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Abstract

It has been estimated that less than two percent of the mammalian genome encodes proteins, rest of the genome
which was earlier considered as junk DNA is the treasure trove of non-coding RNAs (ncRNAs). Many ncRNAs have
now been characterized. They constitute one of the largest families of gene regulators that are found in plants and
animals. They form a complex network and have key roles in diverse regulatory pathways involved in human health
and disease. In this review, different types of ncRNAs, their biogenesis, structure, function and evolutionary
significance is showcased.
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Introduction
Non-coding RNAs (ncRNAs) gained international attention in 1998,

when the ability of a double stranded RNA to silence gene expression
in Caenorhabditis elegans was discovered. For the discovery of such
small ncRNAs that interfered with gene expression (RNAi), Andrew
Fire and Craig Mellow won the Nobel Prize in Medicine and
Physiology in 2006.

Intermediate sized (50 nt - 500 nt) non-coding infra-structural
RNAs have been known for a long time and include tRNAs, rRNAs,
small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs).
These are involved in translation and splicing, and function by
sequence-specific recognition of RNA substrate and also in catalysis. In
addition to their infra-structural roles, some of these may also have
regulatory roles [1]. Many additional ncRNAs have now been
characterized and amongst these, are small ncRNAs such as small
interfering RNA (siRNAs) (19 nt - 21 nt), microRNAs (22 nt - 25 nt)
and piwi-interacting RNAs (26 nt - 31 nt) involved in epigenetically
regulating gene expression. Some other small RNAs which have not
been studied adequately, have also been described in plants and other
lower organisms. They include ta-siRNA (trans-acting siRNA), hc-
siRNA (heterochromatic siRNA), scnsRNA (small scan RNA), and
qisRNA (QDE2-interacting small RNA) [2]. In addition, several long
ncRNAs, ranging from 0.5 kb to over 100 kb, have been shown to
regulate gene expression by modifying chromatin structure.

A large proportion of eukaryotic transcription is bidirectional,
producing ncRNAs that can overlap with the transcription of protein-
coding genes. They interact inter se as well as compete for a target on
the mRNA. LncRNAs may regulate gene expression via their
interaction with other RNA and regulate mRNA stability [3]. They also
interact with DNA and proteins to form a complex network that can
regulate gene activity with almost infinite potential complexity [4,5].
Certain chromosomal regions contain many regulatory sites that can
activate gene expression over long distances and others that counteract

this activity [6]. Furthermore, their activity may not be restricted to the
same cell; some ncRNAs may spread to other cells or nuclei by
diffusion [7], whereas others may have their activity restricted to
specific cell types. The types and functions of different ncRNAs have
been summed up in Figure 1.

Figure 1: Types of non-coding RNAs and their functions.

Small ncRNAs

Small interfering RNA (siRNA / RNAi)
According to Grosshans and Filipowicz [8], small RNAs are

generally produced by fragmentation of longer precursors. Dicer
cleaves the precussor dsRNA into shorter (about 20 nt long) double-
stranded siRNAs. One siRNA-strand then assembles into an RNA-
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induced silencing complex (RISC). The main components of RISC
complex are proteins of the Argonaute (Ago) family; Ago2 is the sole
enzyme capable of endonucleolytic cleavage [9]. The siRNA in this
complex then identifies the mRNA based on sequence
complementarity. RISC then cleaves the mRNA in the middle and the
resulting mRNA halves are degraded by other cellular enzymes. This
mechanism of RNA mediated gene silencing is found in plants more
often than in animals [10].

Small interfering RNAs are not only formed from introns of
messenger RNAs (mRNAs) but can also be formed from non-coding
centromeric DNA transcripts and, in particular, from long terminal
repeats of transposons [11]. Small interfering RNAs are regulatory
molecules that, besides protecting cells from intrusion of any
exogenous nucleic acid (like viruses), are involved in maintaining
genomic integrity by silencing transcription from undesired loci like
retrotransposons and other repeats [12,13] demonstrated that the
RNAi pathways along with directed histone modifications also regulate
the organization of the nucleolus in Drosophila.

RNAi and heterochromatin: Heterochromatin is essential for
normal chromosomal organization [14], as well as centromere and
telomere function [15,16]. In addition, it functions to silence gene
expression, reduce the frequency of recombination, promote long
range chromatin interactions and ensure accurate chromosome
segregation during mitosis [17,18]. Given the functional relevance of
heterochromatin and the newer findings, terming non-coding DNA as
‘junk’ is passé. Pal-Bhadra et al. [19] investigated the mechanism of
heterochromatin silencing in Drosophila and noticed that, in addition
to DNA methylation and histone modifications, RNAi machinery had
a significant role to play in it.

RNAi and centromere behaviour: The centromere is of vital
importance for genetic stability. It is the DNA region which ensures
separation of chromosomes in mitosis and meiosis. Defects in
chromosome segregation are associated with human disease. For
example, defects in meiotic chromosome segregation may lead to the
production of aneuploid embryos with too few or too many
chromosomes [20], and mitotic chromosome segregation errors may
contribute to tumor formation [21]. Centrosomal behaviour is
governed by epigenetic mechanisms; a centromeric histone variant,
CenH3, also known as centromere protein-A (CENP-A), and other
histone modifications play key roles at centromeric chromatin in
determining centromere identity and kinetochore assembly. In
addition, many CENP-A-interacting proteins and factors that affect its
localization have been identified [22]. It has been suggested that
ncRNA derived from centromeric repeats plays an active role, mostly
through the RNAi pathway, in the formation of pericentromeric and
centromeric heterochromatin, where both of them are important for
proper centromere function [23].

MicroRNAs
Genes for microRNAs are located on all chromosomes and are

mostly found within stretches of DNA between clusters of genes, in
introns of non-coding or coding genes, as well as in exons of non-
coding genes [24,25]. Many microRNAs are transcribed and regulated
independently, and use their own transcription initiation regions [26].
These long primary transcripts of microRNA genes (pri-microRNAs)
are subsequently cleaved by Drosha (an RNAse III endonuclease) to
produce a stem-loop structured precursor (pre-microRNA) about 70
nt long. Pre-microRNAs, each with a short hairpin structure, are
delivered by Exportin-5 (Exp5) through the nuclear pores to the

cytoplasm [27], where they are processed by Dicer, which chops long
dsRNAs into ~ 22 nt duplexes of mature microRNAs. In their role in
the maturation of microRNAs, both Drosha and Dicer are associated
with a number of co-factors or accessory proteins, with some playing
an important regulatory function. For example, Dicer-interacting
proteins are helpful in unwinding dsRNAs and loading one strand of
the ds-microRNA onto the effector complex, microRNA-induced
silencing complex (microRISC). Thermodynamic stability of the 5’ end
of the duplex determines which of the two strands is retained in the
RISC as guide-strand, and which is the passenger-strand that is cut and
degraded. Finally, the guide-strand confers specificity to the RISC that
now recognizes mRNA targets that are in turn either degraded or
translationally repressed [28]. Human microRNAs are typically
expressed at high levels (1000-30,000 copies per cell), and can have
profound impact on cellular physiology [29].

Although microRNAs are known to mediate post-transcriptional
gene silencing in the cytoplasm, recent evidence suggests that at least
some fraction of mammalian microRNAs may also activate or inhibit
gene repression at the transcriptional level in the nucleus [30,31].
Mostly, microRNAs negatively regulate post-transcriptionally their
targets depending on the degree of complementarity between ncRNA
and the target. MicroRNA mediated translational repression is
considered to be by deadenylation [32]. Nucleotides 2-8 of the mature
microRNA sequence create the seed region that primarily identifies the
specific mRNA which the microRNA will bind to. Multiple microRNAs
bind to cognate sites in the 3’ UTR of target RNAs to regulate the
protein levels [33,34]. Although the protein levels of these genes are
reduced, the mRNA levels of these genes are barely affected. This
mechanism of microRNA-mediated gene expression control is mostly
seen in animals [35].

MicroRNAs and their targets seem to form complex regulatory
networks. For example, a simple microRNA can bind to and regulate
many different mRNA targets and, conversely, several different
microRNAs can bind to and cooperatively control a single mRNA
target [36]. By coordinating and regulating many genes, microRNAs
are well-suited to act as stabilizers of gene expression networks and to
prevent extreme variations in phenotype due to intrinsic and extrinsic
disturbances. The interactions of microRNAs with their mRNA targets
with their short signature sequences make them ideal for the combined
effects with other microRNAs or RNA-binding proteins (RBPs) that
associate with the same mRNA. In addition to conventional 3` UTR
targets of mRNAs, [37] have reported targets occurring throughout
some mRNAs. For example, mouse transcription factors Nanog,
Pouf5f1 / Oct4 and Sox2 display many naturally occurring microRNA
targets in their amino acid coding sequence. Now evidence has
emerged that in moss (Physcomitrella patens) microRNAs can also
silence gene expression at the transcriptional level by interacting with
DNA, leading to methylation [38]. This mechanism may well be
applicable to other organisms. In fact, many examples have been
described of microRNAs regulating their own transcription through
single negative or double negative (or positive) feedback loops with
specific transcription factors [39].

Although, most of the microRNAs have been implicated in gene
silencing, either fully or partially, they are also involved in the
transcriptional activation and co-activation of many genes [40]. In
other words, microRNAs collectively fine-tune gene expression.
Obviously, when a microRNA is misexpressed, it has the potential to
interact with targets that might not be a part of its normal endogenous
function, dysregulate them, leading to complex diseases [41].
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The number of known functional microRNA genes has been
estimated to be ~ 1100 [42], a number comparable to those of
transcription factors or RNA binding proteins (RBPs), and over one-
third of all known human genes are probably regulated by them [43].
Whereas, some microRNAs are ubiquitously expressed, others have an
expression pattern that depends on the developmental stage or on the
cell type [44]. For example, microRNAs in the gametes may have direct
role in the differentiation and development of the early zygote or may
play a part in post-fertilization epigenetic reprogramming. Among
their other roles, around 70% of microRNAs are expressed in the brain
where their expression has been shown to vary dynamically, both
before and after birth, indicating a requirement for different
microRNAs at different time-points [45]. As a matter of fact,
microRNAs, which are expressed in the mammalian brain at different
levels, seem to be critical in dictating neuronal cell identity, synaptic
development, neuronal plasticity and also affecting learning and
memory [46].

MicroRNAs have an important role in the dynamic interplay
between the environment and genome, including both genetic and
epigenetic processes [47]. For instance, microRNAs can direct the
cytosine methylation and histone modifications that are implicated in
chromatin modifications [48]. They may control epigenetic notations
of specific regions of genome that governs the precision with which
DNA methylation and histone modifications occur [49]. Not only that,
gene expression has been seen to change by specific environmental
stress including chemicals like arsenic, cadmium and aluminium,
through specific microRNAs resulting in a specific disease [50].

Signal transduction pathways are prime candidates for microRNA
mediated regulation. Emerging evidence suggests that microRNAs
affect the responsiveness of cells to signaling molecules such as TGF-β
(transforming growth factor-β), WNT, Notch and EGF (endodermal
growth factor). MicroRNAs act as inhibitors of proteins mediating the
insulin / IGF1 and target of rapamycin (TOR) signaling, both of which
are conserved modulators of an organism’s life-span [51]. As such,
microRNAs serve as nodes of signaling to ensure homeostasis [52].
Abnormal expression of microRNAs can disrupt signaling network in
the cells, resulting in pathological changes.

MicroRNAs take part to regulate cell activity by generating
pathways parallel to others already present in order to support the
signaling processes or provide reinforcement. This kind of action can
be exemplified by MiR-34a/b/c activity. This family of microRNAs
participates in the execution of p53-dependent senescence, apoptosis
and tumor suppressor activity [53,54]. Mutated or inappropriately
expressed microRNAs are involved in most human cancers, obesity,
diabetes, hair loss, brain disease, skeletal muscle injury and premature
senescence [55-57]. In short, microRNAs have key roles in diverse
regulatory pathways, including control of metabolism, immunity,
developmental timing, cell proliferation, cell differentiation, organ
development, senescence and apoptosis.

MicroRNA levels change over the life of an individual and are
associated with the aging process [58]. For example, microRNA let-7b
is involved in decline of neuronal stem cell self-renewal during aging
by reducing HMGA2 levels in old but not in young mice [59,60].
Depletion of Dicer which is involved in the biogenesis of microRNAs,
in human cells leads to a significant enhancement of Ataxin-3-induced
toxicity, which has been linked to neurodegeneration [61]. MicroRNAs
may be contributing factors in neurodegeneration leading to Parkinson
disease and Alzheimer disease [29,62]. Post-mortem brain studies of
schizophrenics have revealed changes in the expression of certain

proteins involved in synaptic neurotransmission and development.
Changes in the expression of these proteins seem to be due to
alterations in the levels of miR-181b and miR-219 in the cortex [63,64].
Since, emerging evidences suggests that microRNAs play significant
roles in the production, action and secretion of insulin and also in
diverse aspects of glucose and lipid metabolism, altered levels of
microRNAs are critical in the development and progression of diabetes
as well as in diabetic complications such as nephropathy, retinopathy
and cardiac hypertension [65].

MicroRNAs and paramutation: Paramutation is the epigenetic
transfer of information from one allele of a gene to another, without
sequence change, to establish a state of gene expression that is
inherited. Paramutation has been found at several loci in maize, and at
fewer loci in other species, including mice and humans [66].
MicroRNAs contribute to the mechanism of this trans-generational
inheritance, establishment and maintenance of paramutations [7,67].

MicroRNAs and epistasis: Epistasis is defined as non-additive
genetic interaction; the interaction may be transgressive if the hybrid
progeny is either superior to the better or inferior to the worse parent.
The mechanism of transgressive segregation is not well understood.
After observing positive transgressive segregation (hybrid vigor) in a
cross between cultivated tomato (Solanum lycopersicum) and one of
its wild relatives (S. pennelli), Shiveprasad et al. [68] investigated the
role of ncRNAs in its mechanism. They observed that the stable
transgressive phenotypes in the progeny were associated with small
RNAs (microRNA generated from the miR395 allele and siRNAs, a
small fraction of loci, 153) which were more abundant in hybrids than
in either parent. They proposed that, at least in part, small RNA loci of
tomato exhibit transgressive activity, which in turn leads to epigenetic
and gene expression changes within hybrid progeny.

MicroRNAs and their mobility: A key feature of microRNAs is their
ability to spread from cell to cell. Small RNA mobility is highly
regulated both developmentally and in response to physiological and
environmental change. Such non-cell autonomous gene repression has
been characterized extensively in both plants and animals. However,
the precise identity of the mobile silencing signal of these microRNAs
remains unsettled. It will be interesting to learn whether mobility is a
general property of all microRNAs or restricted to a defined subset
[69].

MicroRNAs and telomeres: Vertebrate TTAGGG DNA tandem
repeats in telomeres are organized into a heterochromatic structure but
remain unmethylated due to lack of methylable cytosine. In contrast
subtelomeres are heavily methylated through the action of the DNA
methyletransferases [70]. As has already been seen, microRNAs are
potential regulators of cellular senescence; they mediate a tight control
of DNA methylation that is crucial for telomere homeostasis [71].
Studies have described the role of senescence-associated microRNAs
(SA-microRNAs) involved in regulating cellular signaling and cell
cycle pathways and directly affecting replicative sencescence (telomere
attrition) [72].

MicroRNAs and cancer: Many of the target mRNA transcripts,
which are post-transcriptionally regulated by microRNAs, are involved
in cell proliferation, differentiation and apoptosis processes commonly
altered during tumorigenesis [73]. Reduced levels of certain
microRNAs have been seen in cancer cells in comparison to normal
cells [74] and this reduction could be due to reduced expression of
Drosha or Dicer. For example, reduced expression of Dicer has been
seen to be associated with a poor prognosis in lung cancer [75]. Again,
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through the analysis of human and mouse model of B-cell lymphoma,
it was shown that the prominent consequence of oncogenic over-
activation of Myc lead to wide-spread repression of microRNA
expression by the binding of Myc to microRNA promoters. When the
expression of repressed microRNA was strengthened, it diminished the
tumorigenic potential of lymphoma cells [76].

Some microRNAs have emerged as candidate components with
oncogenic function and some others as tumor suppressor regulators.
For example, miR 372-373 has been implicated as proto-oncogene in
testicular cancer [77] and let-7 has shown a potential as tumor
suppressor in various cancers [78]. Loss of let-7 correlates with over-
expression of Ras proteins which are oncogenic [79]. Recent studies
have shown that miR-34 family is direct transcriptional target of p53.
MiR-34 activation can mimic p53 activities, including induction of
cell-cycle arrest and promotion of apoptosis. Loss of miR-34 can
impair p53 mediated cell death [53].

MicroRNAs may play a dual role, as oncogenes or anti-oncogenes.
For example, in one context, the c13orf25 cluster microRNAs act as an
oncogene; in another context, it seems to antagonize the effects of
different oncogenes, acting like a classic tumor suppressor gene.
Variability created by SNPs in the binding sites of microRNAs and
their target sites on mRNA, along with other surrounding influences
due to genetic and epigenetic architecture, may determine the role of a
particular microRNA [80]. In human cancer, microRNA expression
can be altered by several other mechanisms: chromosomal
abnormalities, mutations and polymorphisms (SNPs), defects in
microRNA biogenesis and epigenetic changes like altered DNA
methylation and histone deacetylase inhibition [81]. Apart from
exposure to irradiation and chemotherapy during treatment, non-
genic causes in the tumor lead to stresses such as hypoxia and nutrient
deficiency. Stress has been seen to cause relocation of Argonaute
family members within the cell [82]. The association of Argonaute with
other RNA binding proteins recently has been shown to switch a
normally repressive microRNA into an activator of its target, when
cells are under stress due to starvation of serum or amino acids
[28,83]. Sorting out the microRNA regulatory networks is going to be a
real challenge.

Many of the mechanisms of epigenetic control such as DNA
methylation and histone modifications, known to regulate protein-
coding genes, also seem to be applied to microRNA genes. Many
advanced tumors show defects in microRNA expression and
processing which could increase phenotypic variability within tumors.
This allows small subsets of cells with altered characteristics to emerge,
which can have grave consequences since typically a small fraction of
tumor cells is responsible for metastasis and treatment resistance, and
ultimately treatment failure. Many microRNAs are found in CpG
islands, and it is likely that mirSNPs in CpG islands also affect the
pattern of microRNA expression and contribute to cancer
susceptibility, response to treatment and prognosis. Although
candidate gene approaches can certainly ascertain the effect of single
SNP on an individual risk of cancer, the cumulative effect of the
inheritance of multiple SNPs in microRNA-related genes might
augment risk. Consistent with this idea, an increased risk of esophageal
and bladder cancer was observed in individuals with SNPs in both
microRNAs and microRNA processing genes [84]. MicroRNA markers
might indicate the initial risk of cancer, and predict those patients at
higher risk of post-surgical recurrence. For example, [85] observed
that miR-106a and miR-148a expression correlated with post-surgical
recurrence of esophageal cancer and tumor related mortality.

More than 50% of microRNA genes are located in fragile sites and
common breakpoint regions frequently associated with cancer [86]. B-
cell chronic lymphocytic leukemia (CLL), which is most common
adult leukemia in developed countries, is associated with over-
expression of the anti-apoptotic oncogenic protein Bcl-2. CLL is often
associated with the loss of chromosomal region 13q14 [87], and within
this deleted region are the transcription sites of miR-15a and miR-16-1
which seem to inhibit the Bcl-2 protein activity [88]. It has been
demonstrated in animal models that if misregulated microRNAs are
restored to their normal state, it can bring partial or full recovery from
diseases like cancer [89].

Solid tumors (> 1 mm – 2 mm) need neovasculature to remove
metabolic waste and provide oxygen and nutrients, an important step
in the neoplastic transformation. The extent of new vascularization
may be proportional to the metastatic potential of the tumor. miR-126
is highly expressed during embryonic development and in endothelial
cells, has been implicated promoting angiogenic processes; targeted
deletion of this microRNA resulted in defective vascularization and
embryonic death in both mice and zebrafish [62]. MicroRNAs
(miR-17–92 cluster, miR-221, miR-222), that target other factors like
anti-angiogenic protein Thrombospondin 1 and inhibit endothelial cell
migration as well as proliferation, also have been identified.

MicroRNAs may have differential expression in different ethnic
populations. In the USA, prostate cancer affects Afro-American males
at a much higher rate than the Caucasian males. No target genes have
been identified so far for this difference. A microarray study on 10
Caucasians and 8 Afro-Americans showed significantly over-expressed
as well as down-regulated microRNAs in the Afro-Americans
compared with the Caucasian individuals. The list of microRNAs that
were at least three times differentially expressed included miR-301,
miR-26a, miR-1b-1 and miR-30c-1 [87].

MicroRNAs produced by viruses: Viral miRNAs are reported to
regulate expression of viral as well as host genic expression by
interfering with the repression or cleavage of mRNA transcripts, also
thereby influencing host cellular processes that respond to viral
infection. The herpesvirus ICP34.5 protein promotes replication of the
virus in neuronal cells in vivo. miR-I derived from HSV-1 has been
shown to reduce the protein expression level of ICP34.5 in HSV-1-
infected cells [90]. Hypothesized that the control of ICP34.5 expression
in individual infected neurons by these microRNAs may affect their
virulence or latency in the host. Another miRNA expressed by HSV-1
prevents apoptosis by blocking the expression of two host cellular
proteins, SMAD3 and transforming growth factor-β [91]. Epstein-Barr
virus-encoded microRNA miR-BART2 down-regulates the levels of
aberrant BALF5 mRNA transcripts in order to prevent viral replication
during latency [92]. MiR-BART-1-5p, miR-BART-16 and miR-
BART-17-5p were shown to downregulate EBV latent membrane
protein 1 (LMP1) through recognition of the 3'UTR of its mRNA, thus
providing a role for miRNAs in establishment of latent infection and
promoting host cell survival. EBV also expresses ncRNAs that interfere
with host cellular interferon responses.

Micrornas and transgenerational inheritance: The mechanism by
which the epigenome is transmitted via mitosis seems to be through
the role of DNA methyltransferase (DNMTs) and histone deacetylases
(HDACs) [93]. Its transmission between different generations of
organisms is a subject of considerable controversy as it was
traditionally thought that epigenetic marks were cleared through the
process of meiosis. More recent studies suggest that microRNAs
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transmitted through meiosis can restore the state of the epigenome in
zygote [7].

Piwi-interacting RNAs
Piwi-interacting RNAs (piRNAs) are derived from various repetitive

elements of the genome, such as centromeric and telomeric
heterochromatin, and are very rich in sequences cognate to all classes
of transposable elements. piRNA genes exist in the genome in clusters;
individual clusters range between 1 kb and 100 kb in size and encode
between 10 piRNAs and 4500 piRNAs. Although bidirectional clusters
are known, the majority of piRNA clusters are monodirectional, i.e.,
within a given cluster all piRNAs are derived from one of the two
strands of DNA [2,94]. piRNAs are generated from long single–
stranded transcripts in a process independent of Drosha and Dicer; the
processing enzyme has not been identified yet. These small RNAs (26
nt - 31 nt) associate with subfamily of Argonaute proteins called Piwi
proteins, which are mainly germline specific. Several thousand piRNAs
have been identified, and together with their Piwi partners, they are
essential for the development of germ cells [95]. Piwi proteins are also
expressed in somatic cells that are in close contact with germline cells.
Consistent with their expression pattern and function, Piwi mutant
animals exhibit germ cell developmental defects such as azoospermia
and tesicular tumors [96,97]. piRNAs mediate de novo methylation
and histone modification machinery in silencing transposable element
sequences in the mammalian male germ line [98]. Approximately one
million piRNA molecules have been reported per spermatocyte or
round spermatid [99]. Although the exact function and targets of
piRNAs are unclear, piRNAs ensure genomic stability in the germline
by silencing selfish genetic elements like transposons by
heterochromatin formation [96,100].

Retrotransposable elements comprise around 50% of the
mammalian genome. piRNAs are produced from inactive transposable
elements through a ping-pong mechanism and form a surveillance
system against active transposable element invasion [100] and silence
their activities by antisense targeting their mRNA. piRNAs can
significantly increase the fitness of organisms by reducing the fitness of
retrotransposons. However, target retrotransposons also have higher
probability of reaching high frequency of fixation in a population
because their deleterious effects are considerably attenuated [101].

Some other small RNAs
Small nucleolar RNAs (snoRNAs) are another class of small RNAs

and contribute to RNA modifications of ribosomal RNAs (rRNAs),
small nuclear RNAs (snRNAs) and other RNAs [49] Emerging
evidence suggests that small nuclear ncRNAs may be involved in the
regulation of alternative splicing [102,103].

Transcription initiation RNAs (tiRNAs) are short ncRNAs of ~ 18 nt
length. They are associated with highly expressed genes and may be
implicated in the control of their expression [104]. Transcription-start
site-associated RNAs (tssaRNAs) are transcribed in flanking regions of
active promoters of protein-coding genes where they may help to
maintain an active state [105].

Nuclear run-on RNAs (nro-RNAs) were identified as a group of
small RNAs that are active in human promoters associated with RNA
polymerase II [106]. These short ncRNAs may also have a function in
promoter activation and transcription orientation.

A recently discovered class of non-coding RNAs in the fungus
Neurospora crassa are qiRNAs named after their interaction with the
Argonante protein QDE-2. Most of them are derived from the rRNA
locus, and their transcription is induced by DNA damage. There are
indications that qiRNAs might be involved in DNA repair [107].

Long Non-coding RNAs
Transcription actually occurs essentially everywhere, including both

coding regions and non-coding regions, and often on both strands
[108,109]. It has been reported that changes in expression of these
lncRNAs is associated with both development and disease [110].
Recently, [111] have shown the interplay between the expression of
two long ncRNAs, transcribed on opposite strands, which can exert
epigenetic metastatic control on the transcription of the adjacent
protein-encoding FLOW11 gene in yeast (Sacchoromyces cerevisiae).
This regulatory mechanism has a profound effect on the life cycle of
yeast. When FLOW11 is on, diploid cells grow into filaments called
pseudohyphae, and haploid cells invade the agar when grown in plates;
on the other hand when FLOW11 is off, neither of these events occurs
and the cells grow in their familiar budding pattern.

Current estimates of long ncRNAs in the human genome range
from ~ 7000-23000. Long ncRNAs are involved in cellular signaling
networks associated with human stem cell differentiation [112] Long
ncRNAs exihibit cell-type specific repression localized to specific
subcellular compartments [113]. Genes once silenced by inclusion into
the silent domains of the long ncRNAs are capable of reactivation in a
tissue or developmental stage-specific manner by enhancers which are
also tissue and development stage-specific [114]. Under adverse
environmental conditions, long ncRNAs may lead to disease. For
example, recent work on Alzheimer disease has identified a ~ 2 kb
ncRNA, which is induced in response to numerous cell stresses, and
which increases the stability of the BACE1 mRNA, thus leading to even
more Aβ-peptides involved in neuronal damage. In a nutshell, they are
associated with human health and disease [115].

Long ncRNAs can act on domains ranging in size from a single
promoter to an entire chromosome, and they can function in cis or
trans to establish chromatin conformations which either activate or
repress transcription [116]. It is now established that some long
ncRNAs such as XIST, HOTAIR, AIR and KCQ10T interact with
chromatin remodeling complexes targeting them to specific genes to
exert their functions [117]. Molecular functions of long ncRNAs
include modulating transcriptional patterns, regulating protein
activities, serving structural or organizational roles, altering RNA
processing events, and serving as precursors to small RNAs [118]. In
mammals, transcription of long ncRNAs has been shown to contribute
to various processes including T cell receptor recombination [119] and
maintenance of telomeres. Long ncRNA transcripts, called telomeric
repeat-containing RNA (TERRA), are involved in regulating
telomerase and chromatin stability [120]. Long ncRNAs are also
involved in genomic imprinting and X-chromosome inactivation. The
ncRNAs as described to be produced by some viruses are hundreds to
thousands of nucleotides in length and may have the ability to regulate
gene expression in favor of the viral genome [121]. There are examples
of long and short ncRNAs intersecting with each other and lncRNAs
can themselves be host genes for small RNAs, for example H19 is host
to microRNA-675 [122].
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Long ncRNAs and enomic imprinting
Genomic imprinting is a cis acting epigenetic process by which a

subset of autosomal genes is not expressed in a parent of origin-specific
manner. In mammals approximately 100 such genes clustered in 25
regions have been identified [123]. A typical imprinted cluster consists
of 2-12 protein coding genes, and at least one long ncRNA, which is
usually expressed from the maternal allele and invariably shows
bidirectional reciprocal expression to the coding genes.

A key feature of imprinted gene clusters is the presence of an
imprint control element (ICE). The ICE is epigenetically modified only
on one parental chromosome by a DNA methylation ‘imprint’, which is
acquired during maternal or paternal gametogenesis and is maintained
on the same chromosome in the diploid embryo [124]. The ICE carries
histone modifications that are specific to the DNA-methylated allele,
i.e., repressive histone marks are associated with the DNA-methylated
ICE, whereas active histone marks are associated with the
unmethylated ICE [125].

Imprinted gene expression is controlled by differential DNA
methylation of an ICE, which is read by an epigenetic initiator that
silences genes in the surrounding imprinted gene cluster in cis.
Imprinted genes close to the epigenetic initiator tend to show
ubiquitous imprinted expression, whereas genes further away are
involved in showing placental specific expression [126].

The ICE methylation imprint is universal, present in all tissues and
all stages of development (except germ cells), whereas imprinted
impression is not always present and may vary during development,
differentiation and disease. For example, in post-mitotic neurons,
imprinted expression of IGF2 is lost and it shows biallelic expression
[127]. Similarly, many cases of human colorectal cancer are associated
with loss of imprinted expression that results in biallelic IGF2
expression [128].

Long ncRNAs and x-chromosome inactivation
X-chromosome inactivation in female mammals is epigenetic

dosage compensation by an unknown mechanism. For the inactivation
of X-chromosome the 17 bp long non-coding Xist RNA (inactive X-
specific transcript RNA), which operates in cis, is essential [129]. X-
inactivation centre (XIC) requires the expression and spread of the Xist
ncRNA over one of the X-chromosomes to induce a cascade of
chromatin changes that ultimately result in transcriptional repression
of over 1000 X-linked genes [130], leaving 15% of the X-linked genes
to be expressed [131]. These changes include incorporation of the
histone variant macroH2A, DNA methylation and recruitment of PcG
(polycomb group) proteins. These chromatin changes allow the
inactivated X-chromosome to be stably silenced at later stages of
development, even in the absence of Xist [132]. Tsix (inactive X-
specific transcript), a 40 kb ncRNA transcript with antisense
orientation of Xist, acts as a negative modulator of Xist expression by
blocking Xist RNA accumulation along the future active X-
chromosome [133]. In other words, long ncRNAs are not only limited
to regulating the expression of protein-coding genes, but also are
involved in regulating the expression of other long ncRNAs. Moreover,
it is interesting to note that long ncRNAs are also involved in inactive
X-chromosome perinuclear localization [134].

For random X inactivation, a particular system has evolved that
relies on the large ncRNA Xist that is repressed from and localizes
specifically to the inactive X chromosome (Xi). Xist expression is

controlled by a mechanism that ensures that one X chromosome
remains active in a diploid cell. Regulation involves sequences around
the Xist gene, which makes up the complex genetic locus of the XIC.
Xist RNA has been identified in human and mouse and apparently
conserved among placental mammals [135].

Long ncRNAs and trans-splicing events
For some genes the epigenome harbors a ‘splicing code’ that

determines tissue specific splicing outcome [136]. Some long non-
coding RNAs may be involved in trans-splicing events in certain genes.
For example, CDC2L2 gene located on chromosome 1 is associated
with fine-tuning of the cell division and apoptotic activities in testis
[137]. Recently, it has been shown that CDC2L2 mRNA is trans-
spliced by a ncRNA transcript from Y-chromosome. In the long arm of
Y-chromosome there is a major heterochromatic block, and there is a
consensus sequence of GGAAT in this block which is transcribed
specifically in the testis. A long ncRNA transcript from Yq12 in the
heterochromatic blocks trans-splices CDC2L2 mRNA from
chromosome 1p36.3 locus to generate a testis specific chimeric βsr13
isoform of CDC2L2. This trans-splicing event could be involved in
regulating the activity of CDC2L2 in testis [138].

Long ncRNAs and cancer
Similar to protein-coding oncogenes, long ncRNAs (e.g. HOTAIR)

can also promote cellular pathways that lead to tumorigenesis.
HOTAIR is expressed from HOX locus, and it is overexpressed in
breast cancer. Enforced expression of HOTAIR results in an altered
pattern of H3K27 methylation and increased invasiveness, whereas the
depletion of HOTAIR causes the opposite cellular phenotype.
Furthermore, HOTAIR expression level in primary breast tumors is a
powerful predictor of patient’s outcomes such as metastasis and death
[139].

Recent studies have identified numerous long ncRNAs that are
induced by the p53 tumor suppressor pathway [140]. When cells are
subjected to stress the transcription factor p53 initiates a tumor
suppressor program that involves the expression and repression of
many genes. In particular, one of this long ncRNA-p21, which is
required for the global repression of genes that interfere with p53
function, regulates cellular apoptosis [141].

In the near future, the great technological advances and decrease in
cost of parallel massive sequencing will allow the profiling of the entire
transcriptome of every type of tumor, including small and long ncRNA
molecules, allowing the most powerful and informed diagnosis [142].

Long ncRNAs and paraspeckles
Paraspeckles are ribonucleoprotein bodies in the inter-chromatin

space of mammalian cell nuclei. One polyadenylated long ncRNA
occurs exclusively in these speckles [113]. A number of RNA–binding
proteins, including paraspeckle–protien-complex-1, together with the
RNA-NEAT-1, form parapeckles [143]. Paraspeckles are not present in
human embryonic stem cells but only appear upon differentiation
[144]. These bodies are ~ 0.5 µm - 1.0 µm in size, and their number
varies both within cell populations depending on cell type. These
structures play a role in regulating the expression of certain genes in
differentiated cells [145].
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ncRNAs and RNA Granules
In higher organisms, granules that contain protein, mRNAs and

ncRNAs are found in the cytoplasm of somatic and germ cells. Specific
components of these RNA granules can alter DNA and RNA
sequences, and can regulate transcription in a form of cytoplasmic
inheritance [146]. For example, in cloning when a somatic nucleus is
transferred to an enucleated egg, the cytoplasmic RNA granules
present in this egg reprogram the somatic nucleus to a state of
totipotency so that embryogenesis can get started in the clone.

During mitosis, germ-cell granules shrink and disappear from the
part of the cell that will become the soma, and fuse or enlarge in the
part of the cell that will remain germline [147].The differentiation of
somatic and germline daughter cells is determined in part by the
absence or presence of germ-cell granules. These are also acquired to
specify the germline in the next generation, which represents clear
example of epigenetic inheritance [146].

Diagnostic and Therapeutic Potential of ncRNAs
The cell cycle is a tightly orchestrated process during normal

development. MicroRNAs seem to play a central role in achieving this
process. Manipulating the expression of this large family of cell-cycle-
regulating microRNAs may provide an important therapeutic avenue.
Emerging evidence suggests that expression profiling of microRNAs
may be used in diagnostics [148]. Different cancer types have distinct
microRNA profiles. Accurately predicting microRNA targets for any
known microRNA will provide a useful tool to accelerate the progress
of microRNA studies in pathology and cancer developmental biology.

Unlike mRNAs, endogenous microRNAs can be robustly and
reliably measured in sputum or plasma / serum over days of storage or
freeze-thawing cycles remaining largely intact [149]. Also, small RNAs
can easily be measured from the formalin fixed tissue specimens used
routinely in hospital pathology laboratories. Hence, the potential of
microRNA based diagnostics could fit simply into the standard
hospital workflow. In some cases, epigenetic mechanisms are
responsible for silencing microRNA expression in cancer. MicroRNA
methylation signatures could be useful in diagnosis and prognosis of
cancer [150].

Therapeutic interventions based on manipulation of microRNA
levels could also be put to use as a novel approach for treating the
genetic diseases [151]. For example, modified antisense
oligonucleotides regulate the expression of microRNAs in the same
way as classical tumor suppressor genes [152]. MicroRNA-based
therapy could also be useful to enhance sensitivity to conventional
drugs used in cancer treatment. MicroRNAs are emerging as
predictors and modifiers of chemo- and radio-therapy in different
tumor types [85]. The delivery of a synthetic let-7 mimic induced
remission of established non-small cell lung carcinoma in mice.
Effective silencing of miR-122 using inhibitors with locked nucleic acid
antimiR and cholesterol conjugation showed long-lasting decrease in
plasma cholesterol in primates, with no evidence of treatment-related
toxicity. The results from these studies indicate the potential of this
microRNA-based therapeutics in the clinical setting.

RNAi based therapies in viral diseases seem promising and are
picking up interest [153]. Endogenous cellular microRNAs that target
viral RNAs have been reported as well. The siRNAs have been used to
decrease the drug resistance of cells in vitro by inhibiting the
repression of MDR1, a multidrug resistance complex [154]. The

drawbacks of siRNA include off-target effects, elicitation of the
interferonresponse and their interference with microRNA biogenesis,
hampering its use as a therapeutic. microRNAs are exempt from these
problems with added features of specificity and their potential for
selective multiple targeting, make them the technology of choice for
intervention [155]. MicroRNA mimicry has recently been used in vitro
where functional assays can be performed to identify cellular processes
and phenotypic changes associated with specific microRNAs
transfected into cell lines.

Keeping in view the above mentioned possibilities, several
preclinical and clinical trials have been initiated for microRNA based
therapeutics [156].

Evolutionary Significance of ncRNAs
An overwhelming evidence for the diverse roles the ncRNAs play in

gene expression suggests that they are indeed the architects of
eukaryotic complexity from the evolutionary point of view [4]. A large
number of ncRNAs identified so far depict highly conserved sequences
within the animal and plant kingdoms. However, a great deal of
divergence occurred between the two kingdoms. A comparative
analysis has shown that the complexity of organisms is inversely
proportional to the protein coding genes in their genomes. In fact, the
ncRNA-mediated gene regulation is widespread among higher
eukaryotes, when compared to prokaryotes. In humans, about 98
percent of the total transcriptional output is non-coding. The complex
genetic phenomena like interference, gene silencing, imprinting, co-
suppression, methylation, acetylation, position effect related
variegation, transvection and paramutation are hypercyclically
interconnected pathways through which ncRNA signalling is affected.

Nc-RNAs like SRA / SRAP may function both as non-coding
regulatory sequences and as an mRNA transcript for protein synthesis.
From an evolutionary point of view, they may actually be ‘protogenes’
where we have evidence from literature that previously non-genic
sequences may evolve into protein-coding genes [157].

The paradigm shift in gene expression and regulation needs to be
examined transcending the classical central dogma of molecular
biology. Perhaps, the ncRNAs have evolved to enable the integration
and networking of complex suits of gene-action to constitute a second
tier gene-expression among eukaryotes. The proportion of ncRNA has
linearly increased during evolution to suit the emergence of complex
organisms of eukaryota [158].

ncRNAs and Future Challenges
There are many challenges that researchers have to resolve. For

example, delivery of the molecules to the right cells is a technical
hurdle. Some efforts have been made to overcome this hurdle. For
example [159] described the ability of mesenchymal stem cell to
migrate directly to breast tumors, after effectively bypassing immune
surveillance; these stem cells could be used to deliver antisense
microRNA strands to the target and reduce off-target effects of
microRNA knockdown. Furthermore, many individual microRNAs
home in on dozens or even hundreds of genes. It is also important to
identify all the genes individual microRNAs influence to ensure that
modifying their expression will not have untoward effects. It will also
be desirable to identify specific environmental, lifestyle and dietary
exposures that alter the expression of ncRNAs and consequently their
respective gene targets.
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Another challenge will be to confirm functional capacity of any
ncRNA to alter the expression of target genes. This is complicated by
the fact that ncRNAs do not contain any protein coding information
that would allow distinguishing the functional ncRNAs species from
pseudo-ncRNAs. Until now, the functional ncRNA species have mostly
been validated in vitro using luciferase reporter activity; however,
further development of the strategies to facilitate the identification of
functional ncRNAs is needed [160]. Moreover lncRNAs may be
involved in regulating the transcriptome and not mere ‘transcriptional
noise’ anymore. There may be a plethora of molecular functions they
may be involved in, which need further investigation.
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