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Abstract
Conventional cancer chemotherapies are often limited by their non-targeted nature and their inadequate delivery to 

the tumor affecting the normal tissues and leading to toxic adverse effects. In order to improve the anticancer efficacy 
and safety of these drugs, as well as the diagnosis capacity of imaging agents, nanoparticles drug delivery system 
has been developed combining ligands enabling tumor targeting at a cellular level and drug carrier capacity. Nucleolin 
(NCL) is a multifunctional protein that could shuttle from nucleolus to nucleoplasm, cytoplasm and cell surface. This 
ribonucleo protein over expressed at the cell surface of cancer cells is involved in many cancer processes supporting 
tumorigenesis such as cell proliferation and apoptosis. Additionally, NCL expression is enhanced in angiogenic vessels, 
enabling multi-targeting strategies toward the tumor microenvironment. In this context, several compounds targeting 
NCL, such as the aptamer AS1411, the peptide F3 and the multivalent pseudopeptide N6L, have been developed and 
investigated for cancer therapy. Due to their cancer cell targeting capacities, these compounds have been evaluated 
to mediate highly specific and effective nanoparticles for drug delivery to the tumor. In this report, we present a review 
of literature focusing on drug-loaded nanoparticles conjugated with these nucleolin ligands, strikingly emphasizing the 
success of such a strategy. 
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Introduction
Cancer remains a significant health problem worldwide accounting 

in 2012 for 14.1 million of new cases and 8.2 million deaths [1]. The 
therapeutic arsenal for cancer is composed of surgery and radiotherapy 
used for local and non-metastatic cancers and anticancer drugs 
(chemotherapy, hormono-therapy and targeted therapies) more often 
used in metastatic cancers. Chemotherapeutic drugs mechanism is 
based on inhibition of cell division of cancer cells but, unfortunately 
these compounds act also on several normal cells needing high renewal 
such as bone marrow, gastrointestinal or hair follicle cells. In fact, 
clinical efficacy of chemotherapeutic agents is often hindered by serious 
adverse effects, caused by an inadequate delivery to the tumor due to 
unfavorable pharmacokinetic profile and to a non-specific-tumor-cell-
killing. For instance, the clinical efficacy of paclitaxel, a taxane molecule 
inhibiting microtubule depolymerization, is often limited by its poor 
aqueous solubility, and hypersensitivity reactions and neurotoxicity 
induced by its solvent cremophor/ethanol [2]. Doxorubicin (DOX), 
one of the most widely used antineoplastic agents inhibiting the topo-
isomerase II and intercalating in DNA and RNA, is well known for 
its cardiotoxic side effects [3]. In this context, one major challenge in 
cancer research remain to improve treatments efficiency along with 
patient quality of life by reducing side effects of these most frequently 
used therapeutic arms. Other great needs in cancer therapy are to 
improve early disease detection in order to prevent cancer progression 
to advanced stages and metastasis, to determine the characteristics 
(location, stage and grade) of the tumor to adapt the treatment so as 
to achieve the best outcome for each patient, and to allow real-time 

monitoring of the treatment. Many images techniques providing 
both anatomical and functional information have shown great 
promises in cancer diagnosis, such as radionuclide-based positron 
emission tomography (PET), magnetic resonance imaging (MRI) and 
fluorescence-based optical imaging. However, single imaging modality 
and unfavorable pharmacokinetic profile of diagnostic agents still 
constitute the major limits [4]. 

In order to overcome these therapeutic and diagnostic limits, two 
strategies have been widely investigated: the nanoparticle (NP) drug 
delivery system and targeted therapies that also could be combined as 
a theranostic tool. 

The first nanotechnology tool consists in loading chemotherapeutic 
drugs into a NP subtype. NPs are defined as objects having at least 
one dimension that ranges between 1 and 100 nanometers. NPs are 
potentially able to interact with biological entities having similar size, 
such as proteins or tumor cells [5]. There are several types of NPs 
that can be classified according to their composition into organic and 
inorganic NPs. Organic NPs include liposomes, micelles, solid lipid 
NPs, dendrimers and polymeric NPs (poly(ethylene glycol) (PEG)-
functionalized poly (D,L-lactic-co-glycolic acid) (PLGA) (PEG-
PLGA), hydrogels NPs, polyacrylamide). The most studied inorganic 
NPs are gold NPs, quantum dots, silica, carbon and magnetic NPs [6]. 
NPs have been widely investigated to transport to the tumor, many 
active compounds that have poor pharmacokinetic properties such as 
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rapid degradation, elimination or poor absorption [6]. In addition, NPs 
constitute a platform for multifunctional multi-drug loading, enabling 
to improve efficacy in cancer therapy, to overcome the limitation of a 
single imaging modality in cancer diagnosis, and to combine therapy 
and diagnosis within a single formula, a strategy known as theranostic 
[7]. As for the concept of targeted therapies that rose in the early 1990s, 
it is based on targeting specific molecular abnormalities in cancer cells, 
such as a receptor on the cell surface, an intracellular protein or gene. 
Thus, combining both strategies by conjugating drug transporting 
NPs with tumor targeting molecules favors drug delivery’s selectivity, 
efficacy and therapeutic index [8,9]. It is in this context that the current 
review is being addressed. 

Among widely investigated receptors for cancer targeting, nucleolin 
(NCL) seems to be a promising molecule. This ribonucleo protein is 
involved in several cellular processes such as ribosomal assembly and 
maturation and also in tumorigenesis. NCL is over-expressed on the 
cell surface of many cancer cells and accumulating evidences validated 
cell surface nucleolin as a very promising target in the treatment of 
cancer. These studies have been commented in recent reviews that 
summarize publications and patents related to the use of NCL ligands 
in cancer therapies [10-12].

NPs functionalized with NCL targeting ligands which exhibit high 
affinity toward tumor cells, have been an approach aimed at improving 
anti-cancer efficacy and safety of chemotherapeutic agent as well as 
imaging for cancer diagnosis. To date, known NCL ligands that are 
already used to functionalize NP are: the aptamer AS1411 [13], the 
F3 peptide [14] and the multivalent pseudopeptide N6L [15]. NPs 
functionalized with these NCL ligands as well as the roles of these NPs 
in cancer constitute the focus of this review.

NCL: A promising target for cancer therapy

NCL, initially called C23, is a protein composed of 707 amino 
acids protein with an apparent molecular mass of 100-110 kDa, and 
ubiquitously expressed in most eukaryotic cells in which it represents 
an important multi-functional protein. NCL is mainly localized in 
the nucleolus of quiescent cells where it makes 10% of total proteins 
[16,17]. It is also found in the nucleus [18], the cytoplasm [19] and 
on cell surface [20]. NCL displays different functions depending on 
its localization. In the nucleolus, NCL was essentially described for its 
role in ribosome synthesis where it contributes to rDNA transcription, 
pre-RNA maturation and the assembly of ribosomal subunits [17]. In 
the nucleus, NCL is involved in DNA replication and reparation and is 
implicated in mRNA post-transcriptional regulation in the cytoplasm 
[17]. At cell surface, NCL binds to several ligands involved in cell 
proliferation, apoptosis, angiogenesis and microorganism/cell binding 
[12].

NCL held the attention as a target for cancer therapies accounting 
to its implication in tumorigenesis but also and mainly for its 
increase expression in cancer cells. In fact, the nucleolar activity as 
ribosome synthesis is increased in rapidly dividing cells compared 
to quiescent cells. The level of NCL synthesis is correlated with the 
rate of cell doubling, its expression is thus greater in many tumor 
cells types [21,22]. NCL is a marker of several human cancer such as 
colorectal gastric, lung, cervical and breast carcinomas, melanoma and 
glioblastoma [23-34].

In each compartment, the rise of NCL expression participates to 
tumorigenesis. In the nucleolus, the high level of NCL increases RNA 
polymerase I transcription contributing to hyperactivation of rDNA 

transcription and thus to a high level of protein synthesis required for 
a high proliferation rate [35]. In the nucleoplasm, NCL regulates the 
transcription of genes involved in cancer such as Interleukin-9 receptor 
which displays proliferative and anti-apoptotic activities [36] and the 
vascular endothelial growth factor (VEGF), receptor of one of the main 
factor involved in angiogenesis during tumorigenesis and metastasis 
[37]. NCL also regulates the expression of a specific subset of miRNA 
miR-21, miR-221, miR-222, and miR-103 involved in breast cancer 
initiation, progression and drug resistance [30]. In the cytoplasm, NCL 
binds and regulates mRNA involved in apoptosis and tumorigenesis. 
NCL binds to the anti-apoptotic proteins Bcl-2 and Bcl-xl mRNA 
allowing tumor cells to run off from apoptosis [38,39]. Interacting 
with p53 mRNA, it prevents its translation and thus protects cells from 
apoptosis [40,41]. Furthermore, NCL enhances translation of many 
mRNA encoding for oncogenic proteins [42]. Cell surface NCL has been 
reported to act as a receptor for several growth factor such as midkine 
[43] and pleiotrophin [43-45] involved in angiogenesis and tumor 
growth, hepatocyte growth factor (HGF) involved in the mechanisms 
of metastasis and cell adhesion [46] and P-selectin that induces 
signaling pathways of cell adhesion and invasion [47]. In addition, the 
implication of cell surface NCL in proliferative diseases may be related 
to the fact that it exists in a protein complex of 500-kDa, including 
several proteins involved in cancer progression. As described by Krust 
et al., this complex is composed at least of eight proteins in leukemia 
CEM cells: Wnt-A and Wnt-B involved in the differentiation of cancer 
cells and normal cells; the antigen Ku80 expresses on the surface of 
various tumor cell lines such as leukemia’s and solid tumors; the SRP68 
and SRP72 subunits of a ribonucleo protein complex involved in the 
synthesis and translocation of secretory proteins to the membrane; the 
C1q complement receptor gC1q-R involved in tumor progression, and 
finally the S4 and S6 ribosomal proteins that could, like several other 
ribosomal proteins, play a role in cancer [48]. The overexpression of 
cell surface NCL was reported in many cancer cell lines, such as human 
breast carcinoma cell lines (MDA-MB-231, MDA-MB-435), human 
carcinoma (LNCaP, HeLa, G401), leukemia (Jurkat, HuT 78, CEM) 
[15,49]and in endothelial cells stimulated by VEGF [50]. Thus, using 
NCL ligands enables selective targeting of two distinct cell populations 
within the tumor microenvironment: cancer cells and endothelial cells 
constituting the angiogenic blood vessels. As angiogenesis promotes 
cell survival and tumor metastasis [51], this dual targeting yields many 
advantages: endothelial cells are less able to acquire drug resistance and 
are more accessible to the drug injected in the vascular compartment 
injection, avoiding low drug accumulation into the tumor owing to 
high interstitial pressure [52,53]. Thus, a formulation enabling the 
concentration of the therapeutic agent into endothelial and tumor cells 
is believed to ultimately improve cancer treatment efficiency.

Moreover, as NCL participates in binding and endocytosis/
macropinocytosis processes [54,55] and shuttles between the cell 
surface, the cytoplasm and the nucleus [56]. Drug loaded by NPs could 
be transported through NCL to cell nucleus which could improve the 
drug delivery and cause greater cell growth inhibition. Finally, as NCL 
is always overexpressed in almost all cancer cells, strategies targeting 
NCL will not be limited to a specific category of patient as some current 
strategies depends on the expression or not of the targeted receptor.

Considering all these advantages of NCL targeting in cancer 
therapies, AS1411, F3 and N6L compounds were developed and 
studied for their targeting properties and/or antitumor activities. The 
three molecules have been conjugated to NPs loaded with drugs, genes 
or imaging agents and investigated by in vitro and in vivo studies for 
cancer therapy and diagnosis. A number of these studies highlighting 
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the success of this strategy are reviewed in this work and summarized 
in Table 1.

AS1411 aptamer conjugated NPs targeting NCL

Aptamers are synthetic single-stranded DNA or RNA 
oligonucleotides that bind to target molecules with high affinity and 
specificity enabled through their 3-dimensional structure [57]. As 
ligands for molecular targeting, aptamers exhibit significant advantages 
compared to antibodies in terms of low cost production, easier scaling 
up, avoiding animal use and convenience to be transported at ambient 
temperature after synthesis. Additionally, aptamers are smaller in size 
(∼1-2 nm, <10 kDa) compared to antibodies (∼10 nm, ∼155 kDa) 
allowing better tissue and tumor penetration [58]. 

AS1411, a guanosine-riche DNA aptamer (26-mer, 7.8 kDa), is 
currently in phase II clinical trials [57,59]. It binds to NCL with affinity 
ranging from pM to low nM [13]. Indeed, plasma membrane NCL 
has been reported as a receptor for AS1411 in many tumor cells such 
as MV4-11 leukemia cells [33], MDA-MB-231 and HeLa cells [60]. 
By blocking several functions of NCL, AS1411 exhibits antitumor 
activities. It destabilizes Bcl-2 [61], blocks the anti-apoptotic pathway 
of NF-ƙB [62] and reduces NCL-dependent miRNA levels [30]. It 
results in in vitro cell growth inhibition in various human tumor cell 
lines including MCF-7 [61,62], HeLa, DU-145 and A549 [62], and in 
breast cancer tumor growth inhibition associated to reduced metastasis 
in in vivo MDA-MB-231 xenograft models [30]. More recently, the 
team of Bates has demonstrated that the antiproliferative activity of 
AS1411 correlated with its capacity to stimulate macro pinoicytosis 
through activation of Rac1 [63] causing methuosis [64], a new type 
of non-apoptotic cell death. Thus, AS1411 exhibits dual properties of 
targeting and killing tumor cells. AS1411 was also used as a potential 

tumor-targeting agent for imaging in various cancer models such as 
prostate [65], glioma [66], lung [67], cervical [68]. 

Hence, several NPs formulations conjugated with AS1411 have 
been successfully investigated in therapy and diagnosis of various 
cancer types. These NPs showed targeting specificity, enhanced tumor 
cytotoxicity, a reduced toxicity of the chemotherapeutic agent loaded 
as well as an enhanced imaging signal.

Many of these formulations have been investigated in glioma 
tumors, taking advantages in NCL over expression in endothelial 
angiogenesis vessel cells that enables specific accumulation of the 
drug loaded in the glioma compared to strategies overcoming BBB 
(blood-brain barrier) that could favor non-specific distribution in the 
central nervous system. Using C6 rat glioma cells, Guo et al. reported 
an enhanced anti-proliferative effect of PTX loaded PEG-PLGA NPs 
when linked with AS1411, certainly owed to high cellular association 
facilitated by the NCL-AS1411 interaction. Pharmacokinetic studies 
performed on rats that received intravenous injections showed 
significant longer circulation time of both targeted and non-targeted 
NPs formulations than Taxol® due to the enhanced stability of the 
PEG-PLGA formulation. Anti-glioma efficacy evaluated in C6 glioma 
xenografts bearing nude mice after intravenous administration, showed 
that PTX accumulation in the tumor was significantly improved by 
AS1411 conjugation to NPs, which resulted in tumor inhibition and 
a significantly prolonged animal survival evaluated on Wistar rats 
bearing C6 glioma [69]. Other formulations grafted with AS1411 were 
a worthy object of studies for simultaneous treatment and diagnosis of 
glioma. Kim et al. have developed an AS1411 grafted theragnostic probe 
of magnetic fluorescent NPs loaded with miRNA-221, a molecular 
probe that contains perfectly complimentary oligonucleotides against 

NCL Ligand NPs Drug/gene/dye delivered Application Ref
AS1411 
aptamer

PEG-PLGA PTX Cancer therapy Rat glioma (C6 cells) and ectopic xenorafts  [42]
Magnetic fluorescent m iR N A-221 molecular 

beacon probe
Cancer theragnostics Rat glioma (C6 cells) and ectopic xenografts  [43]

Magnetic fluorescent 67 Ga-citrate Cancer imaging Rat glioma (C6 cells) and ectopics xenografts  [44]
Liposomes siBRAF Cancer therapy Human melanoma (A375 cells) and ectopic  [45]
Albumin PTX Cancer therapy Human Breast cancer (MCF -7 cells)  [46]
Liposomes DOX Cancer therapy Human Breast cancer (MCF -7 cells) and ectopic xenografts  [47]
Gold nanostars   Cancer therapy Human carcinoma (A-549, A498, MD A-MB-231, HeLa), sarcoma 

(HT-1080), melanoma (SK-MEL-2), glioblastoma (U-87MG)
 [48]

Gold nanostars   Observation of NPs cancer cell nucleus interactions Human cervical cancer (HeLa 
cells)

 [49]

F3 peptide Hydrogel DOX Cancer therapy Rat glioma (9L cells)  [50]
PEG-PLGA PTX Cancer therapy Rat glioma (C6 cells) and orthotopic xenograft  [51]
Polyacrylamide Methylene blue coomassie 

blue indocyanine green
Cancer imaging Rat glioma (9L cells)  [52]

Liposomes DOX Cancer therapy Human breast cancer cells (MDA-MB-231, MCF-7) Human 
melanoma (MDA-MB-435S cells)

 [53]

Liposomes DOX+C6-ceramide Cancer therapy Human breast cancer cells (MDA-MB-231 cells) Human melanoma 
(MDA-MB-435S cells)

 [54]

Carbon nanotubes   Cancer near infrared light therapy Human breast cancer (MCF-7 cells) Human aortic 
endothelial cells (HAAE-1)

 [55]

Liposomes siRNA GFP (Green 
Fluorescent Protein)

Cancer therapy Human breast cancer (MDA-MB-231 and MD A MB-435S cells) 
Human microvascular endothelial cell HMEC-1

 [56]

N6L pseudo 
peptide

Iron oxide magnetic NPs   Cancer therapy Human breast cancer (MDA-MB-231cells) and ectopic xenografts  MS15
Iron oxide magnetic NPs DOXX Cancer therapy Human breast cancer (MDA-MB-231cells) and ectopic xenografts  [57]
DNA GFP/Luciferase reporter gene Cancer therapy Human cervical cancer HeLa cells  [58]
DNA GFP/Luciferase reporter gene Study of NCL-DNA NPs complex fate Human cervical cancer HeLa cells  [59]

The table summarizes the different formulations of NPs functionalized with the anti-NCL ligands AS1411, F3 and N6L as well as non-functionalized NPs targeting NCL, with 
the different in vitro and in vivo models used for cancer therapy and diagnosis NPs studies.

Table 1: NPs targeting NCL for cancer therapy and diagnosis.
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the target miRNA. Hence, these NPs simultaneously target cancer 
tissue and treat the intracellular expressed miRNA-221 involved in 
carcinogenesis and highly expressed in many cancer cells including 
C6 glioma cells [70]. AS1411 promoted NPs plasma membrane 
targeting and internalization in 15 different cancer cell lines including 
C6 cells, where live cell imaging showed a direct interaction with the 
plasma membrane. Following internalization in C6 cells, miRNA-221 
was efficiently delivered inside the cells and enabled the blockage of 
miRNA-221 induced cell proliferation resulting in a decrease in cell 
viability. In C6-xenograft bearing nude mice, AS1411 enabled tumor 
targeting and miRNA-221 delivery inside tumor cells permitting 
fluorescent and bioluminescent imaging as well as an effective 
reduction in tumor volume [70]. AS1411 was grafted to a trimodal 
imaging probes that consists on magnetic fluorescent rhodamine 
NPs with a colbalt-ferrite core enabling MRI, and loaded with the 
radioactive ligand 67Ga-citrate providing high sensitivity regardless 
to tissue tickness where fluorescence signals can be attenuated. Using 
confocal microscopy analysis and fluorescent intensity measurements, 
this study showed that AS1411 improved NPs uptake by C6 cells highly 
expressing NCL. This formulation was also assessed for tumor targeting 
in in vivo C6-bearing nude mice. Twenty-four hours after intravenous 
injection, fluorescent, MRI and scintigraphic analysis showed that 
AS1411 improved the NPs accumulation in the tumor [71]. 

AS1411 was also used to target other cancer types such as 
melanomas, which are difficult to treat because of high rate metastasis 
and drug resistance. siBRAF (BRAF gene mutation found in 60% of 
melanomas) loaded liposomes were conjugated with AS1411 and 
assessed for melanomas therapy. Confocal laser scanning microscopy 
and flow cytometry revealed AS1411 potential to target these liposomes 
to A375 melanomas cells. Quantifying mRNA level by real time PCR 
(Polymerase Chain Reaction), showed a significant gene silencing and 
a decrease in BRAF protein expression resulting in cell proliferation 
suppression. In vivo studies were conducted on nude mice bearing 
A375 xenograft. Liposomes were injected in tail vain and fluorescence 
images were taken during 48 hours. A fast and persistent accumulation 
in the tumor was reported. Real time PCR showed a significant 
decrease in BRAF mRNA tumors resulting in tumor necrosis assessed 
by HE (Hematoxylin and Eosin) staining suggesting that AS1411 also 
efficiently promoted targeting and delivery in-vivo [72].

AS1411 grafted NPs were also investigated for breast cancer therapy, 
where the major limits of actual treatments, especially chemotherapy 
and total mastectomy, are side effects that may have psychological 
impact on women lives, and the high metastatic risk. Hence, NPs and 
targeted therapies such as NCL are being more and more investigated 
in breast cancer therapy. AS1411 functionalized human serum albumin 
NPs were used as drug carrier of PTX. This formulation displayed high 
cell uptake associated to significant cytotoxicity reported in MCF-7 
cancer cell line. Affinity to NCL was demonstrated using flow cytometry 
on MCF-7 cells. Competition studies with endostatin (ligand of surface 
NCL) showed that NPs internalization was in part mediated by NCL, 
and in another part by the same way as non-targeted NPs. Interestingly, 
significant toxicity was observed in normal cells with Taxol® but not 
with PTX loaded targeted NPs due to limited uptake and accumulation 
[73]. In another study, AS1411 was grafted to DOX loaded liposomes. 
Flow cytometry analysis showed that AS1411 enhanced NPs binding to 
MCF-7 cells as well as their uptake assessed by confocal microscopy. 
Enhanced antitumor efficacy was observed in MCF-7 cells and MCF-
7 xenograft bearing mice, which was attributable to enhanced tumor 
penetration and cellular internalization by AS1411. Indeed, this study 
demonstrated in in-vivo, after intratumoral injection and ex vivo, 

mimicking injection experiments, that AS1411-liposomes were not 
simply in the interstitial space of the tumor tissues but inside tumor 
cells [74].

AS1411 grafted to gold nanostars showed an excellent anticancer 
potential mediated by NCL in a panel of 12 cancer cell lines belonging 
to four cancer subcategories: carcinoma, sarcoma, melanoma, and 
glioblastoma. In this work, NCL overexpression in non-nuclear 
extract of cancer cells was first confirmed using immunoblotting. 
AS1411-gold nanostars were efficiently uptaken by cancer cells as 
shown by confocal microscopy analysis and further confirmed by gold 
content measurement assay using inductively coupled plasma-mass 
spectrometry (ICP-MS). Interestingly, a similar uptake was observed 
with fibroblast cells lacking of plasma membrane NCL, suggesting the 
implication of other endocytosis pathways independent of surface-
NCL as previously reported [55]. Internalized by cancer cells, AS1411-
gold nanostars succeeded to induce downregulation of Bcl-2 gene 
expression evaluated by RT-PCR. Interestingly, the effect was only 
observed in cancer cells but not in fibroblast cells, concordantly with 
a different uptake mechanism. Bcl-2 downregulation was further 
associated to apoptosis evaluated by caspase 3/7 activity. The study 
showed an important reduction in cell viability 72 hours after treatment 
with AS1411-gold nanostars. In addition, the anticancer effect was 
drastically potentiated with light-triggered release of AS1411 from gold 
nanostars owed to a high localized concentration of AS1411detached 
from the NPs. Finally, AS1411 conjugated to NPs showed higher 
anticancer potential compared to the free AS1411 exceeding 10 times 
the concentration, with a 17% higher average cell death, emphasizing 
the importance of NPs as a platform to insure stability and high local 
concentrations of the drug [75]. Using high resolution TEM, the same 
group reported deformation of the nuclear envelope that correlated in 
80% with the location of AS1411-gold nanoconstruct near the nucleus 
of HeLa cells. Folding in the nuclear envelope were notably reported 
with 450 nM of AS1411 loaded NPs, an effect that was absent with the 
free AS1411 used at the same concentration, emphasizing once again 
the role of NPs as route for increasing anticancer activity. Interestingly, 
these foldings correlated with increased apoptotic effect and decreased 
cell viability. This work also highlights the role of NCL in the trafficking 
of AS1411 NPs to the intracellular compartment that was only reported 
in cells with high surface NCL expression emphasizing the advantage 
of the NCL as a shuttling protein [76].

Finally, many other formulations of AS1411 conjugated NPs were 
investigated in preclinical studies for cancer therapy and diagnosis 
such as quantum dots for human glioblastoma [77], vinorelbine 
loaded PEG-PLGA NPs for breast cancer [78], gold fluorescent for 
cervical imaging and photodynamic therapy [79]. Very recently, a very 
elegant experiment have shown that in a mouse model of breast cancer, 
systemic injection of AS1411-linked gold nanospheres completely 
inhibited tumour growth with no sign of toxicity [80]. All these studies 
showed promising preclinical results owed to high tumor targeting 
facilitated by NCL-AS1411 interaction. 

F3 peptide conjugated NPs targeting NCL

F3 peptide is a 31-amino-acid sequence of the fragment of the high 
mobility group protein 2 [81]. F3 specifically binds to cell surface NCL 
and undergoes cell surface to nucleus transport, enabling a payload 
transport into the target cell nucleus [14]. Indeed, fluorescein-labeled 
F3 was shown to translocate into the nucleus of MDA-MB-435 cells in 
vitro and in xenografts studies [81]. F3 promoted targeted delivery of 
alpha-emitting particles into the nucleus of intraperitoneally growing 
xenograft tumors, increasing the survival time of the mice [82]. 
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Compared to other tumor targeting peptide, F3 has the added benefit 
of binding to angiogenic vessels in addition to tumor cells [14]. Thus, 
F3 has been used as an effective ligand to mediate NPs targeting to 
cancer cells and angiogenic blood vessel endothelial cells within the 
tumor microenvironment for cancer therapy and imaging.

Many formulations of F3 conjugated NPs were investigated for 
glioma therapy and imaging. F3 conjugation to hydrogel NPs prevented 
them from being trapped in the acidic lysosomes of 9L glioma cells, 
avoiding their degradation [83]. F3 peptide further conjugated to 
DOX loaded hydrogel NPs dramatically enhanced their uptake by 
NCL mediated endocytosis in NCL-overexpressing 9L glioma cell line. 
Competition studies with free F3 peptide resulting in a blocking of 
NPs uptake confirmed the NCL targeting selectivity and support the 
hypothesis of a NCL-mediated endocytosis uptake. In addition, this 
work demonstrates for the first time the potential of the F3-targeted 
drug delivery approach to improve the uptake of NPs by drug-resistant 
cells (human ovarian adenocarcinoma cell line NCI/ADR-RES), that 
may be associated to the over expression of NCL [84]. In another study, 
F3 was linked to PTX loaded PEG-PLGA NPs and assessed for glioma 
therapy in association with the tumor penetrating peptide tLyp-1. 
Decoration with F3 improved NPs penetration in 3D tumor spheroids 
of C6 cells as well as in vivo intracranial C6 glioma bearing mice, 
resulted in a prolonged survival time that was higher in association with 
tLyp-1 peptide. It is important to note that pharmacokinetic studies 
conducted on rats after i.v. administration showed a significantly 
prolonged elimination half-life and decreased clearance rate of the NPs 
formulation compared to Taxol® [85]. Furthermore, F3 NPs showed 
their potential in brain tumor imaging. Surgical resection of brain 
tumors is often compromised by incomplete resection due to lack of 
adequate visible contrasts or the need for specialized equipment. NPs 
targeted directly to tumors and loaded with contrast agent or dyes 
constitute a promising technique to improve intraoperative brain 
tumor delineation. The first study published to use dye-loaded NPs to 
cause visible color change in tumor cells used F3 as tumor targeting 
ligand to glioma cells. F3 grafted to dye loaded polyacrylamide NPs 
increased cell binding and internalization of NPs into the cytoplasm 
resulting in a qualitative color change in glioma cells. Therefore, the 
addition of F3 significantly decreases the dose of NPs necessary to 
cause color change, emphasizing again the importance of a selective 
tumor targeting in improving the techniques outcome [86].

F3 NPs were widely investigated in breast cancer studies. Moura 
et al. studied pH-sensitive liposome functionalized by the F3-peptide 
in breast cancer models. F3-targeted liposomes were able to bind 
and internalize human breast cancer cells obtained from patients 
diagnosed with invasive breast carcinoma. The amount of uptake was 
only associated with the expression of NCL receptor, regardless of 
estrogen, progesterone and HER2 receptor expression, showing the 
clinical relevance of such strategy for patients resistant to the former 
blocking receptors therapy regimens such as anti-HER2 (Herceptin®). 
In vitro, cellular association studies confirmed these results showing 
the ability of F3 to target liposomes to cells up to 17-fold compared 
to the non-targeting liposomes. In this study, DOX was encapsulated 
into the F3-liposomes. This formulation was significantly more 
effective to induce endothelial (HMEC-1) and breast cancer cell death 
and to reduce vessel formation with vessel destabilization than non-
targeting liposomes, likely owing to the highest intracellular delivery 
of DOX to targeted cells. F3-targeted liposomes loading DOX were 
injected in the tail vein of mammary fat pad mice bearing MDA-MB-
435S tumor. The complex accumulated in the tumor for a time point 
as short as 4 hours emphasizing the ability of F3 to selectively bind 

to tumor cells. At 24 hours, tumor accumulation was 33-fold higher 
than non-targeted counterparts that were preferentially cleared by 
the spleen and liver, due to lack of targeting specificity. Consistently, 
preferential accumulation of F3-liposomes in the tumor resulted 
in a significant reduction in viable rim area and vascular density, 
induction of cell death and tumor necrosis compared to non-targeting 
liposomes [87]. In a further study, these F3-liposomes were loaded with 
a combination of DOX and C6-ceramide, one of the most promising 
drugs described to inhibit the cancer deregulated pathway of PI3K/
Akt. Acting on different biological and cellular levels of the tumor, the 
combination targeted to cancer cells by F3, enabled increased cell death 
against chemotherapy resistant cells MDA-MB-231 as well as sensitive 
MDA-MB-435S cells, associated to a marked cell and nucleus swelling 
consistent with necrotic cell death [88]. F3 was also conjugated to 
carbon nanotubes for near-infrared light therapy of breast cancer. The 
conjugate was actively internalized in MCF-7 and HAAE-1 endothelial 
dividing cells resulting in significant cell death further enhanced by 
near-infrared laser treatment, an effect that was not observed in non-
dividing confluent endothelial cells [89]. F3 targeted liposomes showed 
their efficacy to deliver anti-eGFPsiRNA and to down-regulate GFP 
in MDA-MB-435 cells and angiogenic endothelial cells HMEC-1. The 
success was certainly owed to F3-mediated high cellular association 
evaluated by flow cytometry and confocal analysis, and that was 
inhibited at 4°C, suggesting that a receptor-mediated endocytosis was 
involved in F3-liposomes uptake [90].

All the reported studies evidently showed the potential of F3 
conjugated NPs in cancer therapy and diagnosis. Many other studies 
evidenced this potential such as cisplatin loaded hydrogel NPs for 
ovarian cancer therapy [91], hydrogel NPs for tumor-cell targeted 
photodynamic therapy [92].

N6L conjugated NPs targeting NCL

Our research team developed several ligands of NCL belonging to a 
family of molecules named Nucant for NUCleolin ANTagonist. These 
molecules are composed of a peptidic matrix rich in lysine residues 
in which several identical pseudotripeptides Lys[CH2N]Pro-Arg are 
linked [15]. In this context, we generated multivalent pseudopeptide 
analogues for use in exploring the most efficient size and shape of 
the matrix and the optimal number of grafted pseudotripeptides. The 
effects of these compounds on cell growth have been investigated 
and comparative studies indicated that the optimum inhibitory effect 
was achieved with N6L which is composed of 6 pseudopeptides. 
These comparative studies indicated that the specific activity of 
these molecules is directly linked to the number of pseudotripeptide 
(unpublished data). N6L, which is currently in phase II clinical trials 
preparation, interacts to the carboxy-terminal RGG domain of the cell 
surface NCL inhibiting the binding of NCL ligands including midkine 
[93], lactoferine [54] and pleiotrophin [94] that constitutes for these 
molecules a low affinity binding sites.

Like AS1411, N6L has the dual property to specifically target 
tumor cells and to induce an antitumor effect. Following binding, 
N6L is internalized and concentrates in the cell nucleolus[15]. This 
observation has been recently validated using anti-N6L antibodies 
experiment (unpublished data). 

Using several in vitro as well as in vivo models, it has been 
demonstrated that Nucant induced the apoptosis of tumor cells derived 
from nearly every type of cancer including T and B cell lymphoblastic 
lymphoma [15], Burkitt lymphoma [15] as well as colorectal [15], 
breast [95], melanoma [23], glioblastoma and prostate cancer 
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(submitted publications). More recently, we obtained data showing 
that N6L inhibits the growth of tumor derived from pancreatic ductal 
adenonocarcinoma and decreases the number of metastasis localized in 
the liver (submitted publication).

Investigations regarding the mechanism of action have indicated 
that the inhibitory action involves the release of the TIMP-3 from 
sulfated glycosaminoglycans (GAG) present on the cell surface or 
within the extracellular matrix, as a high affinity binding of N6L was 
demonstrated for sulfated GAGs, as well as a displacement of GAG-
bound TIMP-3 [96] emphasizing that N6L binds to sulfated GAGs. 
Recently, in order to study the effect of sulfated GAG on the biological 
activity of N6L, we showed that a stable polyplex nanoparticles with 
antitumour and anti-metastasis activities were obtained through self-
assembly between N6L and sulfated glycosaminoglycans as anionic 
polymers (unpublished data). In addition, another interesting feature of 
these results is that a polyplexed structure of N6L improved drastically 
the efficacy of the antitumor activities of N6L. This feature has been 
demonstrated in vitro as well as in vivo using several experimental 
models of tumor growth (submitted publication). 

Although the identification of the mechanism of this potentiating 
effect was not known, these findings are consistent with previous 
reports related to the biological properties and activities of heparin 
binding growth factors. Thus, it is now well known that certain sulfated 
GAG potentiates the activity of several growth factors, such as FGF-
2 [97], HGF/SC [98], HARP/PTN [99], increasing the affinity and 
interaction of growth factors to their specific receptor. In addition, it 
has been shown that sulfated GAGs are involved in the internalisation 
of these growth factors leading to a perinuclear or nuclear location 
[100]. The involvement of sulfated GAGs in the internalisation of N6L 
remains unknown and is currently under investigation. However, 
according to the data from the literature, it is tempting to speculate 
that N6L could be translocated to the nucleolus through its interaction 
with sulphated GAG and as described for LEDGF [101] was facilitated 
by GAGs. This possibility is also supported by the fact that treatment of 
cells with a mixture of heparitinases I, II, and III and chondroitinases A, 
B, and C decreases the binding of N6L to cell surface and consequently 
its internalization [96]. The role of GAG in the potentiation of the 
biological activity of N6L is the focus of our current research.

Within the framework of the European project Multifun. N6L was 
grafted to iron oxide magnetic NPs for breast cancer detection and 
treatment. NPs intracellular uptake was successfully increased by N6L 
in MDA-MB-231 cells and MDA-MB-231 xenograft after intravenous 
injection. Pull down assay showed that the targeting occurs in part by 
NCL recognition (unpublished data). N6L also promoted in vitro cell 
targeting of DOX loaded NPs and improved in vivo tumor volume 
reduction after intratumoral injection compared to non-targeted DOX 
loaded NPs [102]. In this study, analysis of the results indicated that N6L 
functionalization improved cellular uptake and DOX functionalization 
mediated additional cytotoxicity compared to the non-functionalized 
nanoparticles. These promising studies encourage the development of 
other N6L targeted NPs formulations and the investigation in different 
cancer models. 

None conjugated DNA NPs targeting NCL

DNA NPs are non-viral gene transfer vectors with great potential 
in vivo. NCL was also shown to serve as a receptor for DNA NPs, not 
loaded with any of the targeting ligands. In the work of Chen et al., using 
surface plasmon resonance, it was demonstrated that DNA NPs bind 
to NCL with an affinity of 25 nM. Rhodamine labeled DNA NPs were 

internalized into HeLa cells. DNA NPs colocalized with NCL on the cell 
surface, in the cytoplasm and the nucleoli of HeLa cells, showing NCL 
implication in NPs trafficking from cell surface to nucleus, supported 
by the fact that NCL shuttles between the different cell compartments. 
Binding specificity to NCL was confirmed by competition studies 
with purified NCL and by blocking NCL using siRNA or serum free 
medium, all resulted in a remarkable decrease in cell transfection (gene 
activity) [103]. In a further study, the same group reported that DNA 
NPs uptake was lipid raft-mediated endocytosis and found both NCL 
and DNA NPs in lipid rafts [104]. Remarkably, NCL is a good target of 
non-viral gene delivery.

Conclusion
The present review focuses on NPs binding to NCL as a targeted 

drug delivery system for cancer therapy and diagnosis. Overexpressed 
in almost all cancer cell types, NCL is being intensively investigated as a 
target in cancer therapy. Hence, NCL ligands AS1411, F3 and N6L have 
attracted attentions because of their specific tumor targeting properties 
associated to antitumor effects in the case of AS1411 and N6L. Grafted 
to different formulations of NPs, NCL ligands successfully targeted 
many different cancer cell lines and xenografts with great selectivity 
and promoted internalization of the loaded drug and/or contrast agent. 
These studies were performed compared to controls including non-
targeted NPs, normal cell lines, non-dividing confluent endothelial 
cells, a scrambled F3 sequence, or a non-aptameric DNA sequence. 
Besides, different techniques and methods were used to prove NPs 
interaction with NCL. 

Nevertheless, these promising studies lack of exploration of the 
mechanisms behind NPs binding to NCL and internalization, and few 
studies are investigating to help understand this point that evidently 
will help to clarify the following trafficking route of the NPs or the NCL-
NPs complex. Besides, few of these studies reported a translocation 
of NPs into the nucleus that could remarkably improve the observed 
results. Finally, despite all the assuring preclinical results, a low number 
of these NPs has currently entered clinical trials, and it would be useful 
to push forward the research especially now that AS1411 and N6L have 
already reached clinical trials. 
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