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the formic acid concentration till 50% followed by dissolving the 
separated palladium by nitric acid. Selective efficient method is used 
for separation of palladium [4-12] by strongly basic anion exchangers 
IRA-410 and IRA-900 from intermediate radioactive nitrate medium 
different conditions for exchange behaviour of palladium from (ILLYO 
solutions containing number of elements were investigated by batch 
technique. Selective recovery of palladium from (ILLW) solution was 
achieved using column technique the elution [13] of palladium was 
carried out via reduction with formic acid. Ion-selective electrode 
based potentiometry has become a well-established electro-analytical 
technique. In this technique the most exciting and fastest growing 
area of research is the use of ion sensitive membrane electrodes for 
analysis of wastewater containing heavy metals. Using this approach the 
applicability of the potentiometric method has been greatly extended 
[14-17] enabling the simple and accurate determinations of many 
heavy metal ions and has led to a search for suitable materials that can 
be used for preparation of sensitive and selective ion-sensors, chemical 
sensors or more commonly ion-selective electrodes ((ISEs) [18,19]. Ion 
selective electrode based on palladium (II) dichloride acetylthiophene 
fenchone azine (I) has been developed.

Experiment
Reagents and chemicals 

The strongly basic anion exchanger was used as previously described 
[4]. The plasticizers were obtained from Aldrich (Milwaukee, WI). 
While poly vinyl chloride powder (PVC) were obtained from Fluka 
(Buchs, Switzerland). The chloride salts of all cations studied (Figure 1).

 XRD and SEM characterization of Amberlite-410
As it is shown in Figures 2, 3a and 3b, Pd (II) was chosen as the 

Abstract
A novel ion selective IRA-410 membrane disc sensor for Pd (II) ions has been prepared and studied. This 

electrode has a wide linear dynamic range from 10-1 to 2.5×10-6 mol-1 with a Nernstian slope of 16.5 ± 0.2 mV 
decade-1 and low detection limit of 1.6×10-6 mol l-1. It has a fast response time (<1 s) and good selectivity with respect 
to different metal ions. IRA-410 based electrode was suitable for aqueous solutions of pH range from (1.0- 9.0). It 
can be used for about 10 months with complex with Pd (II) was calculated by using segmented sandwich membrane 
method. The formation constant of ionophore of IRA-410 and its Pd (II)-Complex is examined using Fourier-transform 
infrared analysis and elemental analysis techniques. The proposed electrode has been used successfully as an 
indicator electrode in potentiometric determination in aqueous nitrate and /or chloride media.
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Introduction
Separation of palladium by strongly basic anion exchangers IRA-410 

and IRA-900 from intermediate radioactive liquid waste in chloroacetic 
acid/nitrate medium containing thirteen elements have been achieved. 
Different conditions have been studied, the effect of NaNO3 as salt 
content, chloroacetic acid and hydrogen ion concentration have been 
investigated. Selective recovery of palladium from the [ILLW] solution 
was achieved using the column technique. The selectivity increased 
by using chloroacetic acid/nitrate than in nitrate medium. The elution 
of palladium was carried out via reduction with formic acid [1-3] 
where the rate of the reduction process was increased by decreasing 
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Figure 1: Structure: Amberlite IRA- 410  in  chloride medium.
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Figure 2: XRD Pattern for PVC on pd after.
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appropriate sorbent for the sorption of Amberlite-410 among all 
the sorbents tested in this work. X-ray powder diffraction (XRD) 
characterization showed that the natural samples of Amberlite-410, 
Figure 2: XRD pattern of acid-treated. Amberlite-410 with 2MHCl 
almost pure. Elemental content of the mineral was revealed using energy 
dispersive X-ray spectroscopy (EAR). The percentages of the elements 
are given in Table 1. The values given correspond to an average of Data 
points selected randomly on the surface of Amberlite-410. A scanning 
electron microscope (SEM) micro image is provided in Figures 2, 3a 
and 3b. This Figures show typical Amberlite-410 crystals with sizes 
varying up to several µm.

Powder XRD pattern of Pd nanoparticles is shown in Figure 2. The 
d-spacing corresponding to XRD lines is 2.236, A°. These d-spacing 
values correspond to (111), (planes with lattice constant, a = 3.871 
A°. This observation confirms the presence of metallic Pd with fcc 
structure. XRD line corresponding to {111} plane is found to be 

unusually intense. SEM images of black particles are shown in Figure 
3a and 3b. Aggregates of irregular-shaped particles are observed and 
the size of Pd particles varies from 8 to 25 nm. Of particles are formed 
due to the self-assembling nature of palladium tetra chloroacmplox on 
IRA-410. This self-assembly of the particles also confirms the capping 
ability of Pd on IRA-410.

Apparatus: Potentiometeric measurements were performed at 25 ± 
1°C using a Fisher scientific-computer aided pH/ milivoltmeter (Model 
450) with a palladium PVC matrix membrane electrodes in conjunction 
with a double junction Hg|HgCl2 |KCl (satd.) reference electrode (Cole-
Parmer Co., Chicago, Illinois 60648). A Fisher Accumet Model 825 MP 
pH-meter (accuracy ± 0.00 1 pH) with a glass pH electrode (Fisher 
electrode no. 13-639-90) was used for all pH measurements). Figure 4: 
using the KBr technique was used for infrared measurements. (Figure 
3a,b) (Figure 4) (Table 2).

Calibration Curve: Figure 5: These sensors exhibit the maximum 
working concentration range of 1.0×10-7 to 1.0×10-3 M with a slope of >16 
mVdecade-1 of activity (Sensor of Pd (II) ion selective electrode). The 
PVC-membranes were prepared and aggregation into sensor electrodes 
using established procedures [20-24]. The prepared membranes 
contained 1.2 mg ionophore (IRA-410), 0.60 mg lipophilic salt, 60 mg 
PVC and 10 mg membrane solvent were mixed with 0.5 ml (THF) I 
mixed together very well and making compact disk with diameter 0.5 
cm and thickness 0.2 cm and drying. In the glass dish with an diameter 
of 30 mm resting on a smooth mould. THF tetrahydrofuran was allowed 
to evaporate for 48 h standing at room temperature. Transparent PVC 
membranes were obtained with a thickness of 0.2 mm. A 11 mm 
diameter piece was cut out from the PVC membrane and attached to 
a PVC tube by means of PVC–THF solution Figure 6: wavelength(nm) 

3a      3b 
Figure 3: The SEM for  PVC and Pd(II) (before).

Resin C%             N%                            O%                 Cl%     
IRA-410      85 12 2.33                   0.67

Table 1: Elemental analysis results after addition the IRA-410.

Indicator 
electrode 

Sensitive 

membrane 

Salt 
bridg
e 

Reference 

electrode Figure 4: Experimental set- up for potentiometry.

Membrane PVC Composition %
  Plasticizer NBPP Additive Slope/mV 

decade-1)
1 60  2,NaTFPB --------- 2,KTClPB 12.5 ± 0.2 mV
2 60 2,NaTFPB --------- 2,KTClPB 28.4 ± 0.2 mV
3 60 2,NaTFPB   0.8 4,KTClPB 14.6 ± 0.2 mV
4 60 4,NaTFPB 1.2 4,KTClPB 9.8 ± 0.2 mV
5 60 2,NaTFPB 1.6 3,KTClPB 12.4 ± 0.2 mV

Table 2: Optimization of membrane ingredients.
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long-term response to senstivity this led to the use of sensors for a long 
period of more than 6 months and under the continued use of this 
investigation. 

Results and discussion
Dynamic response time 

Dynamic response time of the Pd (II) sensor: The determination 
of palladium (II) by potentiometric titration based on the formation of 
a water-insoluble ion pairs of PdX42− and PdX3− complexes (X = Cl−, Br−, 
I−, CN−, SCN−) [29] with a cationic titrant such as alkyl ammonium [30-
32], alkylphosphonium [33-35] and crystal violet [36] were published. 
An important requirement for preparation of an ion selective sensor 
is that membrane electroactive material should have high lipophilicity 
and strong affinity for a target metal ion and poor affinity to the others. 

It is well known that coordination abilities of ligands containing 
sulfur atom, are very selective to the transition metal ions. However, 
most of these show some limitations in their working activity range, 
selectivity, response time, pH range and lifetime. Thus, the development 
of reliable sensing ion selective sensors for palladium ion is considerable 
importance for environment and human health. To improve the 
analytical selectivity, it is essential to search novel carrier compounds 
that would interact with palladium ion with high selectivity. Because 
of the ligand that contain sulphur highly selective for Pd (II), classified 
as a “soft” Lewis acid. The use of IRA-410 as an ionophore is reported 
in the construction of a Palladium (II)-PVC membrane electrode and 
their characteristic and properties of selective electrode were studied. 
The novelty comes from that it can be used in aqueous and solid phases. 
The washing was used by elution of palladium absorbed palladium 
via reduction of palladium by formic acid. It is used for reducing of 
palladium producing palladium metal and sensing it in metallic 
palladium. The reduced palladium can be used as sensor hydrogen.

Time response, when total solution effect of the time according the 
equation (1)

      0( ) { ( ) }t

e

y t Kt K t T −
 τ

= + −                                                                         (1)

Where Kt represent yp (t)…… K(t0-T)e
-t/r yH(t)

The first term from equation describe the particular solution the 
end term is homogeneous solution. The dynamic response time of the 
Pd (II) (ISE)s selective electrode , of the most important factors .study 

upon solvent(PVC)in aqueous solution as previously described [25]. 
The PVC tube with the membrane was then incorporated into an 
Hg|HgCl2 |KCl inner electrode (1.0 mm diameter). The dried tube was 
filled with internal solution contained 10-3 moll-1 pdCl2 and 10-3 mol l-1 
KCl. Then, the electrode was conditioned for 1 h in 10-3 mol l-1 pdCl2 
solution [26]. 

Preparation of PVC–membrane: The PVC-membranes were 
prepared and aggregation into sensor electrodes using established 
procedures (20-24). The prepared membranes contained 1.2 mg 
ionophore (IRA-410), 0.60 mg lipophilic salt, 60 mg PVC and 10 mg 
membrane solvent were mixed with 0.5 ml (THF) I mixed together very 
well and making compact disk with diameter 0.5 cm and thickness 0.2 
cm and drying. In the glass dish with a diameter of 30mm resting on 
a smooth mould. THF tetrahydrofuran was allowed to evaporate for 
48 h standing at room temperature. Transparent PVC membranes were 
obtained with a thickness of 0.2 mm. A 11 mm diameter piece was cut 
out from the PVC membrane and attached to a PVC tube by means of 
PVC–THF solution as previously described (25). The PVC tube with 
the membrane was then incorporated into an Hg|HgCl2 |KCl inner 
electrode (1.0 mm diameter). The dried tube was filled with internal 
solution contained 10-3 moll-1 pdCl2 and 10-3 mol l-1 KCl. Then, the 
electrode was conditioned for 1 h in 10-3 mol l-1 pdCl2 solution [26].

Potential measurement: All potential measurements were 
performed at 25 ± 1°C using a Fisher scientific-computer aided pH/ 
milivoltmeter (Model 450). The electrochemical system for this 
electrode can. The performance of the electrode was investigated by 
measuring its potential in palladium chloride solutions prepared in the 
concentration range (10-1 to 10-7) mol l-1 by gradual dilution of stock 
standard solution 0.1 mol l-1 of pdCl2, with triply distilled water. The 
potentiometric selectivity coefficients (log K Pot Pd, B) were measured 
using the separation solution method (SSM) and the mixed solution 
method (MSM) [27,28]. Dependence of pH on electrode response 
was examined (Figure 7): Adjusting the pH of the measured standard 
solution with 1x10-3 mol-1 hydrochloric acid or sodium hydroxide 
solutions (Figures 6 and 7).

Underwent response Sensors palladium according the equation 
Nernstian with selectivity similar and the knowledge that the sensors 
palladium prepare traditional because we prepare palladium disc, 
and put the bottom of reference electrode .The electrode signal feels 
palladium in another solutions whether the sample solution sea water 
or others and, of course, used plastic films made of PVC, which showed 
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Figure 7: Effect of pH standard solution 0.1M of PdCl2 on IRA-410.
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1.0×10−3 )M. The potentials versus time traces are shown in Figure 8. 
As can be seen, the whole concentration range of plasticized membrane 
electrode reaches its equilibrium responses in a very short time (<1s)

Membrane composition
 Due to some similarities between the functional groups of IRA-410 

with those of the previously reported ligating molecules for lanthanide 
ions, and especially for palladium ion [2–6] as well as its negligible 
water solubility, we decided to examine the suitability of IRA-410 as 
potential ionophore in constructing some lanthanide ion-selective 
electrodes. Our preliminary solution studies revealed that, NBPP forms 
a quite stable complex with Pd (II) ion, which readily precipitates out 
from dioxan solution. While the extent of complexation of transition 
metal ions as well as other lanthanide such as Fe (III), Nd (III) and 
Sm (III) with IRA-410 was found to be much lower, as was examined 
by segmented sandwich membrane method [37]. Subsequently, the 
ligand IRA-410 was tested as an ionophore for the preparation of a 
variety of ions, mono, di, and trivalent metal ion-selective electrodes. 
The potential response of various ion-selective electrodes based on 
the proposed ionophore is shown in Figure 10. As expected, among 
different cations tested, Pd (II) with the most sensitive response seems 
to be suitably determined with the PVC membrane based on ligand 
NBPP. While the response slope of the other ion-selective electrodes 
are much lower the values expected from Nernstian equation, although 
in a limited concentration range. The response of membrane electrode 
depends on some parameters such as plasticizer–PVC ratio, amount of 
ionophore and additive used since; the nature of plasticizer influences 
the dielectric constant of the membrane phase both the mobility of 
ionophore molecules and the state of ligands [38-41]. It was expected 
to play a key role in the determining the ion-selective electrode 
characteristics. Polar plasticizers lead to the lowering of the membrane 
resistance as compared with polar plasticizers, which contain other 
functional groups with potential coordination sites which might [42] 
compete with carrier Thus, several solvents such as THBE, EHBS, 
DOP, o-NDPE, o-NPPE, and were tested (Figures 9-11). In fact, the 
Pd (II) ion-selective electrode based on IRA-410 better than the other 
examined mediators. It has a good Nernstian slope of 19.5 ± 0.2 mV 
decade-1 over a wide of concentration range from 10-1 to 2.5×10-6 mol 
l-1, with detection limit of 1.6×10-6 mol l-1. On the other hand, THBE, 
EHBS, DOP, o-NDPE and o-NPPE solvents give non-Nernstian slopes 
of 12.5, 28, 14.6, 9.8, and 12.4, respectively. 

Response of different anions: In preliminary experiments, various 
PVC-membrane ion-selective electrodes with the synthesized ion pair 
were prepared and tested for different anions. The potential response 
of the electrode for different anions is shown in Figure 9: The results 
exhibited significantly high selectivity to palladium ion over other 
anions. Hence, ion pair was selected as a carrier for preparation of 
palladium selective electrode.

Preparation of sandwich membrane 
 A potentiometric method to determine ionophore complex 

formation constants in solvent polymeric membrane phases, it requires 
membrane potential measurements on two-layer sandwich membranes, 
where only one side contains the ionophore. If both membrane segments 
have the same ionic strength, it is convenient to assume that the activity 
coefficients for the complexed and uncomplexed ions are approximately 
equal. In that case, they can be omitted and the complex constant is 
related to the potential .This relationship allows for the convenient 
determination of formation constants of ionophore complexes within 
the membrane phase on the basis of transient membrane potential 

the practical for response time of the ion selective electrode recorded 
by changing of the Pd(II) concentration in solution from (1.0×10−7 to 
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measurements on two-layer sandwich membranes can be if ion pairing 
neglected. Ion-selective electrode membranes were cast by mixing the 
recorded membrane components to give a total cocktail mass of 181.8 
mg in 2 ml of THF. The solvent THF allowed evaporating overnight. A 
series of disks were cut with a cork borer from the parent membrane. 
These disks were conditioned overnight in each of metal chloride 0.01 
M salt solutions shown in Figure 10 of Ce (III), Sm (III), Fe (III) and Nd 
(III). All membrane electrode potential measurements were performed 
at laboratory ambient temperature in unstirred salt solution (identical 
to the conditioning and inner filling solution) versus Ag/AgCl reference 
electrode. Sandwich membrane was made by pressing two individual 
membranes (ordinary one without ionophore and one with the same 
components and additional ionophore) together immediately after 
blotting them individually, dry with tissue paper. The combined 
segmented membrane was then rapidly mounted into the electrode 
body and immediately measured. The time required from making 
the membrane sandwich contact until final membrane potential 
measurement was less than 1 min.

Sample preparation

Determination of palladium sample by Potentiometeric 
titrations: THF (15.0 mL) was placed in the titration vessel and 
the required volume of the investigated acid and two drops of the 
indicator solution were added. The indicator electrode, either H2/Pd 
or glass electrode and a SCE as the reference one were immersed in the 
investigated solution and connected to a pH-meter. The solution was 
then titrated with standard solution of (potassium hydroxide or sodium 
methylate) and the potential was read after each addition of titrant. The 
test solution was stirred magnetically under a continuous stream of dry 
nitrogen (Figures 9-11).

The optimization of permselectivity of membrane sensors 
 The optimization of permselectivity of membrane sensors is known 

to be highly dependent on the incorporation of addition a membrane 
components. In fact it has been demonstrated that, the presence of 
lipophilic negatively charged additives improves the potentiometric 
behavior of certain cation-selective electrodes by reducing the ohmic 
resistance and improving the response behavior and selectivity [43,44]. 
Some of the lipophilic ions such as, potassium tetrakis (4-chlorophenyl) 
borate (KTClPB), sodium tetra phenyl borate (NaTPB), sodium tetrakis 
(1-imidazolyl borate) (NaIB) and sodium tetrakis (4-fluorophenyl) 
borate dehydrate (NaTFPB), were tested (Figure 12). It has been found 
that, the suitable lipophilic additive which improves the sensitivity of 
Pd (II) electrode was KTClPB with a good Nernstian slope of 19.5 ± 
0.2 mVdecade-1. While the other lipophilic ions have slopes of 21, 13.6 
and 9, respectively (Figure 11). Shown that the potential response of 
various ion-selective membranes based on IRA-410. The amount of 
ionophore has effect on the electrode sensitivity. So that, amounts of 
NBPP carrier (0.8, 1.2 and 1.6 mg) were examined. The results indicate 
that, the membrane containing 1.20 mg NBPP ionophore exhibits a 
good Nernstian slope of 19.5 ± 0.2 mV decade-1 and high selectivity 
of Pd (II) ion.

Effect of internal solution, response time and pH
 The working of membrane electrode in relation to variation of 

reference solutions was investigated. It was found that, the variation 
of the concentration of the internal solution (10-1 to 10-4 mol-1 of KCl 
solution) causes significant effect on corresponding potential response. 
However a solution of 10-3 moll-1 KCl mixed with 10-3 mol l-1 [pdCl4]

-4 
would be used as a suitable internal solution, it had a good slope 19.5 ± 
0.2 mV decade-1. The detection limit, taken at the point of intersection 
of the extrapolated linear segment of the calibration curve, was 1.6×10-6 
mol l-1. The static response time of the membrane electrode thus obtained 
was <10 s. The sensing behavior of the electrode remained unchanged 
when the potential recorded from low to high concentrations or vice 
versa. The life time of the present electrode was at least 3 months. During 
this time, the detection limit of the electrode remained almost constant 
and the slope of the response decrease from 16.5 ± 0.2 to 16.1 ± 0.15 mV 
decade-1. After this time the electrochemical behavior of the electrode 
gradually deteriorates. The effect of pH on the response of the electrode 
was studied over the pH range from 1 to 11 at different concentrations 
(10-2 to 10-5 moll-1) of Pd (II) solution. The pH of solutions was adjusted 
with either HCl or NaOH solutions. Potential remains constant at pH 
range from 4 to 8 (Figure 12). The increase of potential below pH~ 4 
may be ascribed to interference by H+ ion and the decrease of potential 
above pH= 8 may be due to formation of some hydroxyl complex of 
the pd(II) ions in solution from hydrolysis of palladium chloride. The 
performance of the electrode was assessed in partially non-aqueous 
media using ethanol–water mixture; it is observed that the electrode 
functions well in presence of up to 10% (v/v) non-aqueous (alcoholic) 
content. Higher alcoholic content disturbs the functioning of system 
(Figure 12).

Electrode selectivity
 The influence of interfering ions on the response behavior of 

ion-selective membrane electrode is usually described in terms of 
selectivity coefficient log Potpalladium B. The potentiometric selectivity 
coefficients log Pot palladium B of palladium electrode were evaluated 
by (SSM) and (MSM)(27,30,31). The resulting values of the selectivity 
coefficients are summarized in Table 3. It is evident from the selectivity 
coefficients data, that the sensor exhibits a high performance for Pd 
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Figure 12: Effect of lipophilic anions on potential responses of 
pd(ll) selective electrode based on IRA-410 ionophore for different 
concentrations.

Interfering ions
( )log MPM

p IIK =

Ce3+ −3.00
Sm3+ −2.89
Fe3+ −3.02
Nd3+ −3.10

Table 3: Comparison of the selectivity coefficients of different  pd(II) electrodes.
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(II) ion compared with alkali, alkaline-earth, transition and heavy 
metal ions. Comparison of the main analytical features of some the 
previously described pd(II) ion-selective [18-22] electrodes) with the 
proposed Pd (II) electrode revealed that, the present electrode exhibited 
a better selectivity, especially in the presence of Hg (II) and Fe (III). This 
participation of these functional groups in the binding with pd(II) ions. 
Elemental analysis of NBPP and its Pd (II) complex was examined and 
showed that, the formation of NBBP–pd(II) complex for a membrane 
segment may form with the complex stoichiometry n =1. Membrane 
potential values emf for the examined metal salt solutions of Ce (III), 
Sm (III), Fe (III) and Nd (III) were deter-mined by subtracting the cell 
potential for a membrane without ionophore from that of the sandwich 
membrane. The determined formation constants (log β ILn) for the 
examined different complexes were recorded in Table 3. A careful 
analysis of the data in, reveals that pd(II) has significant cation-binding 
characteristics. A comparison between the potentiometric behaviors of 
the proposed electrode with the previously reported ISEs for Pd (II).

Determination of cations in some pharmaceutical samples.
Samples containing 50 ml of distilled water and stirred for 3 h in 

thermostat adjusted to 25 ± 1˚C and allowed to stand to 2 that the same 
temperature before potential measurement. The palladium selective 
electrode and reference electrode were immersed in the precipitate 
solution. The concentration of soluble pd(II) ions was measured and 
Solubility product was calculated for cerium oxalate was 2.2×10-26 while 
reference was 3.2×10-26 and for cerium phosphate was 2.3×10-23 while 
reference was 1×10-23 with small deviation of reference (Table 3).

Determination of palladium in some water and radioactive 
waste samples

As discussed before palladium cation can be determined in water 
and radioactive waste samples

Reaction mechanism
 The formation of [PdCl4]

-2 species are suggested to be bounded 
to the resin. This concept is supported by the considerable stability of 
the formed palladium tetrachloro complex (PdClO4=15). The complex 
formation of palladium tetrachloro complexes explains the fast loading 
of palladium on the resin phase as a brown zone which may be formed 
as a tetrachloro complex. It, also, explains the difficulty of elution 
which is attributed to the stability of [PdCl4]2 complex. Therefore, the 
separation of the complexed palladium from the solid phase can be 
carried out via reduction using the weak complexing agent; formic acid 
[1]. To explain the reduction steps of palladium chloride by formic acid, 
the reduction using ethylene was consulted [2] in comparison to the 
following reduction reaction case. In this respect the following steps 
are suggested [1]. Sepaon Mechanism: The formation of a complex for a 
metal ion M+ with the following steps is also suggested;

The following steps are also suggested

a. HCOOH + R[PdC14]
2 1K→ R[PdC13(H000H)] + C1

b- R[PdC13(H000H)] +H20 2K→ R(Pd(HCOOH)(OH2)C12) 
+C1

c- R(Pd(HCOOH)(OH2)C12) 3~K→ R[Pd(HCOOH)(OH)
C12] + H+ 

d- Step (c) indicates that the rate of the reduction process is 
reversibly proportional to the H+ concentration which explains 
its increase by decreasing the formic acid concentration.

The complexed species formed in step (c) are suggested to go via 
possible rearrangements through an addition of an OH group [14]; as 
in (d):

    0  Cl                                                       H          Cl 

⌠  ⌡                                      

- R (H - C -  Pd -C1)+ H2O        slow  R (H - 0 - C - O - Pd-C1) 

                            

          OH    OH     OH OH2 

e

Step (d) is suggested to be the rate determining step where the 
addition of the hydroxide ion to the coordinated formic acid occurs. 
This step is followed by a proposed fast reaction as in (e): 

                         H        Cl             

- R (H-0-    C1O -        Pd-Cl)                                                          Pd°+R+2H2O+2C1-+CO2+H+ 

           

                         OH   OH2 

f

                     

Conclusion
 New ion selective sensitive electrode of Pd (II) as multisensor based 

on IRA-410 via low Cost oxidation reduction process as membrane 
disc sensor from. It can be used as sensor in HCl solution as (PdCl4)

2 
in, Pdo sorbed on solid phase IRA-410 and eluted as Pd(NO3)

2 in 
nitrate medium. This electrode has a wide linear dynamic range d low 
detection limit of 1.6×10-6 mol l-1. It has a fast response time (<1 s) and 
good selectivity with respect to different metal ions in pH range from 
(1.0-9.0). It can be used for about 10 months with complex with Pd (II) 
was calculated by using segmented sandwich membrane method. The 
proposed electrode has been used successfully as an indicator electrode 
in potentiometric determination in aqueous nitrate and /or chloride 
media.
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