
Review  Article Open Access

Mohamed, J Plant Pathol Microbiol 2018, 9:2
DOI: 10.4172/2157-7471.1000432Journal of

Plant Pathology & MicrobiologyJo
ur

na
l o

f P
lan

t Pathology & Microbiology

ISSN: 2157-7471

Research  Article Open Access

Volume 9 • Issue 2 • 1000432
J Plant Pathol Microbiol, an open access journal
ISSN: 2157-7471

Keywords: Antifungal efficiency; Fusarium oxysporum; Polygonal 
copper nanoparticles; Spherical copper nanoparticles

Introduction
A significant portion of the crop production can be lost due to 

phytopathogenic infections, including but not limited to fungal, 
bacterial, viral and nematodal infections, in addition to the insect 
pests, this portion accounts for 14.1% of the total losses affect crops 
from various sources of infections [1]. On the other hand, many 
phytopathogens have developed resistance against a lot of traditional 
chemicals used to control such phytopathogens [2-14], which in turn 
spur farmers to use larger quantities of such chemicals to in order to 
control the more resistive pests, which result in dangerous health 
consequences and more pollution hazards on the environment. So, it 
is hoped that new technologies, such as nanotechnology, may provide 
more efficient, cost-effective, and eco-friendly nanocides for controlling 
such pathogens. 

Nanotechnology is considered one of the most promising 
technologies that may revolutionize the agricultural sector via it`s 
versatile potential applications regarding many agricultural challenges 
such as climate changes, fertilization efficiency, sustainable agriculture, 
and food demands [15]. In the agricultural field, nanotechnology has 
a broad range of applications, including but not limited to growth 
promotion and nutrition supplement using nanofertilizers [16], plant 
protection against phytopathogens and treatment of plant diseases using 
nanocides [17].

Among different types of nanoparticles, metal nanoparticles have 
attracted much attention due to their unique catalytic, optic, electronic 
and magnetic properties compared to their bulk counterparts [18,19]. 
In this regard, copper nanoparticles, as one of the transition metals, has 
a very promising application in many different fields such as catalytic 
degrading of organic dyes, including rose Bengal and methylene blue 
[20], as a conductive ink [21] and in the antimicrobial applications [22-
27]. Particularly, it was shown that the antifungal efficacy of copper 
nanoparticles was stronger than many other metal nanoparticles 
including Al, Fe, Mn, Ni and Zn, [28]. 

Many crops are subjected to infection with different diseases caused 
by many soil-borne pathogenic fungi which may cause considerable 
losses in the productivity of the infected plant. Investigations showed that 
among these pathogens the fungal pathogen F. oxysporum, which cause 
fusarium wilt disease, is considered one of the most common and most 
virulent one, as it has a wide range of hosts, including but not limited to 
sugarcane, legumes, tomato, potato, pepper, bananas, oil palm and many 
other species; and may lastly cause death of the infected plant [29,30]. 

In this regard, the fusarium wilt infection begins, under suitable 
environmental conditions, by the germinating spores or by the fungal 
mycelia, which penetrate the plant’s lateral roots. After penetration, 
the mycelium continues spreading through the vascular vessels of the 
infected plant and producing its microconidia. The microconidia flow 
upward into the sap stream and germinate where the flow of the sap 
stops. Finally, the spores and the mycelia plug the vascular vessels of 
the infected plant, which in turn hinders the plant from up-taking and 
translocating nutrients, which results eventually in wilting the leaves, 
and death of the whole plant [31,32]. 

This paper shed light on an approach to enhance the antifungal 
efficiency of copper nanoparticles against the fusarium wilt pathogen, F. 
oxysporum, as one of the agricultural applications of metal nanoparticles. 

In this regard, copper nanoparticles have been known with their 
antifungal effect against Fusarium sp. [33]. But there is a dire need to 
enhance this antifungal efficiency of copper nanoparticles, so as to 
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minimize the number of nanoparticles required to affect the fungal 
pathogen, and hence minimizing the environmental pollution and the 
accumulation of nanoparticles in the treated plant. 

This paper has proposed a trial to enhance the antifungal effect of 
copper nanoparticles against fusarium wilt pathogen, F. oxysporum, 
isolated from the date palm, Phoenix dactylifera L., via maximizing their 
surface area to volume ratio by varying the reaction conditions at which 
copper nanoparticles were synthesized. 

Materials and Methods
All chemicals used in the following experiments were the analytical 

grade of purity and were used without further purification.

Chemicals used for synthesis of copper nanoparticles 

Copper sulfate pentahydrate was obtained from Elnasr 
Pharmaceuticals Co., Egypt. L - Ascorbic Acid (99.0% pure) was obtained 
from Alpha Chemika Co. Egypt. and Cetyltrimethylammonium 
bromide (CTAB) (99.0% pure) was obtained from Rashmi Diagnostics. 

Synthesis of copper nanoparticles 

Copper nanoparticles were synthesized according to the chemical 
reduction method [34]. A simple modification of the method was done, 
in which 1.1 g of CTAB and 1.94 g of L-ascorbic acid were dissolved 
in 80 mL of deionized water (solution A); also, 0.25 g of copper sulfate 
pentahydrate was dissolved in 10 mL of deionized water (solution B) 
and 0.08 g of sodium hydroxide was dissolved into another 10 mL of 
deionized water (solution C). 

The pH of solution A was adjusted at 6.5 (in the 1st trial) or at 10.5 (in 
the 2nd trial), and the solution was heated to 85°C. After that, solutions 
B and C were simultaneously added dropwise to the solution A under 
stirring. The reaction continued for 30 min, till the reaction mixture 
developed a reddish-brown color. 

In this regard, it is noteworthy that the pH value decreases as the 
reaction proceeds due to the consumption of hydroxyl anions by copper 
cations according to the following mechanism [35]: 

Cu2+
 + 2OH-  Cu(OH)2                                                                        (1)

Cu(OH)2 + C6H8O6  Cu + C6H6O6 + 2H2O                                      (2)

So that, I simply modified the original method [34] so as to maintain 
the pH value constant throughout the reaction. this modification was 
done through adding sodium hydroxide solution (solution C) with as 
twice molarity as that of the copper sulfate pentahydrate simultaneously 
with copper sulfate pentahydrate (solution B) to compensate the 
consumed hydroxyl anions, since two hydroxyl anions are consumed to 
react with one copper cation.

After finishing the reaction, the synthesized nanoparticles were 
collected by centrifugation at 3000 rpm for 10 minutes, washed twice 
with deionized water and twice with ethanol and dried for further 
characterization and application. 

Characterization of copper nanoparticles 

Copper nanoparticles were suspended in deionized water for Uv-
vis spectroscopy using Helios Gamma Spectrophotometer, which 
used to determine the characteristic surface Plasmon resonance of the 
synthesized copper nanoparticles. Dynamic Light Scattering (Zeta sizer 
nano series (Nano ZS), Malvern, UK) was used to measure particles 
sizes. Transmission Electron Microscope (Tecnai G20, Super twin, 
double tilt, FEI, Netherland) was used to figure out the shapes of the 
synthesized copper nanoparticles.

Fusarium oxysporum strain 

The fungal strain was obtained from the Microbiological Resources 
Center; Ain Shams University; Cairo; Egypt. 

Investigation of the antifungal efficiency of copper nanoparticles: 
Poison food essay was used to investigate the antifungal effect of the 
synthesized copper nanoparticles. The fungus was inoculated on Potato 
Dextrose Agar (PDA) media containing 300 ppm of copper nanoparticles 
synthesized at pH 6.5 and copper nanoparticles synthesized at pH 
10.5; Then, incubated in dark at 25°C for 1 week. Radial growth was 
measured, and the inhibition percentage was calculated relative to the 
control, in which fungus was inoculated on copper nanoparticles free 
Potato Dextrose Agar media, according to the following equation [36]:

( )  %   100 C TFungicidal Efficacy
C
−

= ×                                                       (3)

Where, C is the radial growth of mycelia in control (in cm), T is the 
radial growth of mycelia in treatments (in cm) (Copper nanoparticles - 
containing Potato Dextrose Agar media)

Statistical analysis 

SPSS 22 software was used at P ≤ 0.05 to distinguish between the 
fungicidal efficacies. Each treatment was conducted in triplicate, and the 
whole experiment was repeated twice [37].

Results 
UV-vis spectroscopy

UV-vis spectroscopy for both copper nanoparticles synthesized at 
pH 6.5 and pH 10.5 exhibited the characteristic plasmonic resonance 
bands at 589 nm and 584 nm, respectively.

Particle size distribution 

Dynamic Light Scattering (DLS) showed the particle size 

Figure 1: Particle size distribution of copper nanoparticles synthesized at pH 6.5 (A) and copper nanoparticles synthesized at pH 10.5 (B).
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distributions for both copper nanoparticles synthesized at pH 6.5 
and pH 10.5, with the average particle sizes 345.1 nm and 278.1 nm, 
respectively; as shown in Figures 1A and 1B. 

Transmission electron microscopy 

Transmission Electron Microscopy (TEM) was used to figure 
out the shape of Copper nanoparticles. Figures 2A and 2B show the 
transmission electron micrographs of copper nanoparticles synthesized 
at pH 6.5 and pH 10.5, respectively. Transmission electron micrographs 
revealed that the Copper nanoparticles synthesized at pH 6.5 were 
nearly polygonal, while that synthesized at pH 10.5 were nearly 
spherical. 

Assessing the in vitro antifungal efficiencies of copper 
nanoparticles synthesized at pH 6.5 vs. copper nanoparticles 
synthesized at pH 10.5 

Also, the in vitro antifungal efficiencies of copper nanoparticles 
synthesized at pH 6.5 and pH 10.5 were investigated. Poison Food essay 
revealed that 300 ppm of copper nanoparticles synthesized at pH 6.5 
inhibited the mycelia growth of the fungal pathogen, F. oxysporum, by 
46%. On the other hand, the same concentration of copper nanoparticles 
synthesized at pH 10.5 inhibited the mycelia growth by only 19%, as 
shown in Figures 3A-3C.

Statistical analysis at P ≤ 0.05 showed that the in vitro fungicidal 
efficacy of copper nanoparticles synthesized at pH 6.5 was significantly 
higher than that of copper nanoparticles synthesized at pH 10.5 against 
F. oxysporum isolated from date palm.

Discussion 
Firstly, Copper nanoparticles were successfully synthesized via 

the chemical reduction method and confirmed by exhibiting their 
characteristic surface plasmonic resonance. In this regard, Copper 
nanoparticles usually have a characteristic resonance band in the range 
560 nm-570 nm [38]; this band is shifted toward longer wavelengths in 
case of larger particles [38], which toke place in this case. 

Furthermore, it was clear that increasing the pH value at which 
copper nanoparticles were synthesized affects particle characteristics 
including size, shape and hence the antifungal efficiency. Firstly, 
increasing the pH value from 6.5 to 10.5 oriented the particles to smaller 
sizes; this may due to faster nucleation rate than the growth rate of the 
particles at higher pH value. Also, higher pH value developed roughly 
spherical particles, while lower pH value resulted in almost polygonal 
particles. Finally, the in vitro antifungal efficiency, which is the net 
of these characteristics, of the copper nanoparticles was significantly 
enhanced with the polygonal shape of particles despite being larger in 
their size. 

The enhanced in vitro antifungal efficiency of copper nanoparticles 
synthesized at pH 6.5 can mainly be attributed to its relatively larger 
surface area to volume ratio (SAVR) as compared with the spherical 
copper nanoparticles synthesized at pH 10.5; this is because the polygonal 
shapes usually exhibit larger SAVR than the spherical shapes [39]. 

In this regard, a simple calculation of the approximate surface area 
to volume ratio of the spherical copper nanoparticles with particle size 
278.1 nm will be as follow [39]: 

3SAVR
r

=                                                                                                     (4)

As shown in Figure 4A, where r is the radius of the spherical 
particle, which in this case is 139.05 nm. i.e. SAVR will be 3/(139.05 × 
10-9)=2.16 × 107 m-1.

On the other hand, a simple calculation of the approximate surface 
area to volume ratio of the polygonal copper nanoparticles with particle 
size 345.1 nm, assuming that the particle is a polygonal pyramid and 
2x=I=345.1 nm, will be as follow [39]:

2 2

3 3 1 2 3  
4

SAVR
h h S

= + +                                                                     (5)

As shown in Figure 4B, where S is the pyramid side and h is the 
pyramid height. S can be calculated from the formula [39]

3  
2

x s=                                                                                                    (6)

Figure 2: TEM micrographs of polygonal copper nanoparticles synthesized at pH 6.5 (A) and spherical copper nanoparticles synthesized at pH 10.5 (B).

Figure 3: Mycelia growth on Potato Dextrose Agar media containing Copper nanoparticles synthesized at pH 6.5 (A), pH 10.5 (B) and free from any copper nanoparticles 
(control) (C).
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Where, x is the perpendicular length from the center of the base to 
one of the sides. And h can be calculated from Pythagorean Theorem,

2 2h I x= −                                                                                            (7)

Thus, 

( ) ( )
7 1

2 29 9 9

3 3 1 2 3  3 10
298.86 10 4 298.86 10 199.24 10

SAVR m−
− − −

= + + = ×
× × ×

From the previous approximate calculations, it is very clear that the 
SAVR of copper nanoparticles synthesized at pH 6.5 is larger than that 
of copper nanoparticles synthesized at pH 10.5. 

The previous analysis suggests a correlation between the SAVR 
of copper nanoparticles and their antifungal efficiency; this can draw 
our attention to the importance of maximizing the SAVR of copper 
nanoparticles not only by minimizing particle size, but also by adopting 
such reaction conditions which result in polygonal shapes rather than 
spherical ones. 

Another suggested reason beyond the better in vitro antifungal 
efficiency of the larger copper nanoparticles may be that the targeted 
entities in the fungal pathogen have a comparable size to that of larger 
copper nanoparticles, i.e. the higher degree of matching between the 
larger copper nanoparticles and the size of the targeted entities in the 
fungus increased the probability of affecting such entities. 

Thus, a further research is required to investigate the exact reason(s) 
beyond the higher toxicity of some larger nanoparticles than their 
smaller counterparts. Such cases are present in the literature with other 
types of nanoparticles [40-42]. 

Conclusion
Conclusively, I do emphasize that the in vitro antifungal efficiency 

of copper nanoparticles against F. oxysporum isolated from date palm 
is not dependent upon particle size; rather it may depend upon their 
surface area to volume ratio, or on matching between the particle size 
and the targeted entities in the fungal pathogen. 

Also, the paper concluded that for enhancing the in vitro antifungal 
efficiency of copper nanoparticles developed for use as a fungicide 
against the fusarium wilt pathogen, F. oxysporum, it may be more 
effective to adopt such synthesis conditions that result in larger 
polygonal shapes of the particles instead of smaller spherical ones. 

The importance of our findings can be embodied in proposing a trial 
to enhance the in vitro antifungal efficiency of copper nanoparticles, 
so as to minimize the number of nanoparticles required to affect the 
fungal pathogen, and hence minimizing the environmental pollution 
and the accumulation of nanoparticles in the host plant. 

Finally, and Honestly speaking, although copper nanoparticles 
which were synthesized at pH 6.5 demonstrated a better in vitro 
antifungal efficiency against the fungal pathogen, F. oxysporum, than 
copper nanoparticles which were synthesized at pH 10.5, this may 

present a higher toxicity side effects on the other beneficial micro flora 
in case of using such nanoparticles as a fungicide to control fusarium 
wilt disease. This may require the addition of suitable supplemental 
biofertilizers in order to compensate the affected flora. 
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