-aligned and processed into a 
numerical matrix in csv or excel format. In future, we plan to enable 
OmicsMiner to load NGS data directly and interface with other NGS 
software packages such as BFAST [29], Bowtie [30], Cufflinks [31] and 
Genome Analysis Toolkit (GATK) [32] so as to make the pipeline more 
efficient and convenient.
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