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Introduction
Artificial Immune systems (AIS) represent a branch of 

Computational Intelligence (CI), and have been successfully 
applied to a wide variety of application areas, such as for instance in 
combinatorial and global optimization [1-3], as well as in systems and 
synthetic biology [4-6]. AIS are bio- inspired algorithms that take their 
inspiration from the natural immune system and consist of a complex 
network of interactions among multiple types of agents, whose aim is to 
detect and contrast all together the antigens, i.e. the foreign organisms 
that can be cause of pathologies and disease, in order to organism. All 
AIS algorithms that mimic the clonal selection principle form a special 
class called Clonal Selection Algorithms (CSA), and today represent 
an effective mechanism for searching and optimization [7,8]. The core 
operators of CSA are (i) the cloning, which triggers the growth of a 
new population of high affinity value, (ii) the hypermutation, which is 
a search procedure that leads to a faster maturation during the learning 
phase, and (iii) the aging, whose main purpose is to introduce diversity 
into the population in order to escape from local optima during the 
evolutionary search process.

In this research work, we present an immunological algorithm 
based on the clonal selection prin- ciple designed to tackle a new 
combinatorial optimization problem that is the Fuel Distribution 
problem (FDP). FDP is a classical routing problem [9] that a generic 
fuel transport company faces every- day. Such problem is similar but 
not identical to the well-known Capacitated Vehicle Routing problem 
(CVRP) [9], and can be seen also as a variant of the classical Multiple 
Container Packing problem [10-13]. The differences between FDP and 
CVRP are simple but very crucial as they affect both the optimization 
strategy to use, and the design of the instances to tackle. Given a fixed 
number of vehicles, each having limited capacity of fuel transportable, 
the main goal of FDP is to satisfy with the minimal cost all requests 
made by customers (i.e. fuel stations) that need a fixed quantity of fuel.

It is well known in literature that pure EAs are unsuitable and 
inefficient when the problem to tackle shows a complex search spaces. 
However, their hybridization with other techniques might be greatly 
help for the algorithm. All those EAs that incorporate a deterministic 
approach, or a local search process in order to refine the solutions, 
improving then the fitness function, are called Hybrid Algorithms, or 
better Memetic Algorithms (MAs). The strength point of MAs is the 
trade-off between the abilities of exploitation by the deterministic or the 
Randomized Local Search used, and of exploration by the EAs [4,14-18].

In this research work a clonal selection algorithm is presented for 
solving the FDP, which incor- porates a deterministic approach for the 
assignment scheme based on the (DFS) algorithm, and a local search 
operator based on the exploration of the neighborhood. In order to 
evaluate the performances of the hybrid clonal selection algorithm, 
hereafter called H C SA, a real data instance with 82 vertices has 
been used. Furthermore, in order to understand the robustness and 
effectiveness of the proposed algorithm we extend the experiments 
also on 25 different instances, taken from DIMACS graph coloring 
benchmark, being one of the most popular and used in literature.

The paper is organized as follow: in Sect. §2 we give a general 
description of the tackled problem with its features and its constraints, 
presenting in subsection §2.2 a formal definition from a mathematical 
perspective. In subsection §2.1 we describe why and what are the 
core differences between FDP and CVRP. In Sect. §3 we present the 
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Abstract
Routing problems are classical combinatorial optimization tasks that find much applicability in numerous industrial 

and real-world scenarios. One challenging variant of the routing problem is the Fuel Distribution Problem (FDP) that 
a transportation company must face in its everyday operations. The main activity of a transportation fuel company is 
restocking all its stores, i.e. petrol stations, along a geographical map, with the goal to minimizing its overall costs. In 
this research work we present a hybrid heuristic based on the metaphor of the immune system for solving the FDP, 
which basically asks to find a set of routes as shorter as possible for a fixed number of company’s vehicles in order 
to satisfy the several received demands of customers. In particular, the presented immunological algorithm takes 
inspiration by the clonal selection principle, whose key features are cloning, hyper- mutation, and aging operators. 
Such algorithm is also characterized, in having a (i) deterministic approach based on the Depth First Search (DFS) 
algorithm - used in the scheme of assigning a vertex to a vehicle - and (ii) a local search operator, based on the 
exploration of the neighborhood. The algorithm has been tested on one real data instance, with 82 vertices, and 
25 others artificial different instances, taken from DIMACS graph coloring benchmark. The experimental results 
presented in this work, not only prove the robustness and efficiency of the developed algorithm, but show also the 
goodness of the local search, and the approach based on the DFS algorithm. Both methodologies help the algorithm 
to better explore the complex search space.
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developed H C SA with its details and main features, dedicating entirely 
also two sections to the description of the local search designed and 
the deterministic approach developed for assigning one vertex to one 
vehicle (Sect. §4 and Sect. §5, respectively). In Sect. §6 we present the 
study conducted to understand the effects of each parameter with 
respect to all others, and how it effects on the output, using the Morris 
method for sensitivity analysis. The experimental results performed and 
comparisons made are showed and presented in Sect. §7. Finally, Sect. 
§8 contain the concluding remarks and the future research perspectives.

Fuel Distribution Problem
The Fuel Distribution Problem (FDP) is a real-world task that any 

petrol company must face every day in its business activity. FDP is a 
classical routing problem whose aim is restock along a geographical map 
a set of customers (usually petrol stations, but not only), minimizing 
its overall costs. Basically, FDP asks to satisfy all received requests by 
customers with the minimal cost for the transport company using a 
fixed number of vehicles, each one having a limited quantity of fuel 
transportable, called capacity. How to schedule the fuel distribution 
depends on several questions, as for instance the amount of fuel required 
in the overall; number of vehicles available to satisfy the demands; 
relationships among the demands; capacity of each vehicle; road traffic; 
weather conditions, because the fuel is very sensitive to temperatures 
(a small amount of fuel evaporates with high temperatures); and many 
other conditions that affect both road network and amount of the 
transportable fuel.

Solving such problem means to optimize several objectives subject 
to some constraints, such as for instance maximize the number of 
satisfied customers, supplying the exact demand amount by each 
customer; maximize the number of customers served; minimize the 
distance from one customer to another; minimize the evaporation along 
the roads; minimize the costs in each path; and so on. It is important 
to point out that any feasible route is built taking into account some 
restrictions, such as (i) the fixed number of vehicles; (ii) any vehicle 
is able to transport only a limited fuel amount; and (iii) the sum of 
the amount of a subset of customers satisfied by one vehicle must not 
exceed the capacity of the vehicle itself.

FDP is then very similar to the Vehicle Routing Problem (VRP), and 
primarily with its variant better known as Capacitated Vehicle Routing 
Problem (CVRP) [9]. VRP represents the class of problems in which a 
set of routes for a fleet of vehicles must be determined for a number of 

geographically dispersed cities or customers. The objective of the VRP 
is to deliver a set of customers with known demands on minimum-cost 
vehicle routes originating and terminating at a depot. CVRP, instead, 
is the more studied member of the family, where the uniform capacity 
restrictions for the vehicles are imposed. Such class of problems is 
closely related to two difficult combinatorial problems: (1) checking 
whether there exists a feasible solution is an instance of the BPP; (2) 
setting the vehicles capacity as infinity gets an instance of the Multiple 
Traveling Salesman problem [19]. Thus, due to the interplay between 
these two NP-complete problems, and also that the decision version of 
BPP is conceptually equivalent to a VRP model, the VRP instances can 
be extremely difficult to be solved in practice [9,19]. Although FDP and 
CVRP may be seen as the same problem, is important to emphasize that 
they are not identical due to simple differences that affect crucially the 
optimization strategy to use.

Differences between FDP and CVRP

In this section we present some crucial differences between FDP 
and CVRP highlighting and explaining why they are similar but 
not identical. These differences are crucial, as they affect both the 
optimization strategy to use for solving the problem, and the design 
of the instances of the problem. All definitions described below were 
taken by [9].

(1) In CVRP the given graph ; ) (G V E=  taken in input must be 
strongly connected and it is generally assumed to be complete, where 
the cost travel cij to go from vertex i to vertex j, with ( ),  i j E∈ , is 
defined as the Euclidean distance between the two nodes. In this way 
the costs matrix obtained is symmetric and satisfies the “triangle 
inequality”:

_ ,cij cik ckj+  ,  ,  i j k V∀ ∈ .

Satisfying this triangle inequality leads the search process to choose 
direct links rather than other paths.

In FDP instead is not known a priori what the topology of the given 
graph is: in general the given graph is a map (e.g. a geographical map) 
and therefore a sparse graph. It may be a planar graph for small maps, 
whilst it becomes a more dense graph for bigger ones. Anyway, it never 
will be represented by a complete graph. Furthermore, since in each 
edge is associated more than one kind of cost to satisfy (e.g. traffic, 
distances, weather, travel time, size of the roads), the outcome is the 
one to not guarantee the property of triangle inequality (Figure 1).

 Figure 1: A geography map of United States of America, and Sicily (Italy) taken by Google maps.



Citation: Pavone M, Costanza J, Cutello V (2015) An Immunological Algorithm for Combinatorial Optimization: the Fuel Distribution Problem as Case 
Study. Int J Swarm Intel Evol Comput 4: 118. doi: 10.4172/2090-4908.1000118

Page 3 of 9

Volume 4 • Issue 1 • 1000118
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

(2) Because in FDP the instance is represented via a sparse graph, 
it becomes hard or almost impos- sible satisfy one constraint, which 
instead is one of important conditions for finding feasible solutions in 
CVRP: each customer vertex is visited by exactly one circuit. Of course, 
this condition is not true in FDP. Albeit each customer must be satisfied 
by only one vehicle, more vehicles may instead visit it. This happen 
because a vertex may be a link point among two or more customers, and 
thus a crossing among different paths. Besides, each vehicle can cross 
(then visit) more nodes in its road, not only because the instance isn’t 
a complete graph - becoming almost mandatory to cross more times a 
given country (example figure. 1) - but also because of the several costs 
that affecting on the edges that might strongly affect the choice of the 
path to cross.

(3) Whilst in CVRP are taken into account only vehicles with 
same capacity, in FDP is not said. Indeed, it is possible to have vehicles 
with same capacity as well as with different capacities. Of course, 
this strongly depends by the organizational structure of a given fuel 
transport company.

These differences, although simple, become crucial for the design 
and develop of whatever algorithm, as they require different approaches 
and algorithmic strategies than instead the applied ones in CVRP.

Mathematical formalization as graph theoretic model

Fuel distribution problem can be formulated as follow: let be 
( )  ,  G V E= an undirected graph, where each node v V∈ represents a 

customer (i.e. fuel station), and the set E represents the road network, 
i.e. each edge ( )  ,  e u v= ∈ E is the link between two customers’ u and 
v. For the sake of simplification, we assume that    ,     V n and E m= = .

In each vertex v is assigned a weight ( ) ( )  0  :    q v q V≥ →�  that 
indicates the fuel amount demanded by the customer v. Let TR a 
constant that indicates the time needed to supply one litre of fuel in 
one station. At this end, the total time needed to satisfy the demand 
of the customer v is then given by ( )   Rq v T× . As for the vertices, also 
in each edge e E∈ is assigned a weight ( ) ( )  0  :    c e c E> → � that 
represents the costs on the road segment e. In this work we assume that 
( )  ) (  c e for all e E∈  includes all weights that affect the road network 

(see description above), i.e. the distances among stations (in km for 
instance); fuel’s evaporation degree; temperature; traveling time for 
each road (hours or minutes), and many others.

Let R = {1, . . . , h} a set of vehicles, such that    R V< , and let 
( )   0 )  (  :b r b R> → � , the limited amount of fuel transportable 

assigned to the vehicle r ∈ R, called capacity of r. Without loss of 
generality, we assume that the smallest demand is less than or equal to 
the smallest available capacity, as well as the largest demand is less than 
or equal to the largest capacity assigned

( ){ } ( ){ } ( ){ } ( ){ }      v V r R v V r Rmin q v min b r max q v max b r∈ ∈ ∈ ∈≤ ≤ ≤ ,

and besides, that the sum of all weights of vertices in V is greater 
than the largest capacity assigned to a vehicle in R

( ) ( ){ }  r R
v V

q v max b r∈
∈

>∑ .

The aim of FDP is to create h routes in such way to minimize the 
costs on each route, and maximize the satisfiability of the received 
demands. For simplicity then we can say that FDP asks basically to 
assign n vertices to h vehicles, such that (1) the overall number of the 
assigned vertices to vehicles must be as large as possible (|V | is the 
optimum); and (2) the sum of the weights of the vertices assigned to 
each vehicle must not exceed the capacity of vehicle itself. It is worth 

noting as the constraint (1) means maximizing as much as possible the 
number of customer demands. Note that this last kind of definition is 
equivalent to partitioning V in h subsets, such that their union is all V, 
whilst their intersection is the empty set (θ ).

Although the problem may be seen as a multi-objective problem, 
we have used instead the following single-objective function in order to 
evaluate each candidate solution { }| | 1,  2,  . . . ,  :Vx x x x

→

=

      1   
 

tot

r
r Rr R

C x
f x V V

Vr

β
→

→

∈∈

  −

 
     = × +  

    


∑ ∑
 

(1) Where Vr is the set of all vertices assigned to the vehicle r; β is a 
penalty value, which assures us to give priority to those solutions able 
to satisfy all demands of customers; and Ctot is the total cost produced 
by the candidate solution x

→
, and it is given by 

( ) ( ( ) ) ( )
r

ri r

r
tot i R

r R e Ex V

C X q x T c e
→

∈ ∈∈

 
= × +  

 
∑ ∑ ∑

Where Er is the subset of all edges visited by the vehicle r. 
Furthermore, since the candidate solution x

→

 represents a permutation 
of vertices from which is determined the visiting order in the graph, it 
follows that r

ix  is the vertex in the i − th position in x
→

assigned to the 
vehicle r.

HCSA – A Hybrid Clonal Selection Algorithm
Hybrid immunological algorithms are now considered a well-

established technique, as these have been included/studies in [15]. The 
proposed hybrid immunological algorithm is based on clonal selection 
principle, whose main features are the operators of cloning, hyper 
mutation, and aging. HCSA is a modified and adapted version of the 
well-known opt-IMMALG, already proposed in [2,7,20].

As a typical population-based algorithm, HCSA works with a 
population of B cells, which has the purpose to defend the organism 
against foreign, better known as antigens (Ag). From an algorithmic 
perspective, an Ag is the problem to tackle, whilst the B cell represents 
a solution for the Ag. In particular, in our study, the Ag is an undirected 
graph, whose vertices are the customers1 and edges are 

1 i.e. fuel stations that have a contract with the distribution company, 
included the ones that haven’t made demands the road connections 
between customers (see Sect. §2.2). Each B cell, instead, represents a 
permutation of vertices (i.e. a string of integers) that defines the visiting 
order of the customers for the assignment to a proper vehicle (if it 
exists) (Table 1).

In table 1 is presented the pseudocode of HCSA, where by P(t) is 
indicated a population of d individuals of length l = |V |. The initial 
population is randomly generated by a uniform distribution, which 
represents a subset of the search space, i.e. the starting points for the 
searching in the space of solutions (line 1, pseudocode). How to generate 
the initial population is a crucial task for EAs, as it might influence 
the overall performances. In traditional EAs, the initial population is 
generated using a random numbers distribution or chaotic sequences 
[21]. An interesting research work, which studied the properties of 
different point generators for a genetic algorithm, was presented in [22].

Miming the clonal selection principle, HCSA incorporates the 
static cloning operator, that clones all B cells dup times, producing 
an intermediate population P(clo) (line 5, pseudocode). In this work 
we haven’t used a proportionally cloning, as it shows premature 
convergences. This is due to a strong pro- liferation of the best solutions 
found so far, which decrease the diversity in the population, and 
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therefore not help H C SA to escape from local optima. Afterwards, 
each cloned B cell is undergo to the hyper- mutation operator, which 
mutates the cloned M times, without an explicit usage of mutation 
probability (line 6, pseudocode).

In HCSA, the number   M f x
→  
    

 of mutations is determined in 
an inversely proportional way to the fitness value, although there exists 
several approaches as proposed in [23]. The mutation rate is determined 
by

 
ˆ

  
f

e
ρ

α


× −



 =                                         (3)

where 
ˆ
f  is the fitness function normalized in the range [0, 1], 

and ρ is a parameter. The Figure 2 shows the curves produced by 
the equation 3 at different ρ values (left plots), and the number of 
mutations obtained for different problem dimensions, and ρ values 
(right plot). For each B cell receptor, the hypermutation operator 
chooses randomly 

    ( ) 1M f x α
→  
  = ×  

+
                    (4)

times two vertices u and v in x
→ , and then it swaps them having 

as effect to change the visiting order of the graph. At the end of the 
hypermutation process, we have a new population that is denoted by 
P(hyp). In order to normalize the fitness function in the range [0, 1], as 
proposed in [3,7], HCSA uses the best current fitness value decreased of 
an user-defined threshold Θ ; this is due because is not known a priori 
any kind of information about global optima. In this way, HCSA doesn’t 
need to have any kind of information concerning the problem; HCSA 
is a real blind box. In this work we have set Θ  = 50%. One crucial 
question that might affect the performances of any immunological 
algorithm is what age assigns to each hypermutated clone. In order to 
give an enough evolutionary time for the maturation for each B cell, 
HCSA uses an equal opportunity scheme: when a hypermutated B cell 
improves the value of the fitness (called constructive mutations), then 
it will be considered to have age equal to 0; otherwise, it will maintain 
the same age of its parent. By this scheme we want to give an equal 
opportunity to each new B cell to effectively explore the search space. To 
refine the quality of the solutions, HCSA incorporates also an heuristic 
local search based on the exploration of the neighbourhood, where the 
neighbours are generated through the swapping of the vertices. This 
operator is described in section 4, and it is applied to the best receptor 
of P(hyp), producing a new population, called P(LS) (line 8, pseudocode).

After the perturbation operators, all the old B cells inside the 
populations P(t), P(hyp), and P(LS), are eliminated by the static aging 
operator (line 10, pseudocode). The parameter τB in input indicates the 
maximum number of generations, that allows to each B cell to remain 
into the corresponding population: when a B cell is τB + 1 old it is erased 
from the own population, independently from its fitness value. This 
means that each B cell is allowed to remain into the population for a 
fixed number of generations. An exception is made only for the B cell 
with the best fitness value (elitist static aging operator). The aim of the 
aging operator is to produce a high diversity into the current population, 
and avoid premature convergences. Therefore, the aging operator plays 
a central role on the performances of the proposed algorithm (and AIS 
in general): too much diversity inside the population could produce 
poor solutions, as well as too small ones.

HCSA(d, dup, τB , ρ,gen)

1. P(t=0) ← Init Population(d)

2. Evaluate_ Fitness(P(t=0))

3. t← 1

4. While (¬Termination Condition())do

5. P(clo) ←Cloning (P(t), dup)

6. P(hyp) ←Hypermutation(P(clo), ρ)

7. Evaluate_ Fitness(P(hyp));

8. P(LS) ←LocalSearch(P(hyp)[best])

9. Evaluate_ Fitness P(LS);

10. Static_ Aging (P(t),P(hyp), P(LS), τB );

11. P(t+1) ← (µ + λ)-Selection
( )t

aP , ( )p
a

hyP and ( )S
a

LP ;

12. t← t + 1;

13. end_ while

Table 1: Pseudo-code of Hybrid Clonal Selection Algorithm – HCSA.
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Figure 2: Potential mutation in Eq. 3 used by HCSA, and the number of mutations M (Eq. 4) obtained on several dimensions.
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After the three main operators, the best survivors from the 
populations ( )t

aP , ( )p
a

hyP and ( )S
a

LP  are selected for generate the new 
population ( )1t

aP +  for the next generation. Such selection happens using 
the (µ + λ)-Selection operator (line 11, pseudocode). After the aging 
operator, follows the (µ + λ)-Selection operator, which generates the 
new population for the next generation; it selects the best d survivors B 
cell, from the populations Due the aging operator, it might occur that 
the survivors are less than the population size ( )  da d< ; in this case the 
remaining ( )  d da−  new B cells will be randomly created. (Figure 3)

Finally, Evaluate _Fitness(P(∗)) (lines 2, 7 and 9, pseudocode) 
computes the fitness function value of each B cell x P

→

∈  using Eq. 1, 
whilst Termination Condition() (line 4, pseudocode) is a Boolean 
function, which returns true if the maximum number of generations, 
or the maximum number of fitness function evaluations allowed, 
is reached; false otherwise. It’s important to note that in order to 
minimize the costs of the routes, HCSA includes the Dijkstra algorithm 
[24], which computes for each vehicle the shortest path between two 
unconnected customers u and v, that is when ( ),   u v E∉

Local Search
As cited in the previous section, afterwards the hypermutation 

operator, HCSA incorporates a heuristic local search in order to refine 
and improve the quality of the solutions. The used approach for the 
design of the local search was taken from [25,1], and it relies on the 
definition of neighbourhood, where neighbours are generated through 
the swapping of the vertices.

Starting from the idea that the visiting order of a graph shapes 
the solutions found, we define the neighbour of x

→

, all B cells y
→

 that 
can be obtained from x

→

 by swapping two of its elements. Because 
swapping all pairs of vertices is time consuming, we have used a 
reduced neighbourhood by a radius RLS, as proposed in [1,2]: in each 
B cell, all vertices were swapped only with their RLS nearest neighbours, 
to the left and to the right. Moreover, take into account the large size 
of the neighbourhood, we have applied the local search procedure 
only on the best hypermutated B cell (i.e. the best of P(hyp)). When a 
single swap between two genes reduces the fitness function value 
(constructive mutation), then the new mutated B cell is added into 
the new population P(LS); otherwise it is not taken into account, and 
hence erased. The process continues until the whole neighbourhood 

with radius RLS is explored. To avoid the problem to study what is the 
best tuning for the RLS radius, HCSA randomly assigns a value in the 
range [1, (|V | − 1)], using a uniform distribution [25]. In this way it 
guarantees to swap at least two vertices.

Figure 3 shows the curves of the evolution of the best fitness using 
the local search procedure, or no. The experimental was made fixing 
the minimal values for the parameters: d = 100, dup = 1, τB = 5, ρ = 5.5 
and M axGen = 1000. From the figure is possible to see how the use of 
the local search helps the convergence process towards better solutions.

Heuristics for the Assignment Scheme
How to assign a vehicle to one customer or vice versa is a central 

point in the design of the algorithm. Because each vehicle has a 
maximum capacity of transportable fuel, then choosing one vertex, 
rather than another, can determine the satisfiability of all demands (the 
goal), or only some of them. To this purpose, in this work all B cells 
represent a vertices permutation, which determines the visit order. In 
details, the used heuristic scheme works as follows.

Let x
→

 = {x1, . . . , xn} a generic B cell; R = {r1, . . . , rh} the set of the 
vehicles; and b(ri) the capacity of the ith vehicle, with i ∈  [1, h]. A 
vehicle ri is randomly chosen to be assigned to the first x1 vertex of the 
permutation x

→

, and afterwards decreasing the capacity of the vehicle 
chosen, i.e. b(curr)(ri) = b(ri) − q(x1). For all xj remaining vertices, with 

( )  2,  . . . ,   | |  j V= = , is possible to distinguish the following cases:

1. if exists a vertex v V∈  adjacent to xj, and a vehicle r R∈  assigned 
to v, such that ( ) ( ) ( )     

rv V
q v q xj b r

∈
+ ≤∑ , where Vr is the subset of the 

vertices already assigned to the vehicle r, then r is assigned to xj. If there 
exist two or more vertices adjacent to xj, with assigned different vehicles 
suitable to satisfy xj, then one with higher available capacity is assigned;

2. for all vertices v V∈ adjacent to xj, or not exist any r R∈  assigned 
to v, or if there is, it is not able to satisfy xj. Thus, if there are one or 
more free vehicles, i.e. not still assigned, then one of these is randomly 
chosen, and assigned to xjotherwise a deep search is made into the 
neighbourhood of xj. If after the search, at least one vehicle was found, 
this is assigned to xj, otherwise the vertex will be labelled “not satisfied”. 
In this work, as search model, was used the classical “depth first search” 
algorithm (DFS) [24], but reduced of a radius R(DFS): is fixed a limit R(DFS) 
< |V | to the depth of the search into the neighbourhood. The purpose of 
this reduced DFS is to find a suitable vehicle not too far from xj, in such 
way to have homogeneous groups. If, by the reduced dfs, we found two 
or more suitable vehicles, then the nearest one is assigned to the vertex 
xj. For the experiments described in section 7, R(DFS) was fixed to 15% 
of V. Such value was chosen to avoid solutions where one vehicle must 
satisfy two stations too far away, for example geographically opposite.

3. not exists any vehicle able to satisfy the given vertex: i.e. for all 
r R∈ ( ) ( ) ( )     

rv V
q v q xj b r

∈
+ ≤∑ , where Vr is the subset of the vertices 

assigned to the vehicle r. In this case the vertex will be labelled “not 
satisfied”. Of course this occurs when the two previous steps fail.

After any assignment, the capacity of the chosen vehicle r is 
decreased: bcurr (r) = bprev (r) − q(xj ). With regard to the approach 2, 
if there exist more vehicles still unassigned, then one of these will be 
randomly chosen for the assignment, and this scheme is called “random 
+ dfs assignment”. Another variant may be taken into account, that we 
call “dfs2 assignment”: before randomly choosing a free vehicle, this 
variant checks the entire for a neighbourhood suitable vehicle that 
could be assigned; the reduced dfs, where the radius R(DFS) is fixed to 
5% of V , is used. This new scheme, guarantees us the design of more 
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homogeneous groups, i.e. all vehicles satisfy only stations near to each 
other.

Figure 4 shows the comparisons of the curves of the best fitness 
obtained by the two described approaches. These curves were obtained 
using the following parameters: d = 100, dup = 2, τB = 15, ρ = 5.5, 
and M axGen = 1000. This figure shows how the basic idea designed 
in dfs2 allows HCSA a better convergence towards solutions with best 
quality, and lower costs. The inset plot shows the curves of success of 
the DFS (best run) for the both approaches. Obviously, as we expected, 
the curves of random + dfs are higher than dfs2, because it develops 
solutions more poor, and then it needs more (Figure 4) calls to the 
long DFS, i.e. with radius R(DFS) = 15% of |V |. Therefore, more calls to 
DFS, generates an higher number of DFS success. However, the overall 
percentages of the DFS success, averaged with their calls and computed 

on 10 independent runs, is higher in dfs2 (73.08%) than in random + dfs 
(66.28%). In table 2, instead, is showed the comparison between the two 
cited approaches, varying the parameters, on the graph with 82 vertices, 
based on real data. This instance was used to evaluate the performances 
of HCSA not only with respect the fitness value, but also and primarily 
in the develop of homogeneous groups. In this table is shown the best 
fitness values, the mean and the standard deviation (Table 2).

(σ). Last column ∆ of the table indicates the differences of the two 
approaches with respect the best fitness values. In bold face is highlighted 
the best fitness values for each pairs of parameter. The results were 
obtained with d = 100, ρ = 2, M axGen = 100, and 10 independent runs. 
The number of the vehicles h was fixed to 6, using the same capacity for 
all vehicles. Given the set of weights on the vertices, we can compute

1
( )

  
n

ii
q v

h
λ == ∑                    (5)

as an obvious lower bound (but not optimal) on the vehicle capacity 
needed to satisfy all required by the stations. In this work, we have fixed 
as capacity of the vehicles the lower bound λ increased by 0.2%; i.e. as 
small as possible. Inspecting such table is possible to see how dfs2 is 
more suitable in finding better solutions, as well as more homogeneous. 
The better performances produced by dfs2 are due because after the 
first generations the called number of the long DFS, i.e. the ones 
with radius R(DFS) = 15% of |V|, decreases, having developed current 
subgroups homogeneous. Therefore, will be easier to find a suitable 
vehicle into the near-neighbourhood. Thanks to that, dfs2 is more 
faster in computational time: the computational times are respectively 
16m25919s for random + dfs, and 8m17953s for dfs2, obtained using the 
parameters d = 1000, dup = 5, τB = 5, ρ = 5.50, and gen = 200.

For clarity we note that high values of mean and standard deviation 
(tables 2 and 3) are due to the penalty β value in the equation 1; when 
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dup τB dfs2 random + dfs ∆

1

5

20

∞

236:28
2675:12 ± 4877:68

236:04
1455:39 ± 3658:04

228:84
1453:59 ± 3662:04

12422:63
19742:75 ± 8091:68

12428:42
20963:34 ± 10967:25

12439:09
20967:5 ± 5583:16

-12186:35

-12192:38

-12210:25

5

5

20

∞

235:37
7555:31 ± 5969:99

232:38
232:93 ± 1:1

244:33
13647:11 ±6563:78

12443:66
17314:52 ± 5965:55

12425:92
17305:04 ± 8091:91

12418:84
23396:64 ± 16768:86

-12208:29

-12193:54

-12174:51

10

5

20

∞

245:00
45:00 ± 0:0

225:19
5106:2 ± 14638:93

230:49
1452:14 ± 3663:05

226:83
24616:53 ± 21121:18

27:32
227:32 ± 0:0

12427:99
18526:56 ± 6098:57

+18:17

-2:13

-12197:5

Table 2: dfs2 versus random + dfs. For each experiment we show the best fitness, 
the mean and the standard deviation (σ). Last column ∆ indicates the difference of 
the best fitness values. For these experiments was used the graph with |V | = 82. In 
bold face is highlighted the best fitness value for each pairs of parameter.

dup τB best mean σ
 using same capacity

 
1
 
 

5 229.45 231.42 1.28
 20 232.81 233.15 0.68
 ∞ 228.05 2670.81 4884.66
 5 226.22 5116.51 9750.32

5
 

 20 235 5112 9754
 ∞ 244.64 11213.28 10125.65

 
10
 

5 229.15 2686.72 4874.28
 20 220.92 6323.55 6102.63
 ∞ 229.82 7547.7 9759.12

 using different capacity

 
1
 
 

5 36830.49 53902.77 23894.93
 20 36845.67 36845.67 0.004
 ∞ 49017.31 57563.87 17294.56
5 36830.98 38051.81 3662.52

5
 

20 36828.41 36835.69 4.29
∞ 12436.16 14877.58 7314.36

 
10
 

5 24639.02 40491 17291.04
20 36825.49 41707.8 5979.59
∞ 24635.98 42929.53 23299.84

Table 3: Best solution, mean of the best solutions, and standard deviation (σ) 
obtained on the graph with 82 vertices, varying the parameters dup; and B For 
this class of experiments was fixed d = 100; MaxGen = 100; and each test was 
made 10 independently runs. Moreover, we have fixed  = 4 for all vehicles with 
same capacity, and  ρ = 5:5 with different capacity values. The shown results 
wereobtained fixing either the same capacity for all used vehicles (the lower bound 
_ increased by 0:2%),than with different capacity values.
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one solution is not able to satisfy all customer demands then equation 
1 return high values of the fitness function. Thus, high values of mean 
and standard deviation indicate us that the algorithm was not able to 
satisfy all demands in all independent runs.

Sensitivity Analysis
In sensitivity analysis methods, one can observe how a parameter 

affects the complexity of the instance, while all other parameters are 
varied simultaneously. These methods consider the interactions 
between parameters without depending on the stipulation of a nominal 
point.

The The Morris method [26] is a traditional model for sensitivity 
analysis used as a screening method for problems with high number of 
variables and for which function evaluations are CPU-time consum- 
ing. It is composed of individually randomized one-factor-at-a-time 
experiments. Each parameter may assume a discrete number of values, 
called levels, which are chosen within the factor range of variation. 

The sensitivity measures proposed in the original work of Morris 
are based on what is called an elementary effect. The elementary effect 
of the j-th parameter is defined as

* * * * * *
1 1 1*

[ ( ,...., , , ,...., ) ( )]
( ) pj j j N

j

f p p p p p f p
EE p − ++∆ −

=
∆

 where ∆ is a predetermined multiple of 1/(k − 1). The distribution of 
elementary effects Fj is obtained by randomly sampling h points from Ψ.

For each parameter we evaluate two sensitivity measures, such 
as (1) µj an estimate of the mean of the distribution Fj , (2) and σj an 
estimate of the standard deviation of Fj . A high value of µj indicates 
a parameter with an important overall influence on the output; whilst 
a high value of σj indicates a parameter involved in interaction with 
other parameters or whose effect is nonlinear. In order to understand 
what are the parameters that affect the output, we performed the Morris 
method on a graph with 256 vertices, and 32640 edges (queen16 16.col 
– see section 9). The Morris method is a sensitivity analysis useful to 
understand the effects of a parameter with respect to all others, which 
vary simultaneously. Figure 5 shows the sensitivity analysis carried out 
for our objective function (equation 1). Inspecting this figure is possible 
to see how the vertices {36, 115, 139, 152, 172, 234} seem to be the 

most important, since they affect more on the objective function than 
the remaining vertices, whereas nodes 118, 101, and 182 are the less 
influential ones. (Figure 5)

Results
To evaluate the goodness of the performance of HCSA and its 

search ability into the solutions space, we have used two different 
evaluation measures: (1) if HCSA is able to obtain good approximate 
solutions using the capacity of the vehicles as small as possible, and (2) 
the homogeneity in the assignment of the vehicles to the vertices; i.e., 
to avoid that a vehicle has to supply two vertices placed in opposite sites 
from a topological point of view. For the experiments, we have used 
initially a graph, based on real values, with 82 vertices. Afterward, to 
extend our test beds we have tested HCSA on several graphs, taken by 
the Dimacs colouring benchmark [27], being one of the most popular 
and used in literature. Therefore, in this section we report all results 
obtained in our experiments, describing also the experimental protocol 
used for each test. Of course, once experimentally proved that dfs2 
shows better performances than random + dfs with respect to the costs 
and the homogeneity of the solutions (see table 2), then, all results 
presented in this section were obtained by the dfs2 heuristic. In table 
3 we report the results obtained by HCSA using for all vehicles either 
the same quantity of the transportable fuel, and different capacity. The 
capacity was increased by 0.2% of the lower bound λ – Eq. 5. These 
experiments were made varying the parameters dup = {1, 5, 10}, and 
τB = {5, 20,..., ∞}, and fixing population size d = 100, ρ = 4 for the 
experiments where all vehicles have the same capacity, and ρ = 5.5 for 
all experiments with different capacity values. Moreover, the maximum 
number of generations was fixed to 100, and for each test was made 
10 independent runs. If we give a look to the results obtained using 
the same capacity for all vehicles, one can see that, although the best 
solution is obtained with high values of dup (dup = 10), in the overall 
the better performances are instead obtained using smaller values; 
this is proved by the mean values. If we use different capacities for 
the vehicles, then dup = 5 seems instead to be the adequate setting. 
To simulate a real world application, we have considered the graph as 
road network, where each weight has been randomly generated in the 
range [200, 10000] (as litres) for the vertices, while for the edges in the 
range [5, 180] (as minutes). Moreover, we have used a small (Table 3) 
number of providers in order to better simulate a real application. Since 
in the real world is unlikely that all customers of a distribution company 
make demand at the same time, i.e. some node can have weight null, the 
random generator assigns each weight on vertices with a probability P 
= 50%.

Understanding the real capabilities by HCSA from an exploration 
and exploitation perspective, we have compared HCSA with a classical 
Genetic Algorithm (GA) and a deterministic algorithm based on locally 
optima choice strategy. For this deterministic algorithm we present 
three different versions: (1) starting from the vertex V1 the naive 
method proceeds sequentially (V1, V2, ..., Vn). We labelled this version 
as naive; (2) starting from a random vertex Vk , this method proceeds as 
follow (Vk , Vk+1,..., Vn, V1, ..., Vk−1). We call this second version as DBO; 
(3) the last method performs the optimal locally selection based on a 
permutation of the vertices (DBP). Table 4 presents the results obtained 
on this new benchmark. The table indicates the number of customers 
satisfied (Γ) for each algorithm, and relative best cost found. For these 
experiments, it has been used the following parameters d = 100, dup 
= 15, and τB = 15. For GA, instead, we have used the best tuning of 
parameters obtained after several experiments: pop _size = 100, PC = 
1.0, and Pm = 0.3. Furthermore, in all experiments we have used as 
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 HCSA naive DBO DP B GA
Instance | V  | | E | h Γ best Γ best Γ best Γ best Γ best
DSJC125.1.col 125 1472 4 125 1018.06 124 − 123 − 124 − 125 1056.5
DSJC125.5.col 125 7782 4 125 977.92 123 − 123 − 124 − 125 1010.92
DSJC125.9.col 125 13922 4 125 978.532 124 − 124 − 125 1167 125 1034.34
queen6 6.col 36 580 3 36 1106.46 35 − 35 − 35 − 36 1131.4
queen7 7.col 49 952 3 49 1252.84 48 − 48 − 49 1304.76 49 1274.53
queen8 8.col 64 1456 3 64 1276.75 63 − 63 − 64 1309.96 64 1298.4
queen8 12.col 96 2736 4 96 1133.69 94 − 95 − 96 1148.92 96 1146.2
queen9 9.col 81 2112 4 81 1146.1 80 − 80 − 80 − 81 1161.33
queen10 10.col 100 2940 4 100 1157.4 99 − 99 − 100 1198.01 100 1182.73
queen11 11.col 121 3960 4 121 1082 120 − 119 − 121 1127.98 121 1105.54
queen12 12.col 144 5192 5 144 1252.47 143 − 143 − 144 1296.76 144 1271.63
queen13 13.col 169 6656 5 169 1282.47 168 − 168 − 169 1313.1 169 1297.33
queen14 14.col 196 8372 5 196 1283.31 195 − 195 − 196 1307.6 196 1294.6
queen15 15.col 225 10360 6 225 1103.09 224 − 224 − 225 1126.5 225 1111.21
queen16 16.col 256 12640 6 256 1326.89 255 − 255 − 256 1345.1 256 1335
miles500.col 128 2340 4 128 1141.23 127 − 127 − 128 1168.028 128 16833
miles750.col 128 4226 4 128 1110.67 127 − 127 − 128 1150 128 1153.65
miles1000.col 128 6432 4 128 1105.77 126 − 127 − 128 1143.3 128 1137
miles1500.col 128 10396 4 128 1096.96 127 − 127 − 128 1130.4 128 1128.61
myciel5.col 47 236 3 47 1246.87 46 − 46 − 47 1280 47 1266.3
myciel6.col 95 755 4 95 1140.14 94 − 94 − 95 1147.7 95 1149.1
myciel7.col 191 2360 5 191 1180.82 190 − 190 − 191 1194.6 191 1193.7

Table 4:  HCSA vs GA and three different versions of a deterministic algorithm. These experiments have been made using Dimacs graph colouring instances as test bed 
[1], being one of the most popularin literature. For each instance is showed the number of items satisfied (Γ), and relative best cost found. The experiments have been 
performed for 30 independent runs. We point out that if one of the algorithms is not able to satisfy all requested of the items, the relative costs have been not included in 
the table (_).

stop criterion a maximum number of fitness function evaluations Tmax 
= 5 × 104 for all graphs with |V | < 100, and Tmax = 5 × 105 otherwise. 
Besides, 30 independent runs have been performed (Table 4) for each 
instance. H C SA is able to satisfy all demands received, with respect 
deterministic algorithms. HCSA and GA have been able to satisfy all 
request received on different dimensions of the problem (from 36 to 
256 vertices). However, comparing HCSA and GA is possible to see how 
the proposed algorithm is able to find better costs in all tested instances, 
which means that HCSA is able to produce more compact groups from 
a topological point of view. In the table 4, if one of the algorithms has 
not been able to satisfy all requested, the relative costs ( f ( x

→

)) have 
been not included in the table and labeled as −, because the fitness value 
produced is high due to the penalty factor β (Eq. 1).

Conclusions and Future Work
In this research work we present an hybrid clonal selection 

algorithm (HCSA) for the Fuel Distribution Problem, one of the 
classical combinatorial optimization problem that many transportation 
companies must face in their everyday operations, that is to restock all 
their customers along a geographical map, minimizing their overall 
costs. Such problem is very similar but not identical to the Capacitated 
Vehicle Routing Problem – CVRP, and can be also seen as a variant of 
the classical Multiple Container Packing Problem – MCPP. We present 
in a proper section (Sect. §4.1) the simple differences between FDP and 
CVRP, which significantly effect on the optimization strategy to use, 
and on the design of the instances to tackle.

HCSA is based on three main operators: (i) the cloning that 
triggers the growth of a new population of high-value B cells; (ii) 
the hypermutation that can be seen as a search procedure that leads 
to a fast maturation; and (iii) the aging that causes a turn-over in the 

populations with the aim to generate diversity and avoid to get trapped 
into local optima. HCSA incorporates a local search heuristic in order 
to refine the solutions found so far, and it is based on the exploration 
of the neighbourhood, where the neighbours are generated through 
the swapping of the vertices. This heuristic is founded on the idea that 
the visiting order of vertices significantly affects the satisfiability or less 
of all demands made by customers. For proving the usefulness and 
improvements produced by designed local search, a study on the impact 
of such local search has been conducted. Such study has confirmed us 
how such heuristic helps HCSA in refine the quality of the solutions, 
and giving a best convergence, towards best solutions. In this research 
work, we propose also two variants for the assignment the customers 
to the most suitable vehicle, both based on the DFS algorithm. The 
first variant is a combination between random assignment, and DFS 
algorithm; whilst the second, before to choose a free vehicle for the 
assignment, the scheme performs a search in the neighbourhood of 
radius R(DFS). In order to limit the length of the search tree, we applied a 
reduced DFS based on a radius R(DFS); this reduction is to avoid solutions 
where one vehicle could be assigned to two vertices too far away. From 
the conducted experiments the reduced DFS seems develop good 
solutions, in term of quality, and homogeneity of assignments. It seems 
to be very promising for the future direction of our research on this 
problem.

To evaluate the performances of HCSA, we have used a graph with 
82 vertices based on real data. However, to extend our experiments, and 
comparisons, we have also used some graphs with different topologies 
that were taken by the Dimacs graph colouring benchmark, being 
one of the most popular and used in literature. For this last class of 
experiments, we have randomly generated the weights on the vertices, 
and on the edges. All results were obtained using as capacity for the 
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vehicles the lower bound λ (Eq. 5) increased by 0.2%, i.e. as small 
as possible, to really understand the search ability of HCSA into the 
solutions space. Furthermore, HCSA has been compared with a Genetic 
Algorithm, and three different versions of a deterministic algorithm. 
Inspecting the results is possible to clearly see how HCSA outperforms 
the compared algorithms in all instances. HCSA is able to satisfy always 
all demands, as opposed to the compared algorithms, which instead fail 
in several instances.

Several new research directions need to be investigated: (1) study 
the best tuning of the radius R(DFS) for the reduced DFS; (2) design a 
better refinement operator, such to improve the convergence speed of 
HCSA, and its computational efforts; (3) and finally, perform and test 
HCSA taking into account a dynamical environment where the weights 
on the vertices and/or on the edges may change during the time, as well 
as vertices and /or edges turn on or turn off in the time.

Acknowledgements 

The authors would like to thank all anonymous reviewers for their helpful and 
valuable suggestions that improve measurably the manuscript.

References

1. Cutello V, Nicosia G, Pavone M (2003) A Hybrid Immune Algorithm with 
Information Gain for the Graph Coloring Problem In proc. of Genetic and 
Evolutionary Computation COnference (GECCO’03), LNCS, 2723: 171–182.

2. Cutello V,Nicosia G, Pavone M (2007). An immune algorithm with stochastic 
aging and kullback entropy for the chromatic number problem. Journal of 
Combinatorial Optimization 14(1):9–33.

3. Pavone M, Narzisi G,Nicosia G (2012). Clonal Selection - An Immunological 
Algorithm for Global Optimization over Continuous Spaces. Journal of Global 
Optimization, 53(4):769–808.

4. Hart W E, Krasnogor N, and Smith JE(2005). Recent Advances in Memetic 
Algorithms. In series in Studies in Fuzziness and Soft Computing, Springer, 
Berlin, Germany.

5. Cutello V, Nicosia G, Pavone M and Prizzi I. Protein Multiple Sequence 
Alignment by Hybrid Bio-Inspired Algorithms. Nucleic Acids Research, Oxford 
Journals, 39(6):1980–1992, 2011.

6. Cutello V, Nicosia G, Pavone M, Narzisi G(2006) Real Coded Clonal Selection 
Algorithm for Unconstrained Global Numerical Optimization using a Hybrid 
Inversely Proportional Hypermutation Operator. In proc. of 21st Annual ACM 
Symposium on Applied Computing (SAC’06), 2: 950–954,.

7. Cutello V, Krasnogor N, Nicosia G, Pavone M. Immune Algorithm versus 
Differential Evolution: A Comparative Case Study Using High Dimensional 
Function Optimization. in proc. of Interna- tional Conference on Adaptive and 
Natural Computing Algorithms (ICANNGA’07), LNCS, vol. 4431, pages 93–101.

8. Toth P, Vigo D (2014) Vehicle Routing: Problems, Methods, and Applications. 
MOS-SIAM Series on Optimization.

9. Raidl GR (1999). Genetic Algorithms for the Multiple Container Packing 
Problem. ACM SIGAPP Applied Computing Review, 782:2–31.

10. Raidl G(1999). A weight-coded genetic algorithm for the multiple container 
packing problem. In proc. of Annual ACM Symposium on Applied Computing 
(SAC’99), 291–296.

11. Fukunaga AS ,Korf AE (2007). Bin completion algorithms for multi container 
packing, knapsack, and covering problems. Journal of artificial intelligence 
research, 28:393–429

12. Soak SM., Lee S W, Yeo G T, Jeon MG (2008). An effective evolutionary 
algorithm for the multiple container packing problem. Progress in Natural 
Science, 18(3):337–344. 

13. Krasnogor N, Smith JE(2005). A tutorial for competent memetic algorithms: 
model, taxonomy and design issues. IEEE Transactions on Evolutionary 
Computation, 9(5):474–488.

14. Krasnogor N.(2012) Memetic Algorithms. Book chapter on Handbook of Natural 
Computation, pp. 905–936.

15. Krasnogor N(2012)Memetic Algorithms. Book chapter on Handbook of Natural 
Computation, pp. 905–936.

16. Zhipeng L ,Hao J K. (2010) A Memetic Algorithm for Graph Coloring. European 
Journal of Operational Research, 203(1): 241–250.

17. Hao JK.(2012) Memetic Algorithms in Discrete Optimization. Book chapter on 
Handbook of Memetic Algorithms, Studies in Computational Intelligence, 379: 
73–94.

18. Ayadi W, Hao JK (2014). A memetic algorithm for discovering negative 
correlation biclusters of DNA microarray data. Neurocomputing, 145:12–22.

19. Ralphs T K, Kopman L, Pulleyblank WR, Trotter(2003). On the Capacitated 
Vehicle Routing Problem. Mathematical Programming, 94: 343–359.

20. Cutello V, Nicosia G, Pavone M, Timmis J (2007). An Immune Algorithm 
for Protein Structure Pre- diction on Lattice Models. IEEE Transaction on 
Evolutionary Computation, 11(1):101–117.

21. Caponetto R, Fortuna L, Fazzino S, Xibilia MG(2003). Chaotic Sequences to 
Improve the Perfor- mance of Evolutionary Algorithms. IEEE Transaction on 
Evolutionary Computation, 7(3): 289–304.

22. Maaranen H, Miettinene K, Penttinen A (2007) On Initial Populations of a 
Generic Algorithm for Continuous Optimization Problems. Journal of Global 
Optimization, 37(3):405–436.

23. Cutello V, Nicosia G, Pavone M (2004). Exploring the capability of immune 
algorithms: a charac- terization of hypermutation operators. In proc. of 3rd 
international conference on artificial immune systems (ICARIS’04), LNCS, 
3239:263–276, 2004.

24. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. MIT 
Press, 2001.

25. Cutello V, Nicosia G ,Pavone M(2004). An Immune Algorithm with Hyper-
Macromutations for the Dill’s 2D Hydrophobic - Hydrophilic Model. In proc. of 
Congress on Evolutionary Computation (CEC’04), IEEE Press,1 :1074–1080.

26. Morris MD(2001), Factorial sampling plans for preliminary computational 
experiments. Technometrics, 33(2):161–174.

27. Graph Coloring Instances. In http://mat.gsia.cmu.edu/COLOR/instances.html

Citation: Pavone M, Costanza J, Cutello V (2015) An Immunological Algorithm 
for Combinatorial Optimization: the Fuel Distribution Problem as Case Study. 
Int J Swarm Intel Evol Comput 4: 118. doi: 10.4172/2090-4908.1000118

http://link.springer.com/chapter/10.1007%2F3-540-45105-6_23#page-1
http://link.springer.com/chapter/10.1007%2F3-540-45105-6_23#page-1
http://link.springer.com/chapter/10.1007%2F3-540-45105-6_23#page-1
file://E:\TotalJournals\OMICS\SIEC\Volume4\Volume4.1\Volume4.1_W\SIEC-15-398 (118)\APPROVED\2.V. Cutello, G. Nicosia, and M. Pavone.  An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization, 14(1):9
file://E:\TotalJournals\OMICS\SIEC\Volume4\Volume4.1\Volume4.1_W\SIEC-15-398 (118)\APPROVED\2.V. Cutello, G. Nicosia, and M. Pavone.  An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization, 14(1):9
file://E:\TotalJournals\OMICS\SIEC\Volume4\Volume4.1\Volume4.1_W\SIEC-15-398 (118)\APPROVED\2.V. Cutello, G. Nicosia, and M. Pavone.  An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem. Journal of Combinatorial Optimization, 14(1):9
http://link.springer.com/article/10.1007%2Fs10898-011-9736-8#page-1
http://link.springer.com/article/10.1007%2Fs10898-011-9736-8#page-1
http://link.springer.com/article/10.1007%2Fs10898-011-9736-8#page-1
http://uahost.uantwerpen.be/eume/workshops/hybrid/eume4-plenary-1.pdf
http://uahost.uantwerpen.be/eume/workshops/hybrid/eume4-plenary-1.pdf
http://uahost.uantwerpen.be/eume/workshops/hybrid/eume4-plenary-1.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064771/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064771/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3064771/
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-SAC06-opt.pdf
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-SAC06-opt.pdf
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-SAC06-opt.pdf
http://www.dmi.unict.it/nicosia/papers/conferences/Nicosia-SAC06-opt.pdf
http://link.springer.com/chapter/10.1007%2F978-3-540-71618-1_11#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-71618-1_11#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-71618-1_11#page-1
http://link.springer.com/chapter/10.1007%2F978-3-540-71618-1_11#page-1
https://books.google.co.in/books?hl=en&lr=&id=AoTTBQAAQBAJ&oi=fnd&pg=PR1&dq=Vehicle+Routing:+Problems,+Methods,+and+Applications&ots=-P-ghalgNi&sig=TcmIi03BN8okYoBa0CNCF42ORRs#v=onepage&q=Vehicle Routing%3A Problems%2C Methods%2C and Applications&f=false
https://books.google.co.in/books?hl=en&lr=&id=AoTTBQAAQBAJ&oi=fnd&pg=PR1&dq=Vehicle+Routing:+Problems,+Methods,+and+Applications&ots=-P-ghalgNi&sig=TcmIi03BN8okYoBa0CNCF42ORRs#v=onepage&q=Vehicle Routing%3A Problems%2C Methods%2C and Applications&f=false
https://www.ac.tuwien.ac.at/files/pub/raidl-98a.pdf
https://www.ac.tuwien.ac.at/files/pub/raidl-98a.pdf
http://dl.acm.org/citation.cfm?id=298354
http://dl.acm.org/citation.cfm?id=298354
http://dl.acm.org/citation.cfm?id=298354
https://www.aaai.org/Papers/JAIR/Vol28/JAIR-2811.pdf
https://www.aaai.org/Papers/JAIR/Vol28/JAIR-2811.pdf
https://www.aaai.org/Papers/JAIR/Vol28/JAIR-2811.pdf
http://www.sciencedirect.com/science/article/pii/S1002007107000639
http://www.sciencedirect.com/science/article/pii/S1002007107000639
http://www.sciencedirect.com/science/article/pii/S1002007107000639
http://eprints.uwe.ac.uk/11069/1/01514472.pdf
http://eprints.uwe.ac.uk/11069/1/01514472.pdf
http://eprints.uwe.ac.uk/11069/1/01514472.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.4618&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.4618&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.4618&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.63.4618&rep=rep1&type=pdf
http://smart.hust.edu.cn/admin/papers/1336448914.pdf
http://smart.hust.edu.cn/admin/papers/1336448914.pdf
http://www.info.univ-angers.fr/pub/hao/papers/MA2011.pdf
http://www.info.univ-angers.fr/pub/hao/papers/MA2011.pdf
http://www.info.univ-angers.fr/pub/hao/papers/MA2011.pdf
http://www.sciencedirect.com/science/article/pii/S0925231214008492
http://www.sciencedirect.com/science/article/pii/S0925231214008492
http://coral.ie.lehigh.edu/~ted/files/papers/VRP.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/VRP.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4079612&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4235%2F4079606%2F04079612.pdf%3Farnumber%3D4079612
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4079612&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4235%2F4079606%2F04079612.pdf%3Farnumber%3D4079612
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4079612&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4235%2F4079606%2F04079612.pdf%3Farnumber%3D4079612
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1206449&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1206449
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1206449&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1206449
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1206449&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1206449
http://link.springer.com/article/10.1007%2Fs10898-006-9056-6
http://link.springer.com/article/10.1007%2Fs10898-006-9056-6
http://link.springer.com/article/10.1007%2Fs10898-006-9056-6
http://www.dmi.unict.it/mpavone/papers/Pavone-ICARIS-2004.pdf
http://www.dmi.unict.it/mpavone/papers/Pavone-ICARIS-2004.pdf
http://www.dmi.unict.it/mpavone/papers/Pavone-ICARIS-2004.pdf
http://www.dmi.unict.it/mpavone/papers/Pavone-ICARIS-2004.pdf
http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf
http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1330981&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9256%2F29383%2F01330981.pdf%3Farnumber%3D1330981
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1330981&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9256%2F29383%2F01330981.pdf%3Farnumber%3D1330981
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1330981&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9256%2F29383%2F01330981.pdf%3Farnumber%3D1330981
http://abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991 SA paper.pdf
http://abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991 SA paper.pdf
http://abe.ufl.edu/Faculty/jjones/ABE_5646/2010/Morris.1991 SA paper.pdf

	Title
	Corresponding author
	Abstract 
	Keywords
	Introduction
	Fuel Distribution Problem 
	Differences between FDP and CVRP 
	Mathematical formalization as graph theoretic model 

	HCSA - A Hybrid Clonal Selection Algorithm 
	Local Search 
	Heuristics for the Assignment Scheme 
	Sensitivity Analysis 
	Results
	Conclusions and Future Work 
	Acknowledgements  
	 Figure 1
	 Figure 2
	 Figure 3
	 Figure 4
	 Figure 5
	Table 1
	Table 2
	Table 3
	Table 4
	References 

