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Abstract

The observable trend in the concept of evolution creates a template that advanced cell types are evolved from
rudimentary cells over time. This is evident in protein structure and function observed along the evolutionary trend.
An important component of cell evolution involves the role of microtubules and other members of the conserved
family of the cell cycle/division proteins that have shown consistency from the yeast to the Homo sapiens over a
billion years. In this study, we used specific imaging technique to compare the structure of melanocytes by
manipulating NMDA R and VDR; to foster the study of synaptic denervation and pigment loss observed in PD. This
information is important, as careful analysis and guided extrapolation of data can yield results of transnational
significance. The outcome from two separate studies shows that both NMDA R and VDR are involved in cellular
process formation in a way that can be likened to adrenergic cell process formation. Thus suggesting a possibility of
adopting this cell type as a model.
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Introduction
Parkinson’s disease (and other associated movement disorders) is a

common condition that is triggered by chemical, environmental,
genetic and neurotrophic factors in which dopaminergic neurons are
lost and melanin pigment is reduced in the SN [1-3]. If not treated, it
can progress rapidly into movement disorders and other cognitive
dysfunctions [4]. Since the initial description of this disease and other
NDD’s, efforts have been directed towards understanding the
molecular mechanism of pigment loss and cell death in the SN [5].
Neurodegenerative Diseases (NDDs) are becoming rampant in sub-
Saharan Africa due to food based toxicity and thus, there is an urgent
need to conduct cell based research using cheap and appropriate
models [6,7]. Previous studies have examined the etiology and cellular
mechanisms involved NDDs such as Konzo, tropical ataxic
neuropathy and movement disorders often associated with the loss of
adrenergic pigmented neurons in the Substantia Nigra (SN) [8,9].
Available cellular models often demonstrate cell death due to aging
and have been achieved through manipulation and mutation of the PD
genes [10-12]. Other models involves the use of primates; through
chemotoxin induced Parkinsonism that selectively targets the
dopaminergic cells of the SN [13,14]. Most in vitro models are non-
pigmented and thus cannot demonstrate the role of melanosomes in
the selective vulnerability of these cells [15]. Also, the in vivo models
cannot be observed directly as direct cellular observation is rather
invasive [16,17]. Thus, there is a need for the development of in vitro
or ex vivo cell models capable of showing synaptic denervation and the

roles of pigment vesicles in the cause, progression and therapeutic
targeting of PD. An important candidate cell for this purpose is thus
the melanocyte in the marine species [18,19]. The melanocytes are
adrenergic, pigmented, originates from the neural crest; they can also
form extensive cellular processes like neurites. In addition the cells are
also concentrated in the stream line of the body of the organism where
it detects vibration and maintains the relative position of the organism
in water [3,18-20].

It has observed that the fish scale melanocytes can be stimulated
by adrenergic effector molecules. Considering the flow from
monoamines (dopamine) to catecholamine (epinephrine and
norepinephrine) this cell type already has two (2) main features of the
SN which is the presence of pigmentation and receptors capable of
being stimulated by the adrenergic effector molecules [19,21]. From
these, it was inferred that these melanocyte populations in the scale of
the fish (Tilapia) are probably specialized sensors that perform a
similar function as those of the SN [3,18]. This function is basically in
the determination of the relative position of the organism in space by
polymerization and depolymerization of MT-Motor protein assembly
to alter the position of melanosomes and thus regulating impulse
discharge rate [22-24]. The cause of PD has been broadly described as
unclear; in addition loss of adrenergic cells have also been described in
the progression of the diseases condition which is characterized by
shortening of neuronal projection as a form of synaptic denervation
[25]. However, to understand the process involved in this synaptic
denervation of adrenergic pigmented neurons, the molecular
mechanism needs to be studied at cell and protein level.

Current Models in Parkinson’s disease Studies
Parkinson’s disease has been known to have several causes. An

inherited form of the disease has driven the studies to create new in
vivo models especially those involving transmission and inheritance of

Olalekan et al., J Biomol Res Ther 2014, 3:3 
DOI: 10.4172/2167-7956.1000114

Research Article Open Access

J Biomol Res Ther
ISSN:2167-7956 JBMRT, an open access journal

Volume 3 • Issue 3 • 1000114

Journal of
Biomolecular Research & Therapeutics Jo

ur
na

l o
f B

io
mole

cular Research & Therapeutics

ISSN: 2167-7956

mailto:ola.ogundele@abuad.edu.ng;


the PD gene [26-28]. Guo described the use of the drosophila as an
efficient tool in the study of PD gene inheritance involving pathogenic
PD gene mutations [29-32]. This involves the study of the gene
products of the two PD genes (PINK1 and Parkin) both involved in a
mitochondria fission/fusion pathway [33,34]. These genes have also
been observed in both the fly and humans; they also sub serve the
same function of recruiting these mitochondria to the site of final
removal. The use of drosophila has been linked with in vitro
therapeutic targeting [35,36].

 A number of polyphenols have been reported to play important
roles in the inhibition of α-sync which might lead to possible
prevention of PD resulting from these mutations. The effect of free
radicals has also been implicated in aging related Parkinson’s disease-
often a product of mitochondria dysfunction. Other studies involved
dietary supplements of Nordihydroguaiaretic Acid (NDGA) in
drosophila models [35,37]. It was discovered that the loss of
movement often observed in this model was delayed when NDGA was
included in the diet. In vivo models includes the use of primates and
rodents treated with PD causing chemicals agents like MTPT and have
been used for studies on how specific drugs affects the progression of
PD [38,39]. Novel analogues of MDMA, UWA-101 have been found
to improve the therapeutic benefits αin primates being treated with L-
Dopa. It was also observed that this UWA -101 was more effective
than MDMA as it lacks psycoactivating and cytotoxic effects [40].
Other laboratory models involves the generation of disease specific
stem cell lines from patients with incurable diseases [41]. This is often
used for drug screenings and design of systems for understanding
disease mechanism. Several nervous system cells have been screened
and modified into dopaminergic neurons iPSC. Another cell model
mimics the mutation of SNCA gene encoding the pro-oxidant α-sync
protein in the budding yeast (S. Cerevisae); by studying the increase in
cytosolic neutral lipid storage embedded in lipid droplets. The
significance of this accumulation was further investigated in a yeast
strain which does not possess the machinery to synthesize
triglycerides. The outcomes thus show that such strains were more
resistant to α-sync toxicity [42].

The major effect of the PD pathogenesis is age related neuronal
cell death in the dopaminergic neurons. This has also been found to be
the case in mammalian and non-vertebrate models; example is the
nematode (C. Elegans) [43]. Both genetic and drug screens conducted
in C. Elegans have aided the identification of small molecules, proteins
and discrete biological systems that can impact PD pathology. An
example of such system is the identification of the autosomal
dominant and idiopathic PD models in C. Elegans due to mutations
found within the GTPase and kinase domains, both affecting the
molecular motor for vesicular movement [44-46]. Previous studies
have shown that such mutations are often linked with kinase
hyperactivity. In order to understand this further, transgenic C.
Elegans have been developed that can over express LRRK2, GTPase
and Kinase similar to those observed in dopaminergic neurons in PD
[47,48]. This system also created reduced locomotor activity, memory
dysfunction and reduced dopamine production in vivo [47,49].

Selective Vulnerability of Pigment Neurons and
Autophagy

Although several cellular and in vivo models described above have
taken care of most parts of the disease progression in PD, a major
point is the selective vulnerability of the pigment cells due to
autophagy and induced oxidative stress. Although the cells of the C.

Elegans and Drosophila express dopamine, they are however not
pigmented as this represents a major limitation of these models. In
vivo primate models are however priceless as they represents virtually
all the aspects of the PD effects including the role of pigments
metabolism and neurotransmission in these cells. It is important to
note that study of cellular activities through direct observation are
invasive and highly restricted in these rodent models, thus it is
important to have an in vitro models where the cells are adrenergic,
expresses major process formation and are also pigmented in order to
understand the direct cellular effects of therapeutics and disease
causing agents. Although the effect of certain drugs have been
described as either increasing locomotor activity or improving
dopamine level /L-DOPA uptake, direct cellular observation remains a
challenge in these models.

It has been observed that dopaminergic neurons of the SN are
selectively degenerate during the cause and progression of PD [50-52].
They also represent the most heavily pigmented population of neurons
in the brain [50,53,54]. However, the heavy presence of neuromelanin
have long being described as an important factor in the susceptibility
of these neurons to aging and autophagy - described in the other in
vitro models. Previous studies have discussed the unclear nature and
role of neuromelanin in this structures, it has been suspected that intra
neuronal melanin is neuroprotective through its ability to shield cells
from heavy metals and toxins and also excess cathecolamines [2,55]. In
contrast melanin released by dying neurons as extraneuronal can
trigger inflammation and glia activation [4,50]. Graybiel et al.,
described the nigrostraital system in induced PD; quantitative analysis
however points to selective loss of pigmented cells. Such patterns of
loss are important in the study of etiology and clinical symptoms of
PD [56].

Neuroprotective Properties of NMDA R Antagonist
Glutamate toxicity has been described as a major cause and

facilitator of selective vulnerability in dopaminergic neurons [57-59].
The glutamate receptor, NMDA R is important in the astrocytic-
neuronal glutamate-glucose cycling and glucose metabolism in the
brain [60-62]. However during development, pharmacological knock
down or genetic deletion of NMDA R have been found to greatly
impair neuronal development and circuit formation [63,64].
Depending on the state of development, if the cells do migrate, they
will not recognize the final destination in the nervous system [65,66].
Thus NMDA R has been implicated in neurite formation, synapse
formation, development and neural circuit maturation [67-69].
Experiments involving the use of excitotoxin such as excess glutamate
or glutamate analogues capable of persistent potentiation of the
NMDA R have been observed to cause degenerative changes in the
adult neurons including autophagy [18,70-72]. Thus the role of the
glutamate receptor is switched post maturation [73]. In both
development and degeneration, the formation of the cytoskeletal core
of the axo-dendritic system is important. Through the work of NGF
and other kinase receptors like p75 (LNGFR), the pre and post
synaptic systems are established on neurite differentiated through cell
elongation and process formation during neuronal cell migration in
the developing brain layers [65,66,73]. A major effect of glutamate
toxicity in the adult is however linked with autophagy which is much
more prominent in pigment cells - the vesicles are observed close and
clustered around the nucleus leading to cell death by lysosomal fusion
[74,75]. The neuronal cytoskeleton, although forms a cellular track for
vesicles and organelle moved to and from the synapses, they also keep
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organelle in position in these cells [76,77]. Use of depolymerizing
agent have shown that loss of the MT assembly will lead to
accumulation of these vesicles around the nucleus creating an
autophagy scenario in the cell [78,79].

Autophagy itself is described as an intracellular response to stress
often characterized by the presence of autophagosomes [80]. Certain
studies have demonstrated the autophagy response of cerebellar
granule neuron challenged with NMDA (glutamate analogue). It was
shown that fluorescently labeled autophagosomes were accumulated in
the cell body and neurite at 3 hours post treatment. Lysosomal
inhibition studies also reveal that NMDA excitotoxicity diverted the
autophagosomes from the usual lysosomal degradation pathway [81].
Another possible path involves the role of cytoskeleton in PD, similar
to that of Alzheimer’s disease (AZ). High levels of intracellular calcium
can disrupt cytoskeleton and NMDA R stimulation can drive an
increase in cellular calcium levels which in turns disrupts cytoskeleton
[82,83]. Other studies have shown that neuron that contains calcium
binding proteins is less susceptible than the neurons that do not have
these proteins. This is an indication that NMDA R stimulation can
drive cytoskeletal degradation while calcium binding protein prevents
the calcium surge; thus protecting the neurons [84-86]. A link between
glutamergic and the nigrostraital system have been described through
the glutamergic afferent pathways that projects to the nigrostraital
system from the glutamergic tracts of the prefrontal cortex and might
play a role in release of glutamate leading to degeneration of the
nigrostraital system through excitotoxicity [87-89].

Distribution of VDR and the Therapeutic Role of
VDRA in Dopaminergic Neurosurvival

Low serum level of Vitamin D is often associated with PD [90]. The
final converting enzyme and the VDR receptor are distributed
throughout the brain. Studies have shown that vitamin D is important
in neurodevelopment, up-regulation of neurotrophic factors,
stabilization of mitochondrial function, and antioxidation [90,91]. The
VDR gene codes for the VDR and is responsible for calcium
regulation, immune response, neuronal functions [92,93]. VDR
polymorphism have been linked with PD aetiology and progression
[94,95]. Placebo studies have also employed the use of VDRA in
dietary supplements [96]. Improved behaviour and cognitive function
have been observed in patients receiving Vitamin D supplements.
Nissou et al., 2013 have demonstrated that the role of Vitamin D goes
beyond cellular mechanisms, over time it has been found to be
associated with up regulation of several genes up to 1.9 folds at
transcriptome level [97-100]. The active form of Vitamin D is Vitamin
D3 and it acts by binding to the VDR. This in effect regulates several
cellular machinery at transcriptome level. Most of it effects have been
studies extensively in osteoporosis, cancer, inflammation and immune
system. Vitamin D analogues have been employed as therapeutic
targets of VDR [101-103]. Vitamin D3 compounds are known to
influence melanocyte maturation and differentiation and also to up-
regulate melanogenesis through pathways activated by specific ligand
receptors, such as endothelin receptor and c-kit [104,105]. Studies
have shown that although these receptors are highly concentrated in
the brain, they are most predominant in the pigmented cell
population. Its role in regulating calcium concentration is useful in
reduction of calcium ions that might disrupt cytoskeleton, thus
helping in the prevention of synaptic denervation [106-109].

Manipulating the NMDA R1 in Tilapia Melanocytes
Considering the super imposed developmental biology of pigment

cells in Humans and Fishes; originating from the neural crest in both
organisms, these cell types possess certain features of cells of the
nervous system (Figure 1) [110]. The most important candidate
considered is the N-Methyl-D-Aspartate Receptor (NMDA R); that is
responsible for neuronal migration, development, process formation
and synapse formation at the final site [111]. Our previous findings
have shown that these receptors are located on the cell body and
cellular projections, similar to what is observable in the mammalian
neuronal cells. This was done using a confirmed Human NMDA R1
antagonist (Ketamine) and an agonist (L-Glutamate) to inhibit and
potentiate the receptor in live melanocytes using bright field
microscopy [3,18].

Potentiating the NMDA R with glutamate caused process formation
on the cell body, while inhibiting the receptor in vitro facilitated
formation of processes having an appearance similar to axo-dendritic
process formation pattern in developing neurons (Figure 2A and 2B).
Bright field imaging techniques were also used to capture process
formation and intercellular structural interactions. At this point,
formation of cellular processes does not represents axons but provides
an appropriate premise for studying pigmented cellular processes
similar to those of axons of pigmented neurons. Extensive process
formation and cellular connections were also observed post inhibition
of NMDA R using a non-competitive open channel blocker, ketamine
(Figure 2A and 2B). It can also be used to combine the study of
microtubule-motor protein assembly and autophagy in pigmented
adrenergic cells [3,18,63].

VDR-VDRAs
Other studies examined impact of Vitamin D receptor (VDR) and

Vitamin D receptor agonists (VDRA) interaction on process
formation in this model [112,113]. It was observed that both inhibition
of NMDA R and VDR stimulation by VDRA facilitated process
formation (Figure 3). Certain differences were noted some of which
includes; short processes were created by VDR stimulation [114] as
compared to longer processes seen in NMDA R inhibition [115], the
blobbed ends of processes are well seen following VDRA stimulation
[3,18]. Extent of branching in VDR shows short projections
originating directly from the cell body while in NMDA R inhibition,
larger processes were observed before rapidly branching to give
smaller processes. The cellular process involved in the VDR
stimulation suggests a rapidly branching dendritic network facilitating
polymerization of the MT system and creating more branches similar
to the dendritic nucleation assembly (Figure 3).
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Figure 1 and 2a, 2b: (1) The control melanocyte (2a) the treatment
group involving pharmacological knockdown of NMDA R by
ketamine, a non-competitive antagonist. The cells showed
elongation of cellular processes far higher than those recorded in
the control. The cellular process elongation reveals the reverse role
of the NMDA R in the embryonic system versus the adult system as
these cells are also derived from the neural crest. (2b) Rectangles
represent sites of structural intercellular connection.

Figure 3: Inverted grey scale cell process measurement for Control
cells, Ketamine treatment, VDRA+Ketamine and VDRA Only.
Increase in process length was observed in all the treatment
categories. Ketamine treatment gave the longest cell process while
VDRA treatment induced shorter process formation (Scale bar: 10
µm) (From Ogundele et al., [18])

Conclusion
In this study, we have first described the mechanism involved in

neuronal loss in the SN and the general structure of the fish scale
melanocyte. Using bright field imaging techniques, live cell imaging
was conducted in vitro to show the various changes observed in the
melanocytes upon manipulation of the NMDA R and the VDR. The
outcome shows that the fish scale melanocyte contains NMDA R on its
membrane just like the human neuronal cells, although it is much
more localized on the axon-like processes; while VDR is localized on
the cell body and short dendrite-like processes. Upon inhibition of this
receptor (using ketamine; a human NMDA R antagonist), the cell
projections forms wide array networks of cellular processes following a
similar pattern to what is observed in neuronal axon-dendrite
formation. Glutamate treatment (NMDA R potentiation) also caused
formation of cellular projections but not as extensive as that seen in
NMDA R inhibition. These findings therefore creates a premise for the
study of pigmented neuronal cells in vitro as this cell type (fish scale
melanocyte) expresses NMDA R and the role of this receptor in
cellular process formation has also been seen to be similar to the
pattern observed in neuronal axon-dendrite formation. Inverted gray
scale image analysis shows that this cell upon inhibition of NMDA R
shows temporary connections between the formed processes, an
association similar to the synapse that has been observed in the human
neurons. VDR stimulation facilitated more of short process formation
radiating directly from the cell body suggesting its role in a cellular
process similar to that of the dendritic nucleation assembly in neurons.
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