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Abstract

Introduction: Non-infectious pulmonary dysfunction (NIPC) represents a common and often fatal complication of
hematopoietic stem cell transplantation (HSCT). Recently, bactericidal/permeability-increasing (BPI) haplotypes
were associated with an increased risk of developing airflow decline after HSCT.

Objective: In order to clarify whether BPI is involved in the pathogenesis of HSCT-related pulmonary
complications, we performed a genetic association study.

Methods: In this study, we therefore investigated the relationship between BPI and pulmonary dysfunction within
an ethnic group by analyzing the incidence of NIPC based on genotype and the allelic frequency of BPI
polymorphisms in 121 Japanese patients who underwent HSCT from HLA-identical sibling donors. We examined
BPI-associated single nucleotide polymorphisms (SNPs) (rs5741798, rs1934917, rs5743530, rs2275954), and
identified NIPC-associated polymorphisms in 20 patients (16.5%).

Results: The allelic frequencies of rs1934917 and rs5743530 are significantly different between patients with and
without NIPC (P=0.024 and P=0.015, respectively). For donors, the rs5743530 C allele was more frequent in the
NIPC group than in the group without NIPC (P=0.038). No significant relationships were noted between each of the
other gene polymorphisms and the development of NIPC.

Conclusion: In this Japanese cohort study, two candidate SNPs reached statistical significance in terms of NIPC
incidence and our findings suggest that BPI haplotypes contribute to the development of NIPC within an ethnic
group.

Keywords: Non-infectious pulmonary complication; Stem cell
transplantation; Genetic association study; BPI

Introduction
Hematopoietic stem cell transplantation (HSCT) has become the

standard treatment for many hematological disorders. Nevertheless, a
number of complications associated with either acute or chronic graft
versus host disease (aGVHD, cGVHD) have limited the utility of
HSCT. In particular, infectious and noninfectious pulmonary
complications occur in 25-50% of allogeneic HSCT recipients, and can
account for approximately 50% of transplant-related deaths [1,2].
Noninfectious pulmonary complications (NIPC) have a wide
etiological spectrum. Early-onset NIPC include diffuse alveolar
hemorrhage (DAH) and the idiopathic pneumonia syndrome (IPS),
while late-onset NIPC mainly comprise bronchiolitis obliterans
syndrome (BOS) and bronchiolitis obliterans with organizing
pneumonia (BOOP) [2-6]. Since little is known about the pathogenesis
of NIPC, neither its incidence nor prognosis have improved since the
first description of this condition over 20 years ago.

Predicting the likely outcome of HSCT has been aided by the
analysis of both non-histocompatibility leukocyte antigen (non-HLA)

functional genomics and conventional risk factors [7-10]. Indeed,
recent studies focusing on patients’ genetic background with respect to
HSCT-related complications have shed light on the pathogenesis of
GVHD [8]. Although pulmonary dysfunction after HSCT is a serious
complication, only two studies have described the relationship
between genomic polymorphisms and pulmonary complications after
HSCT [11-13]. To this end, Chien et al. [5] identified an association
between bactericidal/permeability-increasing protein (BPI) and rapid
airflow decline, indicating a role for innate immunity in BOS after
HSCT. In addition, lipopolysaccharide (LPS) activates alveolar
macrophages via LPS-binding protein to induce the production of
specific cytokines and subsequent rapid but transient neutrophil
infiltration into the lung (interstitium, alveoli, and airways) [14]. LPS
thus can cause chronic airway inflammation in various airway diseases
including asthma, chronic bronchitis, and emphysema [15], and LPS
together with pro-inflammatory cytokine, TNF-α, have important
roles in the development of IPS [16,17]. These insights led us to
hypothesize that BPI is also involved in the pathogenesis of HSCT-
related pulmonary complications. Therefore, we have analyzed the
association of BPI gene polymorphisms and NIPC, including BOS, in
the Japanese population.
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Materials and Methods

Study patients
A total of 121 consecutive patients received allogeneic bone marrow

(BM) or peripheral blood stem cell transplantation from their HLA-
identical sibling donors at the Japanese Red Cross Nagoya First
Hospital during the years from 1987 to 2003. HLA matching among
donor–recipient pairs was confirmed by either family study or
genotyping in all patients. Patients who received T-cell-replete

transplantation and cyclosporin A (CyA) in combination with short-
term methotrexate (MTX) as a GVHD prophylaxis were selected to
participate in the study. CyA was administered daily from day 1 at 3.0
mg/kg, initially via intravenous (IV) infusion, and then via oral
administration at twice the IV dose when the patient’s oral intake
resumed. MTX was administered at 10 mg/m2 on day 1 and at 7
mg/m2 on days 3 and 6. Informed consent was obtained from all
patients and donors, and the study was approved by the ethics
committees at the Tokai University Hospital and Japanese Red Cross
Nagoya First Hospital. Patient characteristics are shown in Table 1.

 

 

 

Patients with NIPC Patients without NIPC

(n=20) (n=101)

Age, median (range), y 35 (16-54) 35 (15-55)

Sex, n

Male 13 59

Female 7 42

Diagnosis,n

CML 6 32

AML 9 26

ALL 2 21

MDS 1 10

AA 2 12

Conditioning, n

CA+CY 3 35

BU+CY 10 33

BU+ML 3 8

ML 0 10

CY 4 15

TBI dose, n

12 Gy≥ 6 37

10 Gy≥ 7 45

5 Gy≥ 3 13

non TBI/TLI 4 6

Acute GVHD, n

0~I 15 87

II~IV 5 14

CML: Chronic Myeloid Leukemia; AML: Acute Myeloblastic Leukemia; ALL: Acute Lymphoblastic Leukemia; MDS: Myelodysplastic Syndrome; AA: Aplastic Anemia;
CA: Cyclophosphamide; CA: Cytarabine; BU: Busulphan; ML: Melphalan; TBI: Total Body Irradiation.

Patients with and without NIPC did not differ significantly with respect to age, sex, underlying disease, or conditioning regimen.

Table 1: Patients characteristics.
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Analysis of BPI polymorphisms
Genomic DNA was purified from peripheral blood or BM obtained

before transplantation. We investigated four BPI single nucleotide
polymorphisms (SNPs) (rs5741798, rs1934917, rs5743530, rs2275954)
using the TaqMan PCR method. The criteria for SNP selection were
as follows: 1) minor allele frequency (MAF) >0.25 in the Japanese
population; 2) SNP reported by previous study, or located with each
different linkage disequilibrium blocks of the highest minor allele
frequency. Because there are many differences in allele frequency
between Caucasian and Japanese populations, we selected two SNPs
that were not investigated in a previous report (rs1934917, rs5743530)
[12] (Table 2). According to International HapMap Project data
(http://hapmap.ncbi.nlm.nih.gov), we investigated the linkage
disequilibrium among SNPs.

 minor allele frequency

rs No. CEU JPT

rs5741798* 0.175 0.411

rs1934917* 0 0.322

rs5741800 0.439 0.143

rs5743507 0.134 0

rs3746476 0.098 0.202

rs4358188 0.491 0.167

rs5741806 0.382 0.439

rs5743530* 0.009 0.476

rs2275954* 0.455 0.464

rs1131847 0.348 0.5

CEU= Utah residents with Northern and Western European ancestry from the
CEPH collection; JPT = Japanese in Tokyo, Japan.
*These SNPs were investigaed in this study.

Table 2: BPI rs SNP number and frequency.

Definitions of NIPC and BOS
NIPC was diagnosed according to established criteria, which

included evidence of widespread alveolar injury from a multilobar
infiltrate. Injuries such as these are readily apparent by chest X-ray and

by computed tomography (CT), and also be identified by the clinical
symptoms of pneumonia, hypoxemia, and evidence of abnormal
respiratory physiology, including restrictive impairment in a
pulmonary function test. Bronchoalveolar lavage (BAL) and
transbronchial lung biopsy were performed whenever possible.

Patients were diagnosed with BOS when they presented with
significant dyspnea on exertion, decreased exercise tolerance, and a
persistent nonproductive cough without any abnormality on chest CT
and/or X-ray and comprehensive infectious disease. To exclude lower
respiratory tract infections, we employed standard culture and staining
methods for bacterial, viral, and protozoan pathogens. Serological tests
were also performed to detect herpes simplex virus, varicella zoster,
cytomegalovirus (CMV), and Epstein-Barr virus, and weekly CMV
pp65 antigenemia testing has been performed on patients in Japan
since 1995. The clinical features, laboratory test results, and imaging
data were reviewed for all NIPC patients by an independent
hematologist.

Statistical analyses
Allele frequencies among the study patients and controls were

tabulated and compared by chi-square test and Fisher’s exact test. For
each hazard ratio, we calculated two-tailed P values and 95%
confidence intervals.

Results

BPI gene polymorphisms and pulmonary complications after
HSCT

NIPC occurred in 17 (14.0%) of the patients in our cohort and we
diagnosed 3 (2.5%) patients with BOS. The SNPs typing was
successfully completed for all patients and in all donors except for SNP
rs5743530 in three donors. There is a significant difference in the
distribution pattern of the rs5743530 CC, CT, and TT genotypes
between NIPC patients and non-NIPC patients (Table 3). In patients
with the rs1934917 and rs5743530 polymorphisms, the allele
frequency was significantly different between patients with pulmonary
complications and those with none (Allele T 85.0% vs. 66.8%; P=0.024
and Allele C 72.5% vs. 51.5%; P=0.015, respectively) (Table 4). In
donors with the rs5743530 polymorphism, the C allele was more
frequent in the pulmonary complication group than in the group
without complications (72.5% vs. 49.0%; P=0.038) (Table 4). No
significant relationships were noted between each of the other
polymorphisms and the development of pulmonary complications.

 

 

NIPC without NIPC P value

recipient n (%) donor n (%) recipient n (%) donor n (%) recipient† donor‡

rs5741798 

GG 4 (20.0) 5 (25.0) 27 (26.7) 30 (29.7)   

CG 13 (65.0) 11 (55.0) 53 (52.5) 44 (43.6)   

CC 3 (15.0) 4 (20.0) 21 (20.8) 27 (26.7) 0.59 0.64

rs1934917  

TT 14 (70.0) 12 (60.0) 44 (43.6) 47 (46.5)   
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AT 6 (30.0) 7 (35.0) 47 (46.5) 48 (47.5)   

AA 0 (0) 1 (5.0) 10 (9.9) 6 (5.9) 0.065 0.54

rs5743530* 

CC 12 (60.0) 10 (50.0) 30 (29.7) 25 (25.0)   

CT 5 (25.0) 7 (35.0) 44 (43.6) 48 (48.0)   

TT 3 (15.0) 3 (15.0) 27 (26.7) 27 (27.0) 0.034 0.076

rs2275954**  

AA 8 (40.0) 8 (47.0) 38 (37.6) 31 (30.7)   

AG 11 (55.0) 8 (47.0) 48 (47.5) 51 (50.5)   

GG 1 (5.0) 1 (6.0) 15 (14.9) 19 (18.8) 0.49 0.27

*One without NIPC donor could not be typed.
**Three NIPC donors could not be typed.
†Compared to NIPC recipient and without NIPC recipient.
‡Compared to NIPC donor and without NIPC donor.

P value was caluclated by chi-square test.

Table 3: Genotype Distribution of BPI polymorphism.

 

 

NIPC without NIPC P value Hazard Ratio (CI)

recipient n (%) donor n (%) recipient n (%) donor n (%) recipient† donor‡ recipient† donor‡

rs5741798

G 21 (52.5) 21 (52.5) 107 (53.0) 104 (51.5)     

C 19 (47.5) 19 (47.5) 95 (47.0) 98 (48.5) 1.00 1.00 0.98
(0.56-1.74)

1.04 (0.59-1.82)

rs1934917 

T 34 (85.0) 31 (77.5) 135 (66.8) 142 (70.3)     

A 6 (25.0) 9 (22.5) 67 (33.2) 60 (29.7) 0.024 0.44 2.45
(1.07-5.58)

1.37 (0.69-2.73)

rs5743530*

C 29 (72.5) 27 (72.5) 104 (51.5) 98 (49.0)     

T 11 (27.5) 13 (32.5) 98 (48.5) 102 (51.0) 0.015 0.038 2.16
(1.13-4.12)

1.91 (1.04-3.52)

rs2275954**

A 27 (67.5) 24 (70.6) 124 (61.4) 113 (55.9)     

G 13 (32.5) 10 (29.4) 78 (38.6) 89 (44.1) 0.59 0.13 1.25
(0.68-2.30)

1.73 (0.87-3.46)

*One without NIPC donors could not be typed.
**Three NIPC donors could not be typed.
†Compared to NIPC recipient and without NIPC recipient.
‡Compared to NIPC donor and without NIPC donor.

CI indicates confidence interval. P value was caluclated by Fisher's exact test.

Table 4: Allele Distribution of BPI polymorphisms.
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Based on the HapMap project data, SNP rs574350 was in low
linkage disequilibrium with three SNPs investigated in this study
(r2<0.6). However, these four SNPs did not construct the haplotype,
thus we could not meaningfully analyze the relationship between
haplotype and NIPC in this study.

Among all 121 patients and donors, the frequencies of the
genotypes were highly similar to those predicted by the International
HapMap project data and the Hardy-Weinberg equilibrium. The
frequencies of alleles and genotypes for the four SNPs in all subjects
were not significantly different from the International HapMap project
data.

Discussion
The association of BPI gene polymorphisms with BOS after HSCT

was first reported among a population that consisted of a mixture of
ethnic groups [12]. Here we also confirmed an association between
BPI gene polymorphisms and NIPC in a Japanese population. In
general, there are remarkable variations in genetic polymorphisms
among different ethnic groups [18,19]. Therefore, the association of a
gene polymorphism with a disease in one ethnic group may not be
true in other ethnic groups, and identifying a universal disease-
associated gene in NIPC would require specifying a gene
polymorphism association with disease that is independent of
ethnicity. Here, we have at least demonstrated the importance of
identifying the role of BPI in the development of HSCT-related
pulmonary complications.

The BPI gene is located on chromosome 20 between q11.23 and q12
and it contains 16 exons. BPI selectively binds to LPS on the outer
membrane of Gram-negative bacteria, causing immediate growth
arrest followed by irreversible damage and then the death of the
bacterium [20,21]. BPI also blocks the endotoxic effects of LPS and
promotes phagocytosis of BPI-coated bacteria [21-23]. Previous
reports also showed that very high plasma levels of BPI correlate with
increased mortality [24,25], and that plasma concentrations of BPI are
significantly higher among community-acquired pneumonia patients
than among healthy control subjects [26]. These findings and our
present results suggest that the mechanism of developing NIPC is
associated with pulmonary infection by Gram-negative pathogens.
Thus, although the role of BPI in the development of NIPC after
HSCT remains unknown, LPS is likely to be involved in the process.
Experimental inhalation of a high dose of LPS stimulates the innate
immune system, which results in an acute inflammatory response [27],
whereas chronic exposure to significant levels of LPS induces chronic
lung disease [15]. Animal models of lung injury after HSCT have also
revealed that the inflammatory effector TNF-α is induced by both LPS
and IPS [28]. Thus, it is possible that inflammatory events such as
alloreaction, total body irradiation (TBI), and chemotherapy could
enhance the levels of LPS and TNF-α, and eventually lead to lung
injury [29-31]. In fact, clinical risk factors for IPS include acute
GVHD, conditioning with TBI, and conventional conditioning
[28,32-34].

Genetic association studies provide a powerful tool to identify
responding factors in diseases of unknown etiology. We have
previously reported an angiotensin-converting enzyme gene
polymorphism as a contributing factor in NIPC development after
HSCT [11,13]. Inflammation in the lung induces NIPC especially in
HSCT recipients who have a genetic propensity for fibrosis. This study
has further revealed that the innate immune system is also associated

with the development of pulmonary complications. Therefore, the
extent of a recipient’s pro-inflammatory response may dictate the level
of pulmonary complications. Identification of the risks associated with
these factors will facilitate better prediction, prevention, and care of
pulmonary complications after HSCT.
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