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Abstract
A review of the emerging trends and perspectives of Protein Nanocrystallography is here presented at the 

intersection of advances in nanotechnology (Langmuir-Blodgett and Anodic Porous Allumina), proteomics 
(microarray, cell free expression and SNAP) and synchrotron radiation (third generation sources trillion times more 
brilliant requiring quite smaller crystals and Montecarlo simulation). It should be noted that nanocrystallography 
here does not refer to crystals of nanometer size or to nanodrop crystallization technology, but to the significant 
applications for medicine emerging in our labs at the interface of Langmuir-Blodgett engineering, organic chemistry, 
molecular dynamics and label-free Protein Arrays, utilizing bacterial hell's gate globin, octapus rodhopsin, bovine 
cytochrome, human kinase, laccase and many other proteins. 
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Introduction 
It was shown recently [1] that one cannot indefinitely compensate 

for small crystal size with increased beam intensity since at some stage 
so much X-ray energy is being deposited in a small volume that the 
protein structure and crystalline order will be destroyed by primary 
radiation damage very quickly. Radiation damage to crystalline 
proteins using X-rays is indeed a problem, which limits the structural 
information that can be extracted from the sample and only the 
significant radiation stability induced in the crystal formed by our 
LB nanotemplate method [2] has opened new avenues in structural 
proteomics obtaining protein crystals for the most important proteins 
like membrane proteins with required quality, quantity (easy and speed 
of production) and reduced radiation damage [3]. These requirements 
remain the major open problems in Protein Crystallography that can 
be overcome by the emerging trends of my research group activities 
[4-23] here reviewed for the Structure-Function determination of 
numerous important proteins as the membrane ones still unsolved. 

LB Nanotemplate 
This unique method of producing high quality protein crystal 

based on Langmuir-Blodgett nanotemplate (Figure 1) was introduced 
time ago with a detailed protocol [2,3] applicable to the any protein 
including proteins of high molecular weight and membrane proteins [4-
9]. Indeed, a number of protein non crystallizable by classical methods 
were successfully crystallized by this LB nanotemplate method. In more 
recent times the process itself was monitored by several sophisticated 
techniques such as micro- and nano GISAX [10,11] and Raman 
spectroscopy [12], giving the insight to the described LB-related 
phenomena which triggers an acceleration in protein crystallization 
and dramatic changes in water content [13] and radiation resistance 
[9,14]. The crystals obtained by LB method are characterized by micro 
[4-9] and nano [10,11] focused synchrotron radiation diffraction, 
Atomic Force Microscopy [15] and Raman Spectroscopy [12], and 
following Laser micro dissection [16] they appear still well ordered and 
radiation stable to an unmatched level [16], in comparison of crystal 
obtained by classical crystallization methods which instead in presence 
of the high laser exposure are destroyed and disappear after 20 minutes 
[16]. A protein will stay in solution only up to a certain concentration. 

Once this limiting concentration is reached, the solution will no longer 
remain homogeneous, but a new state or phase will appear. This 
phenomenon forms the basis of all protein crystallization experiments. 
By changing the solution conditions, the crystallographer tries to 
exceed the solubility limit of the protein so as to produce crystals. This 
plan rarely runs smoothly. After changing the solution conditions, one 
of several difficulties is usually encountered: (i) nothing happens, i.e., 
the protein solution remains homogeneous; (ii) a new phase appears, 
but it is not a crystal. Instead, it is an aggregate or a liquid; or (iii) 
crystals do form, but they are unsuitable for structure determination 
because they give a poor X-ray diffraction pattern. It is often possible 
to overcome these difficulties by trial and error-repeated crystallization 
attempts with many different conditions – but this strategy does not 
always work. Even when it is successful, the lessons learned cannot be 
easily generalized; the conditions, which work with one protein, are 
not necessarily optimal for a different protein. The problems associated 
with producing protein crystals have stimulated fundamental research 
on protein crystallization. An important tool in this work is the phase 
diagram. A complete phase diagram shows the state of a material 
as a function of all of the relevant variables of the system [1]. For a 
protein solution, these variables are the concentration of the protein, 
the temperature and the characteristics of the solvent (e.g., pH, ionic 
strength and the concentration and identity of the buffer and any 
additives). The most common form of the phase diagram for proteins 
is two-dimensional and usually displays the concentration of protein as 
a function of one parameter, with all other parameters held constant. 
Worthy of notice and highly significant (Figure 1) is the uniqueness of 
LB protein crystal being analogue to space crystal by both clustering 
analysis and molecular dynamics [3]. 
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Anodic Porous Allumina
Anodic Porous Allumina (APA) provides a structure with very 

thin walls [17] and its fragility must be taken into account handling 
the patterned surface (Figure 2, above). Two tests were carried out to 
characterize mechanical properties of APA grown over aluminum: a 
grip test (Figure 2, below) and a ball-crush test, both carried out in 
compliance with the DIN standards for mechanical evaluation. We 
have proved the reliability of the APA surface in connection with the 
microarray technology, including the mechanical interactions in the 
printing step, the adaptability to chemical treatments and to favor 
the protein expression within the same protocol developed for more 
conventional substrates as glass, mica, teflon or nylon and gold [17]. 
The favorable result suggests the prospect to confine the biological 
process including genes and antibodies within a single pore in future, 
improving towards smaller scales the present expression process 
that takes place within a statistical distribution among many nearby 

pores. APA faces the goal to achieve independent pore processes in 
arrays separated by few microns with respect to millimeter distances 
on glass or other flat surfaces necessary nowadays. Present work, 
however, has pointed out the need to overcome the hydrodynamical 
conditions conflicting in addressing the printed gel solution precisely 
at a micrometer scale [17].

Cell Free Expression  
Since the early pioneering work of Nirenberg and Matthaei, which 

demonstrated in vitro protein translation using cell extracts, cell-free 
protein synthesis has become an important tool for life scientists and 
played a central role in a wide variety of applications. In the post-
genomic era, cell-free protein synthesis is becoming one of the most 
important high throughput technologies for functional genomics 
and proteomics. The cell-free protein synthesis is the quickest way to 
obtain an expressed protein in vitro from a gene using PCR or plasmid 
template. Commercially available cell-free protein synthesis systems 
are typically derived from cell extracts of Escherichia coli S30, rabbit 
reticulocytes or wheat germ, which is like a "black box". The PURE 
system, Protein synthesis Using Recombinant Elements (in vitro [18], 
reconstitutes the E. coli translation machinery with fully recombinant 
proteins. These include 10 translation factors, 20 aminoacyl-tRNA 
synthetases and several enzymes for energy regeneration. In addition, 
recombinant T7 RNA polymerase is used to couple transcription to 
translation. This avoids the “black box” nature of the cell extract and has 
the capacity for a yield of more than 100 μg/ml, being now exclusively 
licensed to New England Biolabs (Ipswich, MA, USA) under the trade-
name “PURExpress” [18]. The fluid exchanges on the APA arrays 
(mixing reagents and washing them away) appear optimal for SNAP 
arrays/pores [19], even if the open pore design to force fluid through 
the device and exchange it with new fluid appear a complicated task, 
even if with high potential in the high through output setting. 

SNAP LB APA Pores
APA SNAP microarray coupled with LB nanotemplate and cell free 

expression system (Figure 3), is being used as a platform for crystallizing 
proteins being expressed by the Pure-Express cell-free system produced 
by New England Biolab [19,20]. APA microarray will utilize as protein 
expressing system [20] for nanobiocrystallography based on Langmuir-
Blodgett nanotemplate, where APA channels/pores will be used as very 
small crystallization wells for proteins and precipitate solution where 
the overall system will be immersed. Nanoarray APA technology in 
combination with SNAP Genes technology, based on bacterial cell free 
expression system [18], appear to form a single approach capable of 
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Figure 1: (left, above) Langmuir-Blodgett Nanotemplate. Uniqueness of LB 
protein Crystal analogue to space crystal by clustering analysis (below, left) and 
molecular dynamics (below, right), as shown in Reference 3.

 

Figure 2: Morphometry of Anodic Porous Allumina microarrays by AFM as 
shown in Reference 17.
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Figura 3: Figura 3_APA Microarrays utilizing piezoelectric inkjet and APA LB for 
nanocrystallography. A SNAP–APA flow application is also shown in Reference 
19.
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effectively contributing to the solution of the numerous problems still 
present in protein nanocrystallography. This approach, by piezoelectric 
inkjet printing 4.5 nl of SNAP Genes directly into each pore on the 
array, represents the future promising development of APA (Figure 
3) in the area of protein crystallization now successfully in progress 
with LB lysozyme nanotemplate and cell-free expression of SNAP 
lysozyme genes immobilized in each APA micropores [20]. On the 
same Figure 3 it is shown also a label-free detection of proteins and 
protein-protein interactions via Quartz-crystal microbalance with 
Dissipation monitoring (QCM_D) under flow conditions recently 
reported using NAPPA SNAP microarrays [21] and patented for 
vaccinology screening and design [20]. SNAP tag is a 20 kDa mutant of 
the DNA repair protein O6-alkylguanine-DNA alkyl transferase that 
reacts specifically and rapidly with Benzylguanine (BG) derivatives 
(SNAP ligand), leading to irreversible covalent binding of the SNAP 
tag [21]. The genes encoding proteins of interest are deposited via 
Functionalization on the bottom of the nanoarray and expressed after 
adding the appropriate biochemical reagents. Once translated, the gene 
produces the protein of interest and in the APA pore using a Langmuir-
Blodgett and adding the reagents and solvents for crystallization we get 
the same crystal of the protein of interest. The advantages with respect to 
existing technique are: 1) small volumes of analytes; 2) high sensitivity 
and specificity; 3) undenatured proteins in their natural environment, 
avoiding subsequent purification and expensive and wasteful passages; 
4) effective protein crystallization including membrane, currently 
under-represented in PDB; 5) implementation of screening of vaccine 

immunogenicity, offering a useful platform to design and development 
of new vaccine preparations.

Montecarlo Simulation 
Monte Carlo simulations have been typically and extensively used 

on high energy nuclear physics correct and interpret experimental 
data [22,23]. These systems were efficient and reliable tools for the 
study of low cross section reactions involving proton-antiproton 
annihilations in order to investigate the formation of high mass (> 2 
GeV) bosons which decay into pure gamma [22,23]. Are exactly these 
very same Monte Carlo simulations that once properly adapted should 
be utilized in our opinion to evaluate the dose delivered to a crystal 
sample during planned experiments of nanocrystallography before the 
usage of synchrotron radiation. In Figure 4 is shown the flowchart of 
a typical Monte Carlo simulation that helps to describe geometry and 
material properties. Using this Program our Monte Carlo simulation 
is in progress (Bozdaganyan, Belmonte, Pechkova and Nicolini) to 
simulate the passage of X-ray sychroton radiation into biological 
matter as protein crystal and since it is entirely written is C++ allows 
easy programming. Our recently implemented Molecular Dynamics 
[25] by using the Newton’s principles for the interactions of molecules 
permits to evaluate the interactions of secondary electrons, produced by 
photoelectron effects, with the structure of the sample crystal proteins. 
These simulations are being carried out using the actual geometry and 
the X-ray beam user-defined characteristics of the synchrotron facility 
beam (i.e. focus dimensions, energy/wavelength, and brilliance) with 
a phantom target. In our work in progress a homogeneous cube of 
material (i.e., thaumatin) is assumed to evaluate and compare absorbed 
dose with previously acquired experimental data. In a second phase of 
simulation this phantom will be substituted by a virtual crystal built 
ad-hoc for a particular protein. Monte Carlo (MC) estimation of 
radiation damage induced by high Energy X-ray Beam Interacting 
on the Protein Crystals will be completed before the actual usage of 
the synchrotron facility, while today dose can be calculated only after 
that crystals are damaged! User in this case will construct structures of 
Protein crystals using Geant4 [24] and will compare MC simulation of 
LB vs Classical crystals basing on what we have determined down to 
the atomic scale by all previously described experiments [1-21]. In this 
context are worthy of citation the references which describe the closest 
state of the art published by other groups of the world quite active in 
the key technologies here described such as cell free expression [26,27], 
Nucleic Acid Programmable Protein Arrays fluorescently labeled 
[28,29], Protein production [30] and Anodic Porous Allumina [31]. 
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