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We propose that most plants are inhabited by nitrogen-fixing 
endosymbiotic bacteria whose hosts eventually degrade them through 
oxidation to extract nitrogen-containing nutrients. Such bacteria 
comprise the ‘nutritional endosymbiotic systems’ of plants thus 
enabling them to obtain critical nutrients for growth and development. 
It is already well known that endophytic microbes, both prokaryotic 
and eukaryotic, systemically inhabit plants [1-6]. Numerous studies 
of the diversity of endophytic microbes in plants suggest that these 
microbes are diverse enough and occur in high enough numbers as 
to constitute communities [4,7,8]. The number of microbes in plants 
further suggests that they may be biologically important to plant 
functions. However, we still know little about the roles that endophytic 
microbes play in enabling plant growth and development. Several 
hypotheses, all of which are based on supportive evidence, have been 
proposed that pose functional ecological roles for endophytes. These 
hypotheses include, but are not limited to, the following: defensive 
mutualism; plant growth promotion; stress protection; oxidative stress 
protection; habitat adaptation; and associative nitrogen fixation [1,2,9-
19]. But, none of these hypotheses provide a sufficient mechanistic 
understanding of how endosymbiotic microbes benefit their host 
plants. 

One critical function about which there is a dearth of mechanistic 
knowledge is the role which microbial endosymbionts play in aiding 
plants to acquire nutrients. Acquisition of nutrients, particularly 
nitrogen, is critical for plants to grow and develop. Moreover, its 
presence is frequently limited in soils. Plants are, however, immersed 
constantly in nitrogen gas (N2) since the earth’s atmosphere consists 
of approximately 79% N2. But, plants cannot access the abundant 
atmospheric N2 because they lack nitrogenase enzyme systems in 
their genomes. Nitrogen is so critical to plant life and so abundant in 
the atmosphere that it is astonishing that plants did not evolve their 
own nitrogenases, as bacteria have. With regard to plant acquisition 
of nitrogen, the current and widely held belief is that non-rhizobial 
plants must absorb nitrogen from soils. This belief has been held so 
universally and for such a long time that one might consider it to be 
a ‘central dogma’ of plant ecology [20]. Yet, many plants (e.g., desert 
cacti and agaves, and epiphytic orchids, epiphytic ferns and epiphytic 
bromeliads) grow in circumstances (e.g. low water, low nutrient 
environments) where they cannot absorb nitrates from soils, and yet 
they manage to thrive [21,22]. We propose that exceptions, like the 
above-mentioned plants, demonstrate that the accepted model of 
nitrogen absorption predominantly from soils is not correct. We also 
posit that plants have not evolved their own nitrogenases because 
they already possess nutritional endosymbiotic systems involving 
nitrogen-fixing proteobacteria that function as ‘quasi-organelles’ to 
provide them with critical forms of nitrogenous compounds [1,12,23]. 
We further hypothesize that many plants obtain the majority of the 
nitrogen they require from endosymbiotic microbes and only a portion 
from soil nitrates. 

Recently, we published evidence that certain grasses possess 
the capacity to extract nutrients from symbiotic nitrogen-fixing 

proteobacteria through a process of oxidation [24]. We termed this 
process as ‘Oxidative Nitrogen Scavenging’ (ONS). Paungfoo-Lonhienne 
et al. [25] presented evidence that some plants appear to phagocytize 
bacteria as a nutrient source. We have additional unpublished data 
that many additional plant species possess ONS systems involving 
intracellular proteobacteria that are digested/oxidized in the process 
of plant development (Figure 1). The endosymbiotic bacteria that we 
encountered in plants are seed-transmitted and robust, in that they 
survive periods of seed storage. It is logical that these microbes are part 
of the nutritional endosymbiotic systems employed by plants. Likely, 
these systems provide developing plants with oligopeptides, amino 
acids, vitamins, nucleic acids, that not only contain nitrogen but that 
may serve as the building blocks of essential plant molecules. It is likely 
that all plants may obtain some nutrients directly from microbes at 
some point in plant development. 

Nutritional endosymbiotic systems have been largely unstudied 
partly because the presence of the endosymbiotic microbes in healthy 
plants has gone unnoticed due to their small sizes. Further, many of 
the microbes involved are not easily cultured. It is also frequently 
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Figure 1: Oxidizing bacteria (Pantoea sp.; arrows) within a root hair cell of 
a seedling of rapeseed (Brassica napus), showing bacterial cells in vesicles 
surrounded by red-staining H2O2 (arrows; stained with 3,3′-Diaminobenzidine/
horseradish peroxidase then counterstained with 0.1% aniline blue/lactic 
acid). Later stages of oxidation are indicated with white arrows.
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difficult to identify plants that are free of the proteobacteria in order to 
conduct controlled experiments. The challenge to biologists studying 
these systems is to design studies to measure the extent to which 
plants obtain nutrients through digestion/oxidation of endosymbiotic 
microbes and to identify precisely what nutrients plants obtain from 
the microbes. Gaining an understanding of the nutritional functions 
of endosymbiotic microbes in enabling plant growth and development 
will change our understanding of how microbes and plants interact, 
how nitrogen flows in ecosystems and how plants have evolved.
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