(October-December, 2015)

GLOBAL JOURNAL OF BIOLOGY, AGRICULTURE & HEALTH SCIENCES (Published By: Global Institute for Research & Education)

www.gifre.org

Nutritional Evaluation of Ipomoea alba L.

Mangesh J. Dagawal

Department of Botany, Smt. Radhabai Sarda College, Anjangaon surji., Dist. Amravati (M.S.) India 444705

Abstract

Ipomoea alba L.(Convolulaceae) is a perennial climber and locally known as moon flower or Sakankali. Fresh leaves of *Ipomoea alba* are used as vegetables and also medicines. The leaves of *I.alba* are used as vegetables and also used to cure various diseases in Anjangaon region Dist. Amravati (M.S.). Present study deals with the nutritional evaluation of *Ipomoea alba* leaves .Fresh as well as shade dried material was used for estimation of moisture content, chlorophyll, lycopene, Ascorbic acid, crude protein , crude fat, reducing ,non reducing sugar, and starch. The material was also screened for presence of fifteen different bioactive compounds and showed the presence of alkaloids, flavonoids, Simple phenolics, Anthraquinones, Cardenolides Leucoanthocyanin , saponin ,Anthracene glycosides and polyoses.

Key Words: Nutritional evaluation, bioactive compound, Ipomoea alba.

Introduction

Ipomoea alba L.(Convolulaceae) is a perennial climber and locally known as moon flower or Sakankali. Fresh leaves of *Ipomoea alba* are used as vegetables and also medicines. Young leaves and fleshy calyces-cooked, steamed and eaten as a vegetables or used in curries, soups, stews etc. The whole herbs used in treating snakebite^[4]. Root bark of *I. alba* purgative and leaves used in filariasis. The plant contains pentasaccharide glucoside of ethyl-11-hydroxy hexadecanoate. The seeds contains ipomine and dimethoxyipomine^{.[7]}. The leaves are used as vegetables and also used to cure various diseases in Anjangaon region Dist. Amravati (M.S.).

Flower Fruits Fig, Twig, Flower bud, Flower and Fruit

Material and Methods

Plants were collected from field and brought to laboratory; for identification standard floras were referred.^[1,2,8]. Material was thoroughly washed and surface dried under cool air current. For analysis, fresh material was preserved in zip lock bags at 40 ⁰C; for dry sample material was shade dried and finely powdered and stored in polythene zip lock bags at 30-32 ⁰C in desiccators. Nutritional evaluation was done following Thimmaiah 1999, Sadasivam and Manickam 2005. Dried leaves were used for the detection of bioactive compound was done by standard prescribed method Evans 1997, Harborne 1973, Kokate *et al.*, 1998, Sadasivam and Manikkam, 2005; Thimaiahh, 1999, Peach and Tracey, 1955^[3,6,8,10,11,12].

Result and Discussion

The values of nutrients obtained were converted into per 100 gm fresh weight tissue are presented in (Table No.1). Leaves are collected when abundant and are preserved in dry form for scarcity condition. Therefore values per 100 gm weight are also estimated (Table No. 2). The leaf powder was screened for presence of 15 biological compound and presented in (Table No. 3). Screening of material for bioactive compound showed the presence of Alkoloids, Anthraquinones, Cardenolides, Flavonoids, Simple phenolics, Leucoanthocyanin, Saponins, Juglone, Polyoses, Anthracene glycosides etc.

Gopalan *et al.*, (2004) has published nutritive value of some common Indian foods ^[5]. To understand the nutritional status of *Ipomoea alba* studied here, the values obtained are compared with three leafy vegetables commonly used in Indian diet.(Table No. 4).

Sr. No.	Nutrients	Per 100gm	
1	Moisture Content	66.45 %	
2	Crude Protein	2.25 gm	
3	Ascorbic Acid	2.44 mg	
4	Lycopene	10.67 mg	
	Chlorophyll		
5	i) Chlorophyll-a	9.65 mg	
	ii) Chlorophyll-b	12.54 mg	
	iii) Total Chlorophyll	22.19 mg	
6	Reducing Sugar	3.9 gm	
7	Non-Reducing Sugar	8.4 gm	
8	Total Phenol	3.9 gm	
9	Starch	0.43 gm	

Table 1: Nutrients Per 100 gm of fresh tissue

Table 2: Nutrients Per 100gm dry tissue

Sr. No.	Nutrients	Per 100gm	
1	Reducing Sugar	4.2 gm	
2	Non-Reducing Sugar	10.2 gm	
3	Crude Fat	0.64 %	
4	Total Phenol	4.6 gm	
5	Crude Protein	3.54 gm	
6	Ascorbic Acid	1.36 mg	
7	Starch	0.623 gm	

Sr. No.	Test	Response	Intensity*	Inference
1	Iridoids	Pale Brown colour		Absent
2	Alkaloids			
	a) Mayer's Reagent	Pale Yellow		Absent
	b) Wagner's Reagent	Brown ppt	+++	Present
3	Anthraquinones			
	a) Test a	Reddish Brown	+	Present
	b) Test b	Reddish Brown		Absent
	c) Test c	Pale Yellow		Absent
4	Cardenolides			
	a) Cardiac glycosides	Pale green		Absent
	b) 2-deoxy sugar	Reddish Brown	++	Present
5	Flavonoids			
	a) Shinoda test	Orange	+++	Present
	b) Flavononol test	Brown	++	Present
	c) Flavonol test	Yellow		Absent
	d) Flavone, Flavonol,			
	Flavanone test	Crimson	+++	Present
	e) Rao & sheshandri test	Pale Yellow	-	Absent
6	Simple Phenolics			
	Test- a) with Fecl_3	Deep Green	+++	Hydroquinone/n-
				naphthonol/catechol
	Test- b) with addition of	Red Brown	++	B-diketones or B-ketonic
	NaOH			ester
	Test- c) Addition of excess Fecl ₃	Yellow	++	Hydroquinone
7	Leucoanthocyanin			
,	Test a	Red Colour	+	Present
	Test h	Dark Green	_	Absent
8	Steroids	Dark Green		nosent
0	Salkowaski	Blackish Vellow		Absent
9	Tannin	Didekish Tenow		nosem
,	Test a	Pale Green		Absent
	Test b	Deep Green		Absent
10	Saponins	Deep Green		
10	Test a	Stable Froath	+++	Present
11	Juglone	Pale Green	++	Present
12	Emodins	Light Green		Absent
13	Polvoses	Dark Red	+++	Present
14	Polyuronoides	Violet		Absent
15	Anthracene glycosides	Colourless	1	Dresent

Table 3 : Bioactive Compound

 15
 Anthracene glycosides
 Colourless
 +
 Present

 *Response to various tests were denoted by +, ++ and +++ indicating weak, moderate and strong reaction respectively.

Table 4	: Showing	comparison	of I	Ipomoea alba	with	common g	green vegetable.
							, , ,

Sr. No.	Phytonutrients	Amaranthus	Fenugreek	Spinach	Ipomoea alba
1	Moisture Content (%)	85 %	86.1 %	92.1 %	66.45 %
2	Protein (gm)	3 gm	4.4 gm	2 gm	2.25 gm
3	Fat (gm)	0.3 gm	0.9 gm	0.7 gm	0.64 gm
4	Ascorbic acid (mg)	33 mg	52 mg	8 mg	2.44 mg

Common names along with Botanical Names :- Tandulja (*Amaranthus spinosa* L.), Methi (*Trigonella foenum graecum* L.), Palak (*Spinocia oleracea* L.) Sakankali (*Ipomoea alba* L.)

Protein content is lower than Amaranthus and Fenugreek and higher than Spinach. Moisture content is lower than Amaranthus, Fenugreek and Spinach. Fat content is higher than Amaranthu and lower than Fenugreek and Spinach. Ascorbic acid content is much lower than three leafy vegetables. According to National Research Council (1974). In Ipomoea batatas the vitamin 'C' was found more (15.20 mg) than Ipomoea alba (1.30 mg).

The presence of Alkaloides and flavonoids posses antitoxic and antioxidant activity. The presence of anthracene glycosides indicates that the plant possess hypoglycemic activity which is in conformation with the opinion of Tuse 2009.

Acknowledgment

Authors are thankful to Principal and Head Dept. of Botany Smt. Radhabai Sarda College Anjangaon Surji Dist. Amravati for providing all necessary facilities.

References

- 1. Cooke, T.(1967) (Rpr.). The Flora of the Presidency of Bombay. Vol. I, II, III. Botanical Survey of India. Culcutta.
- 2. Dhore, M.A. (2002). Flora of Amravati District with Special references to the distribution of Tree species, Ph. D. Thesis, 1986. Pub. Amravati University, Amravati.
- 3. Evans, W.C. (1997). Trease and Evans Pharmacognosy. 14th Edition. W.B. Saunders Company Limited, Singapore.
- 4. Facciola S. Cornucopia. (1990). A source Book of Edible plants. Kampong publications China.
- 5. Gopalan C., B.V. Rama Sastri and S.C. Balasubramanian (Revised and updated by Narasinga Rao B.S., Y.G. Deosthale and K.C. Pant. (2004). Nutritive value of Indian Foods. National Institute of Nutrition, Indian Council of Medicinal Research, Hyderabad.
- 6. Harborne, J.B. (1973). Phytochemical Methods, A Guide to modern Technique. Chapman and Hall Ltd. London, pp.273.
- 7. Khare, C.P. (2007). Indian Medicinal Plants An illustrated dictionary. Springer publication New York.
- 8. Kokote, C.K., A.P. Purohit and S. B. Gokhale. (1998). Pharmocognosy. Nirali Prakashan pune.
- 9. Naik, V.N. (1998). Flora of Marathwada Vol. I. Amrut Prakashan, Aurangabad.
- 10. Peach, K. and Tracey M.V. (1955). Modern Methods of Plant Analysis, Vol. I. Springer Vedong, Berlin, pp.626.
- 11. Sadasivam S. and A. Manickm. (2005). *Biochemical methods* 11th Edition. New Age International (P) Limited, Publishers, New Delhi.
- 12. Thimmaiah, S.R., (1999). Standard Method of Biochemical Analysis Kalyani Publishers, New Delhi.
- 13. Tuse T.A., Harle U.N., Bore V.V. (2009) . 'Hepatoprotective activity of *Colocasia antiquorum* against experimentaly induced liver injury in rats' *Malasian J Pharma Sci.*, 7, (2), pp 99-112.