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Introduction
Asthma, a common lung disease affecting millions of people 

worldwide, is associated with a partially or completely reversible 
narrowing of the airways, chronic allergic inflammation and 
hyperresponsiveness. Asthmatics are sensitive to a variety of stimuli, 
which may include viral illnesses (e.g., the common cold), allergens, 
exercise, medicines and environmental conditions. The majority of 
asthmatic patients can usually be treated successfully. The usual goals 
of asthma treatment are prevent chronic and troublesome symptoms, 
normalize pulmonary function, maintain normal activity levels, 
prevent exacerbations, improve the health-related quality of life, and 
provide optimal pharmacotherapy with minimal or no adverse effects. 
The treatment of asthma requires a multidisciplinary approach that 
includes to patient education needs, the avoidance of irritant and 
allergic triggers and the design of an optimal medication regimen. 
The treatment of certain comorbid conditions such as allergic rhinitis, 
symptomatic gastroesophageal reflux disease (GERD), vocal cord 
dysfunction, obstructive sleep apnea, obesity, anxiety and depression, 
may contribute to the improvement of asthma management. The 
cessation of smoking is also imperative [1,2].

In addition, it is worthwhile to monitor lung health using a diary as 
well as by performing measurements of the rate at which patients can 
exhale, which is dependent on the degree of airway narrowing. Hence, 
a peak flow meter, an inexpensive and easily managed instrument, can 
be used to monitor lung function and the response to treatment, to 
assess the severity of asthma attacks, and to guide decisions regarding 
treatment [2].

The primary medications for asthma treatment vary according 
to age and the severity of the clinical and functional evaluation. 
These factors must be reviewed and adjusted for the required level of 
symptom control. The preferred way of taking medication for asthma 
is by inhalation, which allows the medication to take effect rapidly with 
maximal strength and minimal side effects.

The short-acting bronchodilators (usually beta-2 agonists) are the 
main drugs used for the rapid control of asthma symptoms. The great 
majority of patients with the mildest form of asthma or the intermittent 
type will require these drugs only occasionally. These drugs must be 
used as needed for the relief of asthma symptoms, or preventively prior 
to an activity that is known to provoke those symptoms. Asthmatics 
with persistent asthma need to take medications on a daily basis 

and which are called "long-term controllers". In this regard, inhaled 
corticosteroids, the gold standard for asthma treatment, act to decrease 
chronic pulmonary allergic inflammation. The most common side 
effects are oral candidiasis, cataracts, glaucoma, easy bruising of 
the skin, and osteoporosis. The risk of these complications is far less 
with inhaled glucocorticoids compared with oral glucocorticoids. 
The addition of a long-acting inhaled bronchodilator (salmeterol, 
formoterol) is often necessary in combination with an inhaled steroid, 
for adults with persistent asthma [2].

Leukotriene modifiers, such as montelukast, zafirlukast or zileuton 
are an alternative to inhaled glucocorticoids. They have a bronchodilator 
effect, decreasing inflammation and mucus secretion and production 
[3]. However, it is important to emphasize that compared with inhaled 
glucocorticoids; leukotriene modifiers are generally less effective in 
controlling asthma. It is noteworthy that leukotriene modifiers can be 
used to prevent exercise-induced asthma. In patients with uncontrolled 
asthma taking these previously discussed medications, an oral steroid 
may be added to the treatment regimen, which augments the possibility 
of side effects [2].

However, a group of patients with severe asthma requires high 
dose inhaled glucocorticoid (GC) or continuous or near continuous 
oral GC treatment to maintain their asthma control. For these patients, 
the treatment is based on oral glucocorticoids, high doses of inhaled 
GC, the addition of a third controller agent, such as an anti-leukotriene 
agent or theophylline or even anti-IgE therapy in atopic allergic 
patients [4,5]. The long acting bronchodilators (LABA) should be 
added and tiotropium should be reserved for those patients who have 
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Abstract
Asthma is an inflammatory disorder characterized by airway hyperresponsiveness, followed by inflammation, 

remodeling and oxidative stress in the respiratory system and lung tissue. While glucocorticosteroids remain the 
gold-standard of asthma therapy, they have limitations because of their potentially severe adverse effects and the 
presence of corticosteroid resistance in some patients. In the present review we will focus in four main groups 
of experimental pharmacological approaches for future asthma and hyperresponsiveness treatment: proteinase 
inhibitors and flavonoids, arginase and iNOS inhibition, Rho-kinase inhibitors, cholinergic anti-inflammatory system 
and nicotinic receptors.
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ongoing asthma symptoms and airflow limitation despite combination 
therapy with inhaled glucocorticoids/LABA [6]. However, persistent 
symptoms may be present despite such high dose combination 
therapy. This may be due to the presence of distal airway and alveolar 
septa inflammation, extracellular matrix remodeling as well as altered 
glucocorticoid receptor expression [7,8].

Various pharmacologic and non-pharmacologic agents have been 
used in an attempt to improve asthma control and ameliorate the 
many adverse effects of chronic oral GC therapy in patients with severe 
asthma. Immunomodulatory therapies such as methotrexate and 
cyclosporine specially have side effects that are substantial and likely 
to outweigh any potential benefits. Other immunomodulatory drugs, 
such as azathioprine, cyclophosphamide, and mycophenolic acid have 
not undergone treatment trials for severe asthma [2].

Monoclonal antibodies against interleukin 5 (anti-IL-5) have 
been studied for use in asthma because of the potent effect of IL-5 on 
eosinophil recruitment to the airways. Treatment with the anti-IL-5 
monoclonal antibodies, mepolizumab and reslizumab, may be beneficial 
in a small subgroup of patients with persistent airways eosinophilia 
that is resistant to glucocorticoid therapy. This class of medication 
is not approved by the US Food and Drug Administration nor is it 
readily available. The anti-IL-4 alpha subunit antibody, dupilumab, is 
a fully human monoclonal antibody that binds to the alpha subunit of 
the IL-4 receptor and inhibits the downstream signaling induced by 
both IL-4 and IL-13. Early evidence suggests that it may be useful for 
patients with moderate-to-severe asthma with persistent peripheral 
blood eosinophilia. The inhibitors of tumor necrosis factor (TNF)-
alpha have been studied in the treatment of asthma. The largest trial 
did not achieve the primary endpoints (reduction in exacerbations and 
improvement in FEV1), and substantial side effects were noted [9]. 
Macrolide antibiotics have both antimicrobial and anti-inflammatory 
actions. They should be prescribed for those patients who report the 
onset of asthma after a respiratory illness suggestive of these organisms 
[2].

Although glucocorticoids (GCs) have potent anti-inflammatory 
properties it is now clear that asthma is a syndrome with many distinct 
and overlapping phenotypes. The patients with GC-resistant asthma do 
not benefit from GC treatment and present a major healthcare problem. 
They account for a large percentage of the overall costs of asthma 
worldwide but also provide unique insights into the mechanisms of 
GC action. For clinical purposes, GC-resistant asthma is defined by 
an FEV1 of less than 75 percent of predicted and a failure to improve 
by 15 percent after an adequate dose and duration of glucocorticoid 
therapy. Glucocorticoid resistance is most likely produced by a number 
of heterogeneous effects such as defects in most aspects of intracellular 
GR actions, the binding of GCs to GR and the nuclear translocation of 
the GC-GR complex. However, it is likely that the major mechanisms 
for GC resistance occur distally to the nuclear translocation step, such 
as in the splicing of RNA, cytokine expression, binding to the GC 
response elements on DNA, and interactions of the GC-GR complex 
with other nucleoproteins [10].

The management of patients with GC-resistant asthma presents 
unique challenges because of a lack of effective and well-tolerated 
alternatives to GCs. Treatment strategies include the avoidance of 
asthma triggers, using higher doses and a longer duration of systemic 
glucocorticoids, and the use of non-glucocorticoid agents. Current 
research is focused on identifying new immunomodulatory agents and 
non-pharmacologic therapies [11].

In the present review we will focus on four main groups of 
experimental pharmacological approaches for future asthma 
and hyperresponsiveness treatment: 1. Proteinase inhibitors and 
flavonoids; 2. Arginase and iNOS inhibition; 3. Rho-kinase inhibitors 
and 4. Cholinergic anti-inflammatory systems and nicotinic receptors.

Proteinase Inhibitors and Flavonoids
Because proteinases are no longer considered only as enzyme 

and/or involved in protein degradation, they have become important 
signaling molecules involved in many vital biological processes. 
Considering these facts, proteinase inhibitors are being intensively 
investigated, mainly for their involvement in cell-signaling [12,13].

Proteases are enzymes that catalyze the breakdown of proteins by 
hydrolysis of their peptide bonds. Using bioinformatic analysis of the 
mouse and human genomes, at least 500–600 proteases (~2% of the 
genomes) have been identified, many of which are orthologous [14,15].

Proteases can specifically cleave protein substrates, and their 
primary role has long been considered to be for protein degradation 
related to food digestion and intracellular protein turnover [16]. 
Accordingly, many proteases are a major focus of attention for the 
pharmaceutical industry as potential drug targets or as diagnostic and 
prognostic biomarkers [12]. 

Although the involvement of proteinases in the pathophysiology of 
emphysema is established [17], there is also evidence for their relevance 
to asthma [18]. Furthermore, many aeroallergens associated with 
asthma, such as house dust mite allergens and various fungal allergens, 
are themselves proteinases [19,20].

The proteinase inhibitors are of vegetable or animal origin and 
block a hydrolytic enzyme for a given substrate. Thus, inhibitors of a 
proteinaceous nature are capable of producing complexes with enzyme, 
thereby inhibiting their catalytic activity and acting on a specific group 
of enzymes. There are inhibitors described for cistein proteinases, 
serine proteinases, metalloproteinases, and aspartic proteinases, but 
they can also be multifunctional because they have the ability to inhibit 
enzymes of different classes simultaneously [21].

Serine proteinase inhibitors (SPIs) are found widely in all 
multicellular organisms and take part in controlling various proteinase-
mediated biological processes, such as digestion, the complement 
system, blood coagulation, melanization, apoptosis, phagocytosis, 
cellular remodeling and reproductive processes [22]. 

Tryptase, a serine protease, has also been shown to contribute to 
the pathophysiologic responses associated with asthma [23]. Moreover, 
inhibitors of tryptase have been effective in reducing or abolishing early 
and late-phase allergen-induced bronchoconstriction in animal models 
[24]. In addition, inhibitors of tryptase have been shown to prevent 
bronchoconstriction and the development of airway hyper reactivity 
following allergen broncho provocation in these animal models of 
asthma [25].

Crataeva tapia (Capparidaceae) is a tree broadly distributed 
in Brazil occurring in the Pluvial Tropical Atlantic Forest and the 
Pantanal. Pharmacological studies with the root bark and stem bark 
of Crataeva tapia, have confirmed its beneficial effects in reducing 
inflammatory processes [26].

Studies in the Department of Biochemistry at the Federal 
University of Pernambuco, with Crataeva tapia bark, identified a 
protein with lectin activity, Crataeva tapia Bark Lectin (Crata BL) that 
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was considered a bifunctional glycoprotein, that also inhibits trypsin 
(Kiapp=43 µM) and Factor Xa (Kiapp=9.2 µM) [27]. Crata BL contains 
165 amino acid residues and shows some similarity to inhibitors of 
the Kunitz type family [28], such as, Bauhinia Bauhinioides Cruzipain 
Inhibitor (BbCI) and Bauhinia bauhinioides Kallikrein Inhibitor (BbKI).

The results obtained from inflammatory animal models pretreated 
with BbCI (HLE inhibitor and Cathepsin G) and BbKI (an inhibitor 
of human and rat plasma kallikrein) suggests the participation of 
these enzymes in capturing events, bearing, cellular adhesion, and 
transmigration and that explain the role anti-inflammatory nature of 
these inhibitors [29].

The proteinase-activated receptor 2 is of particular interest in 
asthma because it can be activated by mast cell tryptase [19] and 
aeroallergens [30] and has been implicated in inflammation. PAR-2 
activation induces the release of GM-CSF, matrix metalloproteinase 9 
and eotaxin [31,32] from airway epithelial cells. Mast cells are mainly 
known for their harmful effects during allergic inflammation and 
contribute to asthma in several ways [33]. The infiltration of mast cells 
into the airway smooth muscle cell layer is associated with airway hyper 
responsiveness [34]. 

Efforts to understand the role of tryptase in asthma have been 
greatly facilitated by the identification and characterization of the 
tryptase- and trypsin-activated proteinase-activated receptor-2 (PAR-
2) [35]. 

The coagulation cascade is activated immediately after tissue injury; 
in addition to the fact that thrombin mediates fibrinogen, important 
effects occur through the proteolytic activity of a family of cell surface 
receptors, the protein activated receptors (PARs), and with regard to 
lung injury and inflammatory responses, most attention has focused 
on PAR1 and PAR2 [36].

The role of PAR2 in airway allergic inflammation was examined 
by comparing OVA-sensitized and -challenged mice lacking or 
overexpressing PAR2 with wild-type animals. Airway hyper reactivity 
to inhaled methacholine was reduced by 38% in the mice lacking 
PAR2 and increased by 52% in the mice overexpressing PAR2. Thus, 
the absence of PAR2 is associated with the attenuation of ovalbumin-
airway hyper-responsiveness, whereas overexpression the of PAR2 
results in exaggerated airway hyper-responsiveness [37].

Mice were immunized in the footpad with papain and the authors 
studied the leukocyte recruitment and the inflammatory cytokine and 
chemokine production in the draining popliteal lymph nodes. It was 
found that a novel innate allergen recognition pathway was mediated 
by naive T cells through PAR2, which provided an immediate source 
of chemokines and IL-4 upstream of basophils and antigen-restricted 
T helper cell (Th)-2 differentiations. These results suggest that PAR2 
antagonism might be promising for the treatment of allergic disease 
[38].

Exogenous substances that activate PAR2 inhibited several 
characteristic features of allergic inflammation. The administration of 
a PAR2-AP, SLIGRL, inhibited the development of airway eosinophilia 
and hyperresponsiveness in OVA-sensitized and challenged mice 
through a COX-dependent pathway, possibly involving the COX-2-
mediated generation of prostaglandin E2 [39].

Flavonoids are polyphenolic compounds found in fruit, vegetables, 
and beverages such as tea and wine. Flavonoids have received much 
attention in the literature over the past 10 years for a variety of potential 
beneficial effects; anti- inflammatory, anti-allergic, antioxidant, as well 

as immune-modulating effects have been elucidated [40,41].

Several studies have showed the anti-inflammatory effects of 
flavonoids such as sakuranetine, baicalein, apigenin, luteolin,  fisetin, 
kaempferol,  quercetin and genistein by modulating pro-inflammatory 
cytokines, inhibiting phospholipase A2 (via the arachidonic acid 
pathway), lipoxygenase, cyclooxygenase and modulating iNOS 
thereby inhibiting NO production [42,43]. The exact mechanism by 
which flavonoids inhibit these enzymes is not clear. Furthermore, 
flavonoids could also suppress the expression of the COX gene through 
interactions with cell signaling pathways such as protein kinase C, 
NF-kappaB and tyrosine kinase [44,45]. In addition, flavonoids may 
have an additive effect on the endogenous scavenging compounds. 
Flavonoids could inhibit the production of reactive oxygen species 
by chelating transition metal ions and inhibiting the initiation of the 
lipoxygenase reaction [46].

Because lung diseases are characterized by chronic airway 
inflammation and increased oxidative stress various studies have 
shown the beneficial effects of flavonoids in these diseases. Sakuranetin 
[47] was found to reduce eosinophilic inflammation, attenuate airway 
hyperresponsiveness, and reverse lung remodeling in an ovalbumin-
immunized asthma model in mice. These effects could be attributed 
to Th2 pro-inflammatory cytokines, oxidative stress reduction and 
the control of NF-kappaB activity. Preliminary studies also suggest 
that sakuranetin reduce lung emphysema as well as neutrophilic and 
macrophage inflammation [48], suggesting this may be a potential 
compound for the treatment of emphysema.

The administration of a bioflavone baicalein in mice reduced 
the airway hyperresponsiveness and inflammation induced by either 
intranasal IL-4 or IL-13 [49]. Apigenin and luteolin have been shown 
to decrease IL-4 and IL-5 levels in the broncho-alveolar lavage fluid 
(BALF) in the OVA-sensitized model [50,51]. Fisetin also showed 
strong inhibition of the synthesis of IL-4 and IL-13 [52] attenuating 
lung inflammation, goblet cell hyperplasia and airway hyper-
responsiveness [53]. 

Kaempferol and quercetin have been shown to have a moderate 
inhibitory effect on IL-4 synthesis by activated basophils [52,54,55] 
decreasing histamine release [56] and inhibiting chemical mediator 
and cytokine production by mast cells [46]. Genistein may present a 
therapeutic potential for allergic airway inflammation, attenuating 
the ovalbumin-induced airway hyperresponsiveness to inhaled 
methacholine, pulmonary eosinophil infiltration and airway 
hyperresponsiveness observed in vivo models [57].

Substances derived from plants have been increasingly explored. 
They are used in folk medicine to treat allergic and inflammatory 
diseases, and the studies related above showing they can have a beneficial 
potencial in asthma treatment have reinforced the importance of 
clarifying the mechanism of action of these substances. 

Arginase and iNOS Inhibitors 
Nitric oxide (NO), an essential molecule in the physiology of the 

human body, is generated from the lysis of the guanidine molecular 
group of L-arginine via enzymatic oxidation [58,59] causing the 
release of NO and L-citrulline [60,61]. L-arginine, an NO precursor, is 
transported inside the cells via the cationic amino acid transport system 
(CAT), and it can be metabolized by two distinct groups of enzymes: 
the nitric oxide synthases (NOS) and arginases. 

The NOS converts L-arginine into NO and L-citrulline using 
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NG-hydroxyl-L-arginine as an intermediate that in its turn decreases 
the activity of the arginase. The L-citrulline can be converted by the 
argininosuccinate L-arginine, while the arginase has the ability to 
metabolize L-arginine into L-ornithine [62]. This process requires 
oxygen as a co-substrate and nicotinamide adenine dinucleotide 
phosphate (NADPH) as a source of electrons to convert L-arginine to 
L-citrulline and in this manner to release the nitric oxide [62].

Initial studies reporting the involvement of NO in bronchial 
asthma described the presence of high concentrations of this molecule 
in the exhaled breath of asthmatic patients in comparison with normal 
individuals [63,64].

In the physiopathology of asthma its contribution to the 
modulation of functional and histopathological alterations depends 
basically on the type of enzyme responsible for its production [58]. 
Some authors suggest that the dysfunction of the NOS may modulate 
both beneficial and harmful effects [62,65,66], thereby altering relevant 
aspects of the pathophysiology of asthma, in particular the recruitment 
of inflammatory cells [67-70], airways hyperresponsiveness [71], and 
more recently, the remodeling process [62,72,73].

Therefore, by acting on the non-adrenergic non-cholinergic 
(NANC) nervous system, the NO derived from nNOS has beneficial 
effects, causing bronchodilation. However, the NO derived from the 
eNOS enzyme can lead to vasodilatation in the arterioles, with the 
consequent extravasation of plasma and edema [62].

In contrast, the increase of the concentration of NO formed by the 
inducible NO synthase (iNOS) enzyme present in several inflammatory 
cells results in vasodilatation, plasma extravasation, increases in mucus 
secretion and the indirect activation of Th2 cells, mainly by eosinophilic 
recruitment, thereby contributing to the aggravation of inflammation 
[73-75]. The hyperemia, edema and exudation, contribute to the 
narrowing of the airways in these patients [62,76].

The iNOS expression is regulated by various mediators including 
tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, 
interleukin (IL)-1beta, and lipopolysaccharides (LPS), and it can 
generate huge amounts of NO compared to with cNOS [77].

In the respiratory tract, the expression of iNOS has been 
demonstrated in alveolar epithelial cells [67], fibroblasts [78], smooth 
muscle cells of the airways and vessels [79], the epithelial cells of the 
airways [80,81], mast cells [82], endothelial cells [83], neutrophils [84] 
chondrocytes [85], eosinophils [69,70] and type II pneumocytes [77].

In asthma, iNOS has toxic and pro inflammatory effects, 
perpetuating and amplifying the inflammation [62,65] in the airways 
and in the lung parenchyma. Its expression in the respiratory tract can 
be inhibited by the treatment with corticosteroids [86].

The cytotoxicity of NO results from its direct action, from its local 
concentration, from the enzyme that it was produced by and/or by 
its reaction with other compounds released during the inflammatory 
process [87].

Pharmacological strategies for inhibiting NO production had been 
studied in humans [88,89] and in animal models of both acute [69,90] 
and chronic inflammatory responses [67,68]. NO can be inhibited 
by the administration of an alternative substrate that inhibits the 
production of these enzymes or by the blockage of nitric oxide synthase 
enzyme [61]. Commercially we found a large number of inhibitors that 
are used in laboratories to block the action of these enzymes [91].

Hansel et al. [92] using L-NIL a semi selective iNOS inhibitor, in 
mild asthmatics and in healthy volunteers showed a potent decreased 
in exhaled NO in both over a period of 72 h. On the other hand, the 
treatment with GW274150 (a selective iNOS inhibitor) reduced the NO 
levels in the asthmatics patients but had no effect on airway reactivity 
and inflammation [93].

Previous studies in guinea pigs with chronic allergic inflammation 
have shown that the chronic treatment with L-NAME increased 
the resistance and elastance in the airways [69] and decreased both 
(resistance and elastance) in the lung parenchyma [67]. These data 
support that NO acts as a bronchodilator in the proximal airways 
and as constrictor in the distal pulmonary parenchyma. In the airway 
walls, an acute treatment decreased the total number of eosinophils 
in the airways [69]. Alternatively, the treatment with 1400-W (an 
iNOS-specific inhibitor), contributed to the control of the lung 
hyperresponsiveness and inflammation in the airways and lung tissue 
in the same animal model [68,70,74].

Arginases and NOS compete for the bioavailability of the same 
substrate, L-arginine, and are involved indirectly in the regulation of 
NO synthesis. Inhibitors of arginase have been used to investigate the 
role of arginase in the pathophysiology of asthma. According to Meurs 
et al. [94] the arginase pathway appears to be involved in the modulation 
of airway smooth muscle tone and potentiates methacholine-induced 
airway constriction. 

Recently our group evaluated the expression and activity of arginase 
2 by treatment with a specific inhibitor of arginase Nor-NOHA, in the 
distal parenchyma of an animal model of chronic allergic pulmonary 
inflammation. The authors also evaluated the iNOS expression using 
the 1400W inhibitor. The treatment protocols were effective in 
reducing the arginase content and the number of iNOS-positive cells in 
the distal parenchyma of the animals exposed to ovalbumin and treated 
with nor-NOHA and 1400W, respectively. In this experimental model, 
the increased arginase content and numbers of iNOS-positive cells 
were associated with the constriction of the distal parenchyma [95].

In vitro studies of tracheal rings from sensitized guinea pigs have 
shown that the hyperresponsiveness to methacholine was reduced by 
treatment with nor-NOHA, and this effect was reversed by treatment 
with L-NAME [71].

The increase in NO can also contribute to the increase in oxidative 
and nitrogen reactive species. When airways cells and tissues are 
exposed to oxidative stress caused by contact with environmental 
pollutants, infections, inflammatory reactions are exacerbated. In 
addition, in situations in which  the antioxidant systems of the body 
are decreased, the  levels of reactive oxygen species (ROS) and reactive 
nitrogen species (RNS), that are responsible for several deleterious 
effects in the airways, and that lead to several pathological conditions, 
increase [62,96].

After an exposure to oxidative stress, the inflammatory cells and 
the resident airway cells generate superoxide peroxide nitrite (O2

-) 
through the activation of NADPH oxidase and form high amounts of 
nitric oxide by the increase of the expression of iNOS. In this way in the 
presence of oxygen free radicals, NO reacts with superoxide, leading to 
a higher production of peroxide nitrite (ONOO-) [97]. In this manner, 
oxidative stress is an important factor for the amplification of an 
inflammatory response in the airways and distal lung parenchyma in 
asthmatics patients [77,98].

The effects of oxidative stress pathway activation may induce 
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many harmful effects on airway function, including on smooth 
muscle contraction [73], airway hyperresponsiveness bronchial hyper 
secretion the epithelial lesions and vascular exudation all of which play 
an important role in the pathophysiology of asthma [99].

The contact of oxidizing agents with the cell membrane causes 
the peroxidation of membrane lipids, which is responsible for the 
generation of a series of recently discovered bioactive compounds, 
which are analogs to the prostaglandins and are known as isoprostanes 
[100].

The isoprostanes have a potent biological activity and generally 
mediate certain aspects of oxidative injury. The route of formation 
of isoprostanes provides a mechanism for generating several classes 
of isoprostanes derived from arachidonic acid independently 
cyclooxygenase (COX) pathway, where F2-isoprostane isomers are 
distinguished because this was the  first class of isoprostanes to be 
discovered [101].

In the lung, we can detect isoprostanes in epithelial cells, in 
macrophages, as well as in the smooth muscle of airways and vessels 
[102]. It has been suggested that the isoprostanes may act as potent 
smooth muscle constrictor [103]. Moreover, they are produced in the 
airway tissue and can contribute to the physical effects observed during 
the late response in asthma; the concentration of 8-epi-PGF2alpha in 
the exhaled breath condensate is to disease severity [104].

The evidence that asthmatic inflammation results where there 
is increased oxidative stress is becoming stronger [105]. Many 
animal model studies suggest that ROS may contribute to airway 
hyperresponsiveness, increased vagal tone due the sensitivity of the 
Beta-adrenergic receptors to oxidants and decreased mucociliary 
clearance.

Therefore, aspects of the antioxidant defense system as well as lipid 
peroxidation are often used as indirect markers of oxidative stress in 
asthma, because lipid peroxidation is of particular significance in this 
disease.

Some studies have shown high lipid peroxidation in asthma, as 
measured by 8-epi-PGF2alpha, and its concentration has been shown to 
be increased from 3-4 times in persistent asthma when compared with 
healthy individuals [106]. The increase in isoprostanes in the broncho 
alveolar lavage fluid and urine after allergen challenge is evidence 
that in allergen-induced asthma, ROS and lipid peroxidation have 
significant pathophysiological roles. Furthermore, the increase in the 
concentration of isoprostanes in the broncho alveolar lavage 24 hours 
after allergen challenge provides direct evidence that isoprostanes are 
produced in the airway tissue and can contribute to the physical effects 
observed during the late asthmatic response [101].

In addition, ROS may also induce the production of cytokines and 
chemokines through the activation of nuclear factor (NF)-kappa B in 
bronchial epithelial cells [107]. According to Tripathi and Aggarwal 
[108], regardless of the stimulus, oxidative stress and increased 
intracellular calcium appear to be involved in the activation of NF-
kappa B. When unstimulated, NF-kappa B remains in the cytoplasm 
associated with an inhibitory protein (I-kappa-B). This complex 
prevents the translocation of NF-kappa B to the nucleus. Thus, the 
phosphorylation and the degradation of I-kappa B are required for this 
translocation to occur. 

Hart et al. [109] demonstrated the presence of activated NF-kappa 
B in asthmatic airways and in inflammatory cells, suggested that 
NF-kappa B may have an important role in maintaining the chronic 

inflammatory response in asthma. In transgenic mice, Pantano et al. 
[110] showed that the selective activation NF-kappaB was sufficient 
to induce airway hyperresponsiveness and smooth muscle thickening, 
both critical features of allergic airway disease.

Rho-Kinase Inhibitors
The Rho/Rho-kinase pathway is associated with the regulation of 

multiple biological pathways, including some that influence the level 
of smooth muscle tone and others that affect a variety of physiological 
functions associated with changes in the actin cytoskeleton, such as 
cell adhesion, motility, migration and contractility [111]. Rho is a 
monomeric G protein belonging to the Ras superfamily of guanosine 
triphosphatases (GTPases). 

Many effectors participate in the activation of Rho (RhoA). 
However, three groups of regulatory proteins are the major controllers 
of Rho activity: the guanine nucleotide exchange factors (GEFs), 
the GTPase-activating proteins (GAPs) and the GDP dissociation 
inhibitors (GDIs). The GEFs are considered the main regulators of 
Rho activity and act by facilitating Rho activation through guanosine 
diphosphate (GDP) dissociation and subsequent GTP-binding. The 
GAPs hydrolyzes GTP into GDP, while the GDIs may suppress the 
conversion between the Rho-GDP and Rho-GTP forms [112-114]. 
Once activated, the Rho protein is able to activate Rho-kinase. Rho-
kinase, in turn, is one of the best characterized effector molecules of 
the Rho protein. 

The Rho-kinase is available in two isoforms: ROK (also called 
ROCK2) and p160 ROCK (also called ROCKbeta or ROCK1). The 
two isoforms have different functions, with ROCK1 acting mainly 
in circulating inflammatory cells and ROCK2 in vascular smooth 
muscle cells [115]. Regarding its distribution, ROCK1 is prominent in 
the lung, liver, spleen, kidney and testes, while ROCK 2 is expressed 
preferentially in the brain, muscles and heart [116]. It is interesting to 
note that, in addition to being activated by RhoA, Rho-kinase can also 
be activated by arachidonic acid, which is released by smooth muscle in 
response to various agonists [113,114,117].

Therefore, because a major consequence of Rho/Rho-kinase 
activation is to trigger contraction, the use of inhibitors of this pathway, 
by promoting airway smooth muscle relaxation in the presence of 
elevated tone, have been predicted to be relevant to asthma [118,119].

Here we summarize several mechanisms by which Rho/Rho-
kinase has been implicated in the pathogenesis of asthma, as well as 
the benefits achieved experimentally with the use of inhibitors of this 
pathway for the treatment of asthma.

Rho-kinase inhibitors are not investigated in humans for the 
treatment of asthma, but their use has greatly helped to clarify the 
activities and functions of this protein. Among the main pharmacological 
Rho-kinase inhibitors used in the context of respiratory diseases are 
fasudil (also known as HA-1077) and Y-27632 ([(+)-(R)-trans-4-(1- 
aminoethyl)-N-4-pyridyl) cyclohexanecarboxamide dihydrochloride]). 
Fasudil is a moderate inhibitor of Rho-kinase that has been in clinical 
use in Japan since 1995. Fasudil inhibited ROCK by targeting the ATP-
dependent kinase domain and is the first and only clinically available 
ROCK inhibitor [120]. It was demonstrated to be effective in reversing 
blood vessel spasm and the constriction that may occur after episodes 
of subarachnoid hemorrhage [121-123].

Y-27632 is a pyridine derivative with an excellent selective 
inhibition of Rho-kinase when compared with other kinases, such as 
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protein kinase C and myosin light-chain kinase [117,124]. Y-27632 
is cell permeable and inhibits Rho-kinase by competing with the 
ATP binding site in this protein. Y-27632 has been shown to induce 
bronchodilator effects when delivered to guinea pigs as an aerosol, 
resulting in only minimal side effects on the systemic blood pressure 
[125-127]. Thus, Y-27632 is a powerful tool for investigating the role of 
the Rho/Rho-kinase pathway, especially in vivo; although more potent 
Rho-kinase inhibitors have been synthesized [124,128].

Airway hyperresponsiveness is a classic feature of asthma [129,130]. 
The increased tone of the airways is dependent on the release of 
neurotransmitters or mediators secreted by inflammatory cells. These 
agents stimulate specific G-protein receptors located on the surface of 
the smooth muscle cells of the airways [131]. Thereafter, in a normal 
smooth muscle contraction, the phosphorylation of the myosin light 
chain (MLC) is a key event in regulating smooth muscle contraction. In 
the presence of intracellular calcium, the MLC can be phosphorylated 
by the calcium-calmodulin-activated MLC kinase, resulting in muscle 
contraction through binding between actin and myosin. Subsequently, 
the contraction ceases due to dephosphorylation by the MLC 
phosphatase [132,133]. 

At first, it might be believed that the smooth muscle tone is 
proportional to the calcium concentration. However, the level 
of calcium does not always correspond with the degree of MLC 
phosphorylation and consequent smooth muscle contraction. Calcium 

sensitization describes the phenomenon whereby the level of calcium 
is insufficient to account for the degree of MLC and smooth muscle 
contraction [114,134,135]. The explanation for this is that the degree 
of MLC phosphorylation and therefore of smooth muscle contraction 
depends not only on the calcium-dependent activity of the MLC kinase 
but also on the activity of the myosin phosphatase that dephosphorylates 
the MLC [136].

Although the mechanisms responsible for the hyper responsiveness 
are not fully elucidated, it is believed that a major cause arises from 
abnormalities in the properties of the airway smooth muscle, including 
calcium sensitization mediated by agonists [133,137]. The mechanisms 
responsible for the calcium sensitization have not been fully elucidated, 
but recent studies suggest that Rho-kinase is a key protein involved 
in the contraction of smooth muscles [132-134]. The Rho-kinase, 
phosphorylates the myosin binding subunit of the MLC phosphatase, 
resulting in the inhibition of its activity and thus the promotion of the 
phosphorylated state of the MLC under low calcium conditions [133] 
(Figure 1).

Furthermore, Rho-kinase also seems to be involved in 
hyperresponsiveness by other mechanisms, including the contraction 
of airway smooth muscle and endothelial cells [114]; the formation 
of stress fibers and focal adhesions [138]; vesicular trafficking [139]; 
airway smooth muscle cell proliferation [126]; cell migration [140] 
and neurotransmitter exocytosis [118]. In this sense, several studies 
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Figure 1: Diagrammatic representation of the role of the Rho/Rho-kinase pathway in airway smooth muscle contraction. Abbreviations: GTP-
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have reported the beneficial effects of Rho-kinase inhibition on the 
relaxation of airway smooth muscle both in vitro and in vivo.

The relationship between Rho-kinase and airway 
hyperresponsiveness has previously been demonstrated in several 
studies [111,119,126,132,141,142]. Schaafsma et al. [143] showed 
that the inhalation of Y-27632 30 min before and 8 h after an 
allergen challenge in sensitized guinea pigs effectively prevented the 
development of airway hyperresponsiveness, after both the early and 
late airway reactions. Henry et al. [131] also found reduced airway 
resistance induced by methacholine in mice, this time with the 
intranasal administration of Y-27632. Possa et al. [126] demonstrated 
that repeated Rho-kinase inhibition with inhaled Y-27632 was 
associated with a reduction in the airway hyperresponsiveness in 
chronically sensitized guinea pigs.

Kobayashi et al. [144], in turn, using guinea pig tracheal smooth 
muscle preparations recently demonstrated that tryptase, which 
is released from mast cells in asthma, induces Beta2-adrenoceptor 
desensitization. In addition, the exposure to tryptase in the presence of 
Y-27632 prevented Beta2-adrenoceptor desensitization in the airway 
smooth muscle preparations. Witzenrath et al. [145] also verified that 
the use of Y-27632 attenuated the methacholine-provoked airway 
response in sensitized lungs.

The Rho-kinase pathway participates in many processes related 
to pulmonary inflammation, including the migration, chemotaxis 
and infiltration of different type of inflammatory cells into the lungs 
[143]. In the pathophysiology of asthma, eosinophils are associated 
with mucus accumulation, epithelial damage, dysfunction of airway 
cholinergic nerves, airway remodeling and airway hyperresponsiveness 
[146].

Some studies have suggested that the RhoA/Rho-kinase system 
plays a role in eosinophil recruitment, as well as in Th1 and Th2 cytokine 
secretion [111,125,126,131]. Aihara et al. [147] showed that Y-27632 
suppressed the release of Th1 cytokines and partially suppressed the 
release of Th2 cytokines in healthy persons, but it reduced the release 
of IL-2 and IL-5 in asthmatic patients and weakly reduced the release 
of IL-4 and IFN-gamma.

Henry et al. [131] demonstrated, in a murine model of acute allergic 
airway inflammation, that Y-27632 inhibited the influx of eosinophils 
following ovalbumin challenge and that the reduction in pulmonary 
eosinophilia was accompanied by inhibition of the development of 
airways hyperresponsiveness. Additionally, Taki et al. [111] showed a 
reduction in the number of eosinophils in the bronchoalveolar lavage, 
airways and blood vessels with the use of fasudil in sensitized mice.

The Rho-kinase inhibition with Y-27632 also had shown benefits in 
a model of chronic allergic pulmonary inflammation in guinea pigs, in 
which the treatment with the inhibitor was able to reduce eosinophilic 
infiltration, as well as cells positive for Th1 and Th2 cytokines [126]. 
The same pattern of response was also found in the distal lung 
tissue of guinea pigs with chronic allergic pulmonary inflammation, 
constituting an important aspect of the treatment, because the 
pulmonary parenchyma has inflammatory changes and responsiveness 
in this disease [95,125].

These data indicate that Rho-kinase inhibition has significant anti-
inflammatory activity in the airways and distal lung. Thus, inhibitors of 
Rho-kinase activity such as Y-27632 and fasudil have the potential to 
modulate processes in the pulmonary inflammatory response in atopic 
asthmatics.

The role of Rho-kinase in lung remodeling was first reported by 
Possa et al. [126]. Structural changes of the airway and of the lung 
tissue in asthmatics are key determinants of the extent of their airflow 
obstruction as well as lung functional alterations.

In the remodeling process, the migration of airway smooth muscle 
cells and fibroblasts to the airways and to distal lung tissue is the 
outcome of the repair process in response to persistent inflammation 
[148]. Cell migration has been shown to involve MLC phosphorylation, 
suggesting a mechanism that is possibly modulated by Rho-kinase 
[149]. Furthermore, the Rho/Rho kinase pathway is a key regulator of 
the actin cytoskeleton, directing changes in cell shape and driving the 
adhesion in cell migration [114]. Therefore, Rho-kinase inhibition by 
Y-27632 helps to prevent chronic inflammation by reducing the number 
of inflammatory cells and indirectly contributes to the reduction of the 
remodeling process, as evidenced by the lower contents of collagen and 
elastic fibers in the airway walls and lung tissue [125, 126].

It is possible that in addition to the indirect effects on fibrosis, the 
Rho/Rho-kinase signaling is directly involved in profibrotic processes, 
mediated by airway-resident cells. Schaafsma et al. [150] showed that 
human airway myocytes express both geranylgeranyl transferase 1 
(GGT1) and farnesyl transferase (FT), and the inhibition of GGT1, 
but not FT, mirrored the suppressive effects of simvastatin on collagen 
I and fibronectin expression as well as collagen I secretion. Both 
simvastatin and the GGT1 inhibitor prevented the TGF-1-induced 
membrane association of RhoA, a downstream target of GGT1, 
suggesting a consequent inhibition of the synthesis and secretion of 
extracellular matrix proteins by human airway smooth muscle cells 
by suppressing the GGT1-mediated posttranslational modification of 
signaling molecules such as RhoA.

Kondrikov et al. [151] investigated the role of Rho-kinase and 
reactive oxygen species (ROS) in the synthesis of type I collagen in 
human and mice lung fibroblasts subjected to hyperoxia in a model of 
oxygen toxicity. The authors concluded that oxygen toxicity induces R 
to separate the guanine nucleotide dissociation inhibitor (a regulator 
of Rho GTPase activity) from Rho, which leads to the activation of the 
Rho-kinase pathway and contributes to increased collagen-I synthesis.

Additionally, it has already been shown that Rho-kinase inhibition 
reduces the number of iNOS positive cells [126,152,153]. In addition, 
it is well established that a reduction of iNOS causes the attenuation 
of airway constriction, inflammation and oxidative stress; it is also 
known that iNOS participates in extracellular matrix remodeling in 
asthma [68,72]. It has been demonstrated that the reduction in iNOS, 
either directly or indirectly through the inhibition of Rho-kinase, 
reduces the levels of MMP-9, TIMP-1 and TGF-beta both in airways 
and in bronchial vascular wall in ovalbumin-sensitized animals. 
These mediators act in the synthesis of collagen and elastic fibers, 
contributing to the remodeling of the extracellular matrix in the lungs 
and constituting a likely pathway by which Rho-kinase interferes with 
remodeling [125,126].

Cholinergic System in Inflammation
Acetylcholine (ACh) is synthesized from choline and the cetyl-

CoA substrate in a reaction catalyzed by the acetyltransferase enzyme 
(ChAT) in the cholinergic nerve terminals [154]. ACh storage in the 
synaptic vesicles depends on the activity of the vesicular acetylcholine 
transporter (VAChT) [155] which is absolutely required for ACh 
release in the peripheral and central nervous system [155-157], and 
by a large number of non-neuronal cells in various organs such as the 
spleen, heart and lung [158]. 
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When released, ACh can interact with the muscarinic and nicotinic 
receptors that are expressed in the resident and in inflammatory cells 
in various tissues including the airways [159-162]. In the lung, ACh is 
known to be released from parasympathetic nerve fibers and is a well-
recognized broncho constrictor that binds to the muscarinic receptors 
present in the airway smooth muscle and glands [163]. For this reason, 
anti-muscarinic drugs are recommended for asthmatics patients 
mainly in an acute crisis [2].

Recently the cholinergic system has been shown to regulate 
the inflammatory pathway through the interaction of ACh with 
alpha7nAChR [164]. Studies have suggested that the interaction of ACh 
with the nicotinic alpha-7 receptor primarily occurs in macrophages 
and induces an inhibition of NF-kappa B translocation to the nucleus 
and consequently a reduction in the inflammatory cytokines release 
[161]. This mechanism is called the cholinergic anti-inflammatory 
pathway [165,166], and it has been poorly investigated in lung diseases 
particularly in asthma that ACh has been considered exclusively a 
broncho provocative agent.

A role for the cholinergic antiinflammatory system has been 
described in models of acute systemic inflammation [167,168]. The 
cholinergic antiinflammatory system seems to depend on vagus nerve 
stimulation and on an additional non-neuronal cholinergic source, 
a population of lymphocytes in the spleen [166]. These lymphocytes 
release ACh that acts as an autocrine and a paracrine mediator of 
cytokine release from macrophages [162] (Figure 2).

This mechanism has been shown to be important for counteracting 
inflammation in other situations [166,169-171]. It has been suggested 
that the cholinergic system might participate in the pathogenesis of 
asthma [172]. In fact, rodents with acute lung inflammation showed 
reduced expression of the cholinergic markers such cholineacetyl 
transferase (ChAT), the high affinity choline transporter (CHT1) and 
the VAChT in the lung, suggesting a down-regulation of non-neuronal 
cholinergic activity in asthma physiopathology. 

Several studies have indicated that cholinergic activity has 
a fundamental role in anti-inflammatory responses in different 
experimental models. Vagotomized mice showed an increase in 
inflammatory cells in the peritoneal fluid after septic peritonitis, with 
enhanced early and late inflammatory responses [173]. Recently, 
it has been suggested that the stimulation of cholinergic receptors 
suppresses acute lung inflammation in mice, most likely via effects on 
alpha7nAChR [170,171]. Hofer et al. (2008) showed that the inhibition 
of acetyl cholinesterase by physostigmine reduced lethality and the 
circulating proinflammatory cytokines TNF-alpha, IL-1beta, and IL-6 
as wells as down-regulated NF-kappaB activity in a sepsis model [174]. 

Borovikova et al. [175] demonstrated that ACh attenuates 
inflammation by a direct effect on proinflammatory cytokine inhibition, 
instead of having an effect on anti-inflammatory cytokines.

Few studies focusing in the cholinergic anti-inflammatory system; 
non-neuronal sources of ACh and specific agonists to the nicotinic 
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Figure 2: Hypothesis of effects of Cholinergic system in inflammation. 
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receptors are used in asthma models. It was shown that anti-cholinergic 
therapy can amplify eosinophil interaction with airway nerves in a 
model of asthma in guinea pigs and can indirectly contribute to worse 
inflammation [176].

Our recent data (unpublished results) suggest that the reduction 
in VAChT, an important component directly involved in the neuronal 
and non-neuronal ACh release, induced worsening in eosinophilic 
inflammation and in collagen deposition as well as in increased Th2 
cytokines and NF-kappa B.

Cytokines, particularly Th2 type cytokines, such as RANTES, 
eotaxin, IL-4 and IL-5 have an importance in asthma physiopathology 
and are increased in asthma [2]. There was evidence related to the 
potential therapeutic targeting of the alpha7 nicotinic acetylcholine 
receptor that can induce anti-inflammatory effects through the 
modulation of proinflammatory cytokines. However, few studies have 
evaluated the effects of alpha 7 agonists in asthma. Our preliminary 
data (unpublished results) show that treatment with PNU, an alpha7 
agonist, was able to reduce eosinophilic inflammation in an asthma 
model. 

Blanchet et al. [177] showed that the alpha-3, -4, and -7 nAChR 
subunits and mRNAs are expressed in humam blood eosinophils. In 
addition, these authors showed in vitro that treatment with nonselective 
nACHR nicotinic receptor agonists reduced the LTC4 production 
induced by platelet-activating factor (PAF) and decreased eotaxin and 
eosinophilic migration. These results suggest an anti-inflammatory 
effect obtained by nicotinic receptor stimulation which could be of 
interest in the treatment of allergic asthma.

The absence of acetylcholine in the alpha7 nicotinic receptors 
(alpha7 nAChR) should induce an increase in lung inflammation 
by inhibiting the cholinergic anti-inflammatory pathway and the 
stimulation of these receptors could have an anti-inflammatory effect, 
suggesting that the cholinergic anti-inflammatory system and the alpha 
7 receptors could be further studied for improving the effects and the 
mechanisms of these new target in asthma.

The importance of IL-17 in Asthma Approach
A separate lineage of T cells called T-helper (Th)17 cells has been 

studied and characterized by the production of IL -17A , IL- 17F and 
IL- 22. In addition to the CD4+, IL- 17A and IL- 17F cytokines can 
be released by neutrophils, eosinophils, CD8+ T cells, basophils, and 
mast cells. Recent studies have provided evidence that IL -17, the 
main product of Th17 cells, plays an important role in regulating 
the expression of inflammatory mediators as well as recruitment of 
inflammatory cells in various inflammatory diseases. The increased 
expression of IL-17A has been found in asthma, suggesting involvement 
of this disease interleukin in the pathophysiology of the disease [178]. 
The IL-17 cytokine promotes airway eosinophilia by induction of 
chemokines and growth factors [179]. The cytokine IL-17 also appear 
to contribute to airway remodeling in asthma, suggesting that blocking 
of this pathway could help in the control of fibrosis [180]. Furthermore, 
especially IL-17A, but not IL-17F or IL-22 may contribute to allergic 
asthma by directly increasing the contractile responses of smooth 
muscle cells of the airways through a pathway that involves the NFkapa 
B activation and induction of expression of RhoA and ROCK2 [181]. 
Also, it has been found that the increase of IL-17 is associated with 
airway remodeling in asthma [182].

The involvement of IL-17 with other pharmacological targets 
approached for asthma has also been demonstrated. Flavonoids, for 

example, determine negative regulation of NFkapa B pathway, thus 
suggesting implication of IL-17 in the process [183]. Regarding iNOS, 
previous study highlighted the possibility of the IL-17 acting as a 
potent activator of inducible nitric oxide synthase, once serum IL-17 
levels were positively correlated with FeNO [184]. Therefore, it can be 
noted that understanding the role of IL-17 is very important for the 
evaluation of new pharmacological targets for asthma. 

Conclusions
These findings support the notion that these drugs may contribute 

as a treatment and/or a preventive strategy for inflammatory lung 
diseases because of their anti- inflammatory, antioxidant and anti-
allergic properties. These potential asthma therapies need to have 
demonstrated effectiveness against one or more features of the allergic 
response; the use of flavonoids, nitric oxide, arginase and Rho-kinase 
inhibitors as well as stimulation of the nicotinic receptors and the anti-
inflammatory cholinergic system seems to be promising, whether or 
not they are associated with corticosteroids, and may contribute to a 
better control of pulmonary hyperresponsiveness, inflammation and 
remodeling. However, these pharmacological tools need to be more 
intensively and clinically tested.
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