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Abstract

Nonlinear Constrained Optimization Problem (NCOP) has been arisen in a diverse range of sciences such as
portfolio, economic management, airspace engineering and intelligence system etc. In this paper, a new
multiobjective imperialist competitive algorithm for solving NCOP is proposed. First, we review some existing
excellent algorithms for solving NOCP; then, the nonlinear constrained optimization problem is transformed into a bi
objective optimization problem. Second, in order to improve the diversity of evolution country swarm and help the
evolution country swarm to approach or land into the feasible region of the search space, three kinds of different
methods of colony moving toward their relevant imperialist are given. Thirdly, the new operator for exchanging
position of the imperialist and colony is given similar as a recombination operator in genetic algorithm to enrich the
exploration and exploitation abilities of the proposed algorithm. Fourth, a local search method is also presented in
order to accelerate the convergence speed. At last, the new approach is tested on thirteen well-known NP-hard
nonlinear constrained optimization functions, and the experiment evidences suggest that the proposed method is
robust, efficient, and generic when solving nonlinear constrained optimization problem. Compared with some other
state of the art algorithms, the proposed algorithm has remarkable advantages in terms of the best, mean, and worst
objective function value and the standard deviations.
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Introduction
In science and engineering fields, many complex optimization

problems involve in constraint conditions [1-3]. That’s to say, the
optimal solution of those practical problems are restricted to the
problem’s constraint conditions. Valves in chemical process control
need a maximum and a minimum displacement. Also, for safety or
other operational reason, it is usual to impose some limits on allowable
temperatures, levels and pressures [4]. When solving these
optimization problems, it is difficult to deal with the constraints and
find the optimal solution of the nonlinear constrained problem.

Mostly often, constraint handling optimization algorithm used in
classical optimization methods can be classified into two types: one is
generic methods that do not exploit the mathematical structure of the
constraint, such as the penalty function method [5], lagrange multiple
method [6], and some intelligence optimization search heuristic
algorithms, e.g., enhanced grey wolf optimization algorithm [7],
surrogate-assisted evolutionary optimization method [8], modified
butterfly optimization algorithm [9] chaotic grey wolf optimization
algorithm [10], and enhanced grey wolf optimisation algorithm [11]
and the other is special methods that used to solve these problems with
specific types of constraints, such as the cutting place method [12] the
gradient projection method [13] the quasi-Newton method [14] and
the steepest descent method [15].

As far as generic methods are concerned, since these algorithms are
generic, some performances of them in some case can’t be fully
satisfied. However, these special methods are applicable either to these

optimization problems having convex search region only or to these
optimization problems whose objective and constraint functions are
differentiable. In fact, among the generic methods, the most popular
approach in real optimization fields to deal with the constraint of an
optimization problem is the penalty function method, which involves a
number of penalty parameters and we must to set right in any
algorithms in order to obtain the optimal solution, and this
performance on penalty parameter has led many researches to devise
the sophisticated penalty function method. These methods mainly can
be divided three categories:

a) Multi-level penalty functions [16]

b) Dynamic penalty functions based on adaptive and
coevolutionary penalty approaches [17] and;

c) Hybrid penalty functions combined with the advantages of
evolutionary computation, such as [18,19].

Evolutionary algorithm is generally inspired by the modelling of the
natural processes, especially human evolution. Genetic algorithm lies
in the category of evolutionary algorithms. However, Imperialist
Competitive Algorithm (ICA) uses socio political evolution of human
as a source of inspiration for developing a strong optimization strategy
proposed by Atashpaz-Gargari et al. [20]. ICA has been succeeded
widely to solve many real-world optimization problems in recent years,
e.g., Mahdi et al. [21] introduced an imperialist competitive algorithm
for solving systems of nonlinear equations; in reference Mohammadi et
al. [22] designed a multi-objective imperialist competitive algorithm to
solve a capacitated hub covering location problem; and Shokrollahpour
et al. [23] proposed a novel imperialist competitive algorithm for
solving bi-criteria scheduling of the assembly flow-shop problem [23].
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Moreover, how to find a balance between exploration and
exploitation for an excellent generic algorithm is very important. Joshi
et al. [11], the authors proposed an Enhanced Grey Wolf Optimization
(EGWO) algorithm with a better hunting mechanism, which focuses
on the proper balance between exploration and exploitation that leads
to an optimal performance of the algorithm and hence promising
candidate solutions are generated and Long et al. [24], the authors
introduce a nonlinear control parameter strategy and a new position-
updated equation in order to balance the exploration and exploitation
of the algorithm.

In this paper, we proposed a new multiobjective optimization
method based on ICA to solve nonlinear constrained optimization
problem. Firstly, the nonlinear constrained optimization problem
concerned is transformed into a bi-objective unconstrained
optimization problem, so that no penalty function or other mechanism
to deal with the constrained are introduced. Then, in order to improve
the diversity of evolution country swarm and help the evolution
country swarm to approach or land into the feasible region, three kinds
of different methods of colonies moving toward their relevant
imperialist are presented. Also, the new operator for exchanging
position of the imperialist and colony is given as a recombination
operator in genetic algorithm to achieve a better balance of the
exploration and exploitation behaviors of the proposed algorithm.
Moreover, a new local search method is also integrated in order to
increase the convergence speed of the proposed algorithm. At last, the
new method is tested on 13 well-known NP-hard nonlinear
constrained optimization functions, and the experiment results suggest
that the proposed algorithm is robust, efficient, and generic when
solving nonlinear constrained optimization problem. Compared with
some other state-of-the-art algorithms, the proposed algorithm has
remarkably advantage in terms of the best, mean, and worst objective
function value and the standard deviation, i.e, it is indicated that the
proposed algorithm can effectively solve the nonlinear constrained
optimization problem. The paper is organized as follows. In section 2,
the related concepts of nonlinear constrained optimization problem
are given. The main steps of the proposed imperialist competitive
algorithm for solving the nonlinear constrained optimization problem
are designed in section 3. The flowchart of the proposed algorithm is
described in section 4. After simulation results are shown in section 5,
the conclusion and acknowledgment are made in section 6 and section
7, respectively.

Related Concepts of NCOP
Without loss of generality, the general Nonlinear Constrained

Optimization Problem (NCOP) that we are interested in can be
formulated as

� . � . ��(�) ≤ 0ℎ�(�) = 0 � = 1, 2, ...,�� = �+ 1,�+ 2, ..., �
min� ∈ � ∈ [�,�]�(�) (1)

Where � = (�1, �2, ..., ��)� ∈ ��is�dimension decision vector and�1(�) ≤ 0is the inequation constraint for � = 1, 2, ...,�, ℎ�(�) = 0is
equation constraint.For � = �+ 1,�+ 2, ..., 1 (in both cases,
constraints could be linear or non-linear), and� = � � (�)� ≤ 0, � = 1, 2, ..., �; ℎ�(�) = 0, � = �+ 1, �+ 2, ..., �(2) is
feasible region.

[�,�] = [�1, �1] × [�2, �2] × [��, ��] �� ≤ �� ≤ ��, � = 1, 2, ...,�
(3) in the search space.

Definition 1

For every point � * ∈ � such as �(�*) ≤ �(�) holds, then the point�* is called the optimal solution, and �(�*)is the optimal value for
problem (1). Let�1(�) = �(�), �2(�) = ∑� = 1� max 0,��(�) 2+ ∑� = �+ 1� ℎ�(�))2

where �(�) is the objective function of problem (1) and �2(�) is the
optimization function defined by the constraint condition of problem
(1), then, we can transform the nonlinear constrained optimization
problem (1) into the bi objective optimization problem as follows:min� ∈ [�,�]�(�) = (�1(�), �2(�))           (4)

For the bi-objective optimization problem (4), to minimize the first
objective function �1(�) means to find a feasible point so as to become
the optimal solution of problem (1), to minimize the second objective
function�2(�) means to search the point in order to meet all the
constraints of problem (1). Therefore, when to minimize the two
objectives function of problem (4) simultaneously means searching for
the point so as to satisfy all the constraints and make the objective
function of problem (1) to reach the optimum.

Definition 2
A two-dimension vector � = �1,�2 is said to weakly dominate

another two-dimension vector(�1, �2), �� ≤ ��for� = 1, 2.

Definition 3
A point � ∈ [�,�] is said to be a weakly Pareto optimal solution for

problem (4) if there does not exist another point � ∈ [�,�] such as�(�)weakly dominates �(�). The set of all the weakly Pareto optimal
solutions is called the weakly Pareto optimal set and the set of all the
weakly Pareto optimal solution’s objective vectors is called the weakly
Pareto front.  Suppose  that ��(�, �)  is  the  weakly  Pareto   optimal
solution set of problem (4). Then, the optimal solution of the problem
(1) and the weakly Pareto optimal solution of the problem (4) have the
following relation:

Theorem 1

A solution �*is the optimal solution of problem (1) if�* ∈ � ∩ ��(�, �) and �* = argmin�1(�) Proof. Sufficiency is

obvious. The necessity proof is given as follows: Since �* is the optimal
solution of problem (1), then�(�*) = �1(�*) = min� ∈ ��1(�).
Furthermore, we have �* = argmin� ∈ ��1(�) Furthermore, we have�* ∈ �and �2(�*) = 0

If �* ∈ ��(�, �), then there at least exists another solution � ∈ �
and makes ��( �) < ��(�*) for � = 1, 2hold, i.e. �2(�) < �2(��) = 0
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this is contradiction to the definition of function �2(�) ≥ 0 for so∀� ∈ ��* ∈ ��(�, �)i.e, �* ∈ � ∩ ��(�, �).
The conclusion of the Theorem 1 demonstrates that the optimal

solution of problem (1) can be obtained from the intersection of the
feasible region of problem (1) and the weakly Pareto optimal solution
set of problem (4), and the optimal solution makes the first objective
function minimum.

The Design of the Main Operators for the Proposed
Algorithm

In order to solve the Nonlinear Constrained Optimization Problem
(NCOP) proposed in section 2, a new imperialist competitive
algorithm is designed in sections 3 and 4. Firstly, we briefly introduce
the idea of the Imperialist Competitive Algorithm (ICA), proposed by
the authors Atashpaz-Gargari et al. [20]. ICA, similar to the
evolutionary algorithm, particle swarm algorithm and so on, is a kind
of swarm intelligence algorithm. ICA is inspired by imperialistic
competition. All the countries are divided into two types: imperialist
states and colonies. Imperialistic competition is the main evolution
operator and hopefully causes the colonies to approach the global
optimal solution. Based on the idea, we design the main operators for
the proposed algorithm as follows.

The creation of initial empires
During the operation process of ICA, the initial evolution country

swarm, should be generated firstly. Among the initial country swarm,
some of the best countries are selected to form the initial imperialist,
and the rest of the countries are divided among the initial imperialists
as colonies. In this section, randomly generate ���initial countries in

search space [�,�, ] denotes  them  s  country � = (�1� , �2� , ..., ��� )� for� = 1, 2..., ���, and define the cost of each country as follows:cos�(��������) = �1(��������)�������� ∈ ��2(��������)�������� ∈ [�,�]\�    (5)

Where �1(�) is the first objective function and �2(�)is the second
objective function of problem (4), respectively. Select N of the most
powerful countries to form empires, where the most powerful
countries refer to the countries whose cost are relatively small. The rest
countries of the initial countries will become colonies of each of
empires according to their power. Thus, each empire receives several
colonies. This process is presented in Figure 1, where the more
powerful empires have a greater number of colonies and weaker
empires have fewer colonies.At last, these initial countries are divided
into two groups: imperialist and colony (denote in imperialist � and
colony �� = 1, 2, ...,��� − �respectively). In order to form the initial
empires, we divide colonies into N imperialists based on their power.
Here, we divide these colonies among imperialists according to the
method of proportion selection or the roulette wheel selection used in
genetic evolution as follows:

Step 1: Suppose the normalized power of each imperialist is defined
by

�� = ��∑� = 1� ��  (6)

Where ��is the normalized power of the j-th imperialist, and�� = �� max1 < � < � ��  is the normalized cost of the j-th imperialist for� = 1, 2, ...,�, �� is the cost of the ��ℎ imperialist for � = 1, 2, ...,�.

Step 2: Generate the initial number of the colonies belonging to each
empire based on the following formula� .� .� = ����� �� . (��� − �) (7)

Where � .� .� is the number of initial colonies of the j-th empire,
and ��� − � is the total number of all initial colonies.Step 3: Select� .� .�colonies according to the roulette wheel selection and join them
to the j-th imperialist. These colonies along with the imperialist
together will form the j-th empire (denote empire �, � = 1, 2,⋯,�).

               : Generation of the initial empire and their initial colony in
search space[�,�] ∈ �2.

Method of Colonies Moving Toward their Relevant
Imperialist

Atashpaz-Gargari et al. [20], the authors make each colony to move
toward the imperialist by x-units in the direction which is the vector
from colony to imperialist. x will be a random variable with uniform
distribution, i.e.,� �(0,� × �)          (8)

Where � > 1 and d is the distance between the colony and
imperialist, and parameter β causes the colony to get closer to the
imperialist from both sides. However, for constraint optimization
problem, it needs the designed algorithm not only to make the
infeasible solution approaching the feasible region and satisfying the
constraint condition, but also make the objective function minimum.
Based on these, we proposed a new method of colonies moving to their
relevant imperialist as follows. Suppose that we make the colony�(� = 1, 2, ..., ��� − �)to move the imperialist �(� = 1, 2, ...,�) then
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Case 1
If both imperialist � and colony � are feasible, i.e., imperialist �and

colony � ∈ �, we generate a circle which the diameter is the straight-
line segment d joining the imperialist �and colony�, the new position
(denote as colony �) of the ��ℎcolony moved to their relevant
imperialist is shown in a gray colour in Figure 2, where � and � are two
random numbers with uniform distribution, i.e, and� �(− �,�)        (9)� �(0,� . cos�)    (10)

Parameter �and � can cause the colony � to get closer to the
imperialist from its neighbourhood rather than far away from the
imperialist�.

Figure 2: The method of colony moving to imperialist based on the
fact that both the ��ℎ colony and ��ℎ imperialist are feasible in

search space[�,�] ∈ �2.� ∈ [�,�]\�
Case 2

If both imperialist � and colony �are infeasible, i.e, imperialist �
colony� ∈ [�,�]\�, we random select a colony s from feasible region ,
compute the barycenter of three countries colony �, imperialist � and
colony �, and then, the barycenter (denote by colony k in Figure 3) can
be regarded as the new position which colony �move to imperialist �.
Using this method, we can make the colony not only to move to the
imperialist but approach the feasible region.

Figure 3: The method of colony moving to imperialist based on the
fact that both colony� and imperialist are infeasible in search space[�,�] ∈ �2.

Case 3
If there exists one feasible country between colony � and imperialist�, and suppose colony �is feasible country and imperialist is infeasible

country and vice versa, i.e, colony� ∈ �, imperialist � ∈ [�,�]\� then,
we generate a circle which the circle’s centre is colony �and the radius is
the straight-line segment L joining the colony �and imperialist � the
new position colony �of colony � moved to imperialist � is shown in a
gray colour in Figure 4, where � is a random number with uniform
distribution, i.e,� �(− �,�)      (11)

Where � is a parameter that adjusts the deviation of direction which
is the vector from colony � to imperialist �� �(0, � . �) is a random
number with uniform distribution, and � and � are arbitrary. In most

of our implementation, the value of �and � < �4  have  a  good
convergence to the global minimum and can make the feasible colony�not far away from the feasible region.

Exchanging Position of the Imperialist and Colony
Based on the method of colonies moving toward their relevant

imperialist in subsection the operator of exchanging position of the
imperialist and the colony can be described as follows:� < 12

If both colony � and imperialist � are feasible, and suppose that the
cost of colony � has lower cost than that the imperialist does, i.e.,�1(������� < �1(������������).

Figure 4: The method of colony moving to imperialist based on the
fact that colony j is feasible and imperialist i is infeasible in search
space [�,�] ∈ �2.

�1(������������) then we use the colony � to replace the
imperialist � and form the new imperialist, vise versa.

(2) If both colony � and imperialist � are unfeasible, then we always
choose the one with the smaller cost as the new imperialist� i.e, if�2(������� > �2(������������) then  keep  imperialist � invariable;
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otherwise, if �2(������� < �2(������������) then use the colony �to
replace the imperialist �and form new imperialist.

(3) If there exists one feasible country between the colony �and
imperialist �, we always use the feasible country as the new imperialist
in order to make the evolution country swarm approaching the feasible
region and fast converging to the minimum.

Local Search Operator
In order to accelerate the convergence speed, we add a local search

operator as follows to the proposed algorithm. Suppose imperialist ,
imperialist, imperialist � are � imperialists obtained by the proposed
algorithm in current evolution countries swarm, where � is the
number of imperialist and it will become more less with the imperialist
competition.

Compute the approximate value of gradient for each imperialist� ∈ [�,�],i.e., ∇� = (∇�1, ∇�2, ..., ∇��)�
∇�� =
�1(������������+ ���)− �1 (������������)��2(������������+ ���)− � (������������)2�

������������ ∈ ������������� ∈ [�,�]\ �
(12)

For � = 1, 2, ..., �, � = 1, 2, ...�, � > 0 and � = (�1, �2, ..., ��)� is a n-
dimension unit vector which the jth component �� = 1 and the rest of
components �� = 0, 1 ≠ � then, �� = 0, 1 ≠ �.

Case 1: If ∇� ≠ 0 carry out one-dimensional search along the

descent direction � = − ∇�i.e, obtain �* and make the following
formula.min������������ ∈ ��1(������������+ ��) = �1(������������+ � *�)
(13) min������������ ∈ [�,�]\��2(������������+ ��) = �2(������������+ � *�)
(14)

Holds, where((������������+ �*�) ∈ [�,�], then we use(������������+ �*�))to replace imperialist �and form the new

imperialist. Case 2: If   ∇� = 0, keep imperialist � no change.

Imperialistic Competition
As mentioned in reference [20], during the evolution of countries,

all the empires try to possess the colonies of the other empires and
control them. As a result, the power of the weaker empires gradually
begins to decrease and the power of the more powerful increases. This
process can be described in the follows:

• Compute the total power of the j-th empire depending on its own
imperialist and colonies as follows:

• � .� .� = cos�(����������� * ) + � . 1� .� .� ∑� = 1
� .� .�cos�(�������)

(15)

Where � < 1 is a positive coefficient, and imperialist_ is the
imperialist of the jth empire, N.C.j is the number of colonies of the jth
empire, cost (·) is the normalized cost function defined in formula (5).
Use the following formula (16) to compute the possession probability

E.P.j of each empire� for� = 1, 2, ...,� i.e., � .� .� = � .� .� .�∑� = 1� � .� .� .�
(16)

Where � .� .�� = � .��max1 ≤ � ≤ � � .� .� is the normalized
total power and is the total power of the j-th empire,
respectively.Randomly select some colonies from current evolution
countries swarm, e.g., when select only one and denote in colony, let� = � .�1,�2, ...� .� .� , and also generate a N-dimension vector V

with uniformly distributed elements, i.e.,� = (�1,�2, ...,��)�(17)

Where �� ���� (0, 1) for � = 1, 2, ...,� Furthermore let,� = (�1,�2, ...,��)� = (� .� .1 − �1,� .� .2 − �2, ...,� .� .�− ��)� (18)

Then we divide the colony in to the -th empires, where index� = 1, 2, ...,�, is subscript of the maximum component in vector �.

With the imperialistic competition, powerless empires will collapse
in the imperialist competitive, and the number of their colonies
become less and less. When an empire loses all of its colonies, we
consider that the empire has been collapse and the imperialist become
one of the rest colonies.

The Flowchart of the Proposed Algorithm
The main difference between the proposed Multi-objective

Imperialist Competitive Evolutionary Algorithm (denote as MICA)
and the original imperialist competitive algorithms is the method of
colony moving toward their relevant imperialist according to Figures 2
and 4. Additionally, in order to make the evolution country swarm to
approach or come in the feasible region, three kinds of different
methods of colonies moving toward their relevant imperialist are
given. In addition, a new operator for exchanging position of the
imperialist is also designed to achieve a better balance between the
exploration and exploitation behaviours for MICA, and a new local
search method is also embedded in order to increase the convergence
speed of the proposed algorithm. The flowchart of the proposed
algorithm is shown as follows: [�,�]

Step 1: Choose the proper parameter, initial country size ���,
randomly generate initial country swarm in search space [�,�]and
denote them as the set ���(0)find the weakly Pareto optimal countries
(i.e, weakly Pareto optimal solutions) in ���(0)according to the
Definition 3 and denote them as an external set let � = 0.
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: Generate  initial  empires, i.e,  select  the  most  powerful
countries N from ���(�)and divide the rest countries to each of them.

Step 3 : Make each of colonies to move toward relative imperialist
based on the method of colonies moving toward their relevant
imperialist in subsection 3.2 and exchange the position of the
imperialist and the colony according to subsection 3.3.

            : Carry  out  the  local  search  operator  and  imperialistic
competition, and form the next evolution country swarm ���(�+ 1).
              : Find   the   weakly   Pareto   optimal   countries   in   the   set�(�) ∪ ���(�+ 1)and use them to replace those countries including
into set �(�) to form the new external set�(�+ 1).

Step 6: If the maximum number of the cycles has been reached, the
algorithm stops; output the optimal solution�* = argmin� ∈ � ∩ �(�+ 1)�1(�) of problem (1). Otherwise, let� = (�+ 1)go to Step 2.

Experimental Results and Discussions
To evaluate the efficiency of the proposed algorithm, thirteen

nonlinear constrained optimization test problems g01∼g13 were tested
by six optimizations evolutionary algorithms: OICA [20], SAEA [25],
SMEA [26], RCEA [27], ISEA [28], and the proposed algorithm MICA.
These benchmark functions are described in [27]. And they are
summarized here for completeness, and the original sources of the
functions are also cited. Test functions g02, g03, and g12 are
maximization problems, they were transformed into minimization
problems using the objective function min(-f(x)).

In order to estimate how difficult, it is to generate feasible countries
through a purely random process, we use the ρ-metric [29] which can
measure the ratio between the size of the feasible search space and that
of the entire search space, i.e.,� = � / � (19)

Where is the number of countries randomly generated from search
space , and  is the number of feasible countries found by
each algorithm (out of these  countries. In our algorithm,   is the
initial country size���� .Each algorithm was implemented by using
MATLAB 7.0 on an Intel Pentium IV 2.8-GHz personal computer and
was executed 30 independent runs for each test problem. In the
simulation, the initial country size���� = 500,the ratio of the most
powerful countries is ���� × 5% and the maximum number of cycles
is 1500 [30-33].

summarizes the average percentage of the feasible countries in the final
evolution country swarm in 30 independent runs for each test
problem. Moreover, In order to illustrate the rate of the convergence
for the proposed algorithm, we record the average distance from the
best individual of the imperialist swarm to the boundaries of the
feasible region at every 1500 generations in 30 runs. The results are
presented in Table 2. Also, we list the known optimal solution and the
best, mean, and the std. for the objective function value in Table 3, and
the standard deviation (std.) after 30 independent runs by MICA and
the Original Imperialist Competitive Algorithm (denote as OICA) is
also given. These results provided by four compared algorithms SAEA,
SMEA, RCEA and ISEA were taken from the original references. In
Table 2, “I.N.” represents the iteration number, and in Table 3, “NA”
presents no results in the reference.

The global minimum is x*=(1,1,1,1,1,1,1,1,1,3,3,3,1) and the
optimum value f(x*)= -15. Moreover, they g1,g2,g3,g7 and g8 are active.�02[30]
max�(�) = ∑� = 1� cos4�� − 2 ∏� = 1� cos2��∑� = 1� ���2
�1(�) = 0.75− ∏� = 1� �� ≤ 0;
�2(�) = ∑� − 1� ��− 7.5� ≤ 0;
where � = 20, 0 ≤ �� ≤ 10 for i=1∼n the global maximum is

unknown, the best we found is F(x*)=0.803619 which is better than
any reported value up to the best of our knowledge, and the constraint
g1 is active.

g03[32]
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� � �

�01[30]min�(�) = 5 ∑� = 14 ��− 5 ∑� = 14 ��2− ∑� = 513 ��
�1(�) = 2�1+ 2�2+ �10+ �11− 10 ≤ 0;
�2(�) = 2�1+ 2�3+ �10+ �12− 10 ≤ 0;�3(�) = 2�2+ 2�3+ �11+ �12− 10 ≤ 0;

�4(�) = − 8�1+ �10 ≤ 0;
�5(�) = − 8�2+ �11 ≤ 0;�6(�) = − 8�3+ �12 ≤ 0;
�7(�) = − 2�4− �5+ �10 ≤ 0;
�8(�) = − 2�6− �7+ �10 ≤ 0;�9(�) = − 2�8− �9+ �12 ≤ 0;
Where 0 ≤ �� ≤ 1 for � = 9, 0 ≤ �� ≤ 100(� = 10 12),��� 0 ≤ � ≤ 1. Table 1

L,U
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�6�W�H�S������

4�6�W�H�S������

�6�W�H�S��5



max�(�) = � � ∏� − 1� ��
ℎ1(�) = ∑� − 1� ��2 = 0 ;
where � = 10, 0 ≤ �� ≤ 1 for � = 1 � the global maximum is ��= 1�and �(�*) = 1.

Where 78 ≤ �1 ≤ 102, 33 ≤ �2 ≤ 45, 27 ≤ �� ≤ 45 for i=3,4,5.
The optimum is x*=(78,33,29.995256025682,45,36.775812905788) and
f(x*)=-30665.539�05[33]min�(�) = 3�1+ 0.000001�13+ 2�2+ 0.0000023 �23�1(�) = − �2�3− 0.55 ≤ 0;�2(�) = − �3+ �4− 0.55 ≤ 0;ℎ3(�) = 1000sin(�3− 0.25) + 1000sin(− �4− 0.25) + 894.8− �1 = 0;ℎ4(�) = 1000sin(�4− 0.25) + 1000sin(�4− �3− 0.25) + 1294.8 = 0;

Where 0 ≤ �1 ≤ �2 ≤ 1200− 0.55 ≤ �3�4 ≤ 0.55,-.

The best-known solution x*

=(679.9452,1026.067,0.1188764,-0.3962336) and f(x*) =5126.4981

g06[29]min�(�) = (�1− 10)3+ (�2− 20)3�1(�) = − (�1− 5)2− (�2− 5)2+ 100 ≤ 0 ;�1(�) = (�1− 6)2− (�2− 5)2+ 82.81 ≤ 0 ;13 ≤ �1 ≤ 100.0 ≤ �2 ≤ 100
Where 13 ≤ �1 ≤ 100, 0 ≤ �2 ≤ 100
The best-known solution x*=(14.095,0.84296) and f(x*)=6961.81388

g07[33]min�(�) = �12+ �22+ �1�2− 14�1− 16�2+ (�3− 10)2+ 4(�4− 5)2+ (�5− 3)22(�6− 1)2+ 5�72+ 7(�8− 11)2+ 2(�9− 10)2+ (�10− 7)2+ 45

�1(�) = − 105 + 4�1+ 5�2− 3�7+ 9�8 ≤ 0;�2(�) = 10�1− 8�2− 17�7+ 2�8 ≤ 0;�3(�) = − 8�1+ 2�2+ 5�9− 2�10− 12 ≤ 0;�4(�) = 3(�1− 2)2+ 4(�2− 3)2+ 2�32− 7�4− 120 ≤ 0;�5(�) = 5�12+ 8�2+ (�3− 6)2− 2�4− 40 ≤ 0;

Where 0 ≤ �1, �2 ≤ 10, 0 ≤ �2 ≤ 100
The best solution is x*=(1.22797134.2453733) and f(x*)=0.095825.

g09[34]min�(�) = (�1− 10)2+ 5(�2− 12)2+ �34+ 3(�4− 11)2+ 10�56+ 7�62+ �74− 4�6�7− 10�6− 8�7�1(�) = − 127 + 2�12+ 3�24+ �3+ 4�42− 15�5 ≤ 0;�2(�) = − 282 + 7�1+ 3�2+ 10�32+ �4− �5 ≤ 0;�3(�) = − 196 + 23�1+ �22+ 6�62− 8�7 ≤ 0;�4(�) = 4�12+ �22− 3�1�2+ 2�32+ 5�6− 11�7 ≤ 0;
Where −10 ≤ �� ≤ 10 for i=1∼7 The optimum is x=(2.330499,

1.951372, -0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227) and
f(x)= 680.6300573.

g10[34]

min�(�) = ∑� = 13 ���1(�) = − 1 + 0.0025(�4+ �6) ≤ 0 ;�2(�) = − 1 + 0.0025(�5+ �7− �4) ≤ 0 ;�3(�) = − 1 + 0.01(�8− �5) ≤ 0 ;�4(�) = − �1�6+ 833.33252�4+ 100�1− 83333.333 ≤ 0
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�04[33]min�(�) = 5.3578547�32+ 0.8356891�1�5+ 37.293239�1− 40792.141�2(�) = − 85.334407− 0.0056858�2�5− 0.0006262�1�4 �3�5 ≤ 0;�3(�) =− 80.51249 + 00071731�2�5− 0.0029955�1�2 �32−110 ≤ 0;�4(�) =− 80.51249 − 00071731�2�5− 0.0029955 �1�2− 0.0021813 �32 ≤ 0;�5(� �3�5 �1�3 + 0.0019085 �3�4− 25≤ 0;�6(�) =− 9.300961− 0.0047026 �3�5− 0.0012547�1�3− 0.0019085�3�4+ 20 ≤ 0;

+ 0.0021813+ 0.0022053
+ 90) = 9.300961+0.0047026 + 0.0012547

�6(�) = �12+ 2(�2− 2)2− 2�1�2+ 14�5− 6�6 ≤ 0;�7(�) = 0.5(�1− 8)2+ 2(�2− 4)2+ 3�52− �6− 30 ≤ 0;
Where 10 ≤ �� ≤ 10for i=1,2,…10. The global optimum is
x*=(2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092, 8.375927) and f(x*)=24.3062091

g08[31]

min�(�) = ���3(2∏�1)���(2∏�2)�13(�1 + �2)�1(�) = �12− �2+ 1 ≤ 0 ;�1(�) = 1− �1+ (�2− 4)2 ≤ 0 ;
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�5(�) = − �2�7+ 1250�5+ �2�4− 1250�4 ≤ 0 ;�6(�) = − �3�8+ 1250000 + �3�5− 2500�5 ≤ 0 ;
Where100 ≤ �1 ≤ 10000, 1000 ≤ �� ≤ 100000(� = 2, 3), 10 ≤ ��≤ 1000(� = 4 8) . The

optimum is x*=(579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) and f(x*)=7049.3307

g11[31]min�(�) = �12+ (�2− 1)2ℎ(�) = �2− � − 12 = 0 ;�ℎ��� − 1 ≤ �1, �2 ≤ 1.Where −1 ≤ �1, �2 ≤ 1. The optimum is �* = ± 12 , 12 and �(�*) = 0.75
g12[31]

max�(�) = 100− (�1− 5)2− (�2− 5)2− (�3− 5)2100�(�) = (�1− �)2+ (�2− �)2+ (�3− �)2− 0.0625 ≤ 0 ;

Where 0 ≤ �� ≤ 10for i=1,2,3 and p,q,r =1,2,….9. The feasible
region of the search space consists of 93 disjointed spheres. A point(�1, �2, �3)is feasible if there exist such that the above inequality holds.
The optimum is located at x*=(5,5,5)within the feasible region and
f(x*)=1.�13[34]min�(�) = ��1�2...�5ℎ1(�) = �12+ �22+ �32+ �42+ �52− 10 ≤ 0;ℎ2(�) = �2�3− 5�4�5 = 0;ℎ3(�) = �13+ �23+ 1 = 0;

Where −2.3 ≤ �� ≤ 2.3 for � = 1, 2 and− 3.2 ≤ �� ≤ 3.2for
i=3,4,5. The optimum is located at x*=(-1.717143, 1.595709, 1.827247,
0.7636413, 0.763645) and f(x*)=0.0539498

As can be seen from Table 2, for the test problems without equality
constraints (g01, g02, g04, g06, g07, g08, g09, g10, and g12), the
proposed algorithm MICA can enter the feasible region within 1500
generations; for test functions g03 and g11, and the proposed
algorithm can enter the feasible region within 6000 generations.
Although for functions g03 and g13, MICA can enter the feasible
region within 6000 and 9000 generations, respectively; however, after
3000 generations, the best individual of the imperialist swarm has had
very little distance to the boundaries of the feasible region.

Test problem g01 g02 g03 g04 g05 g06 g07 g08 g09 g10 g11 g12 g13

Average percentage 100 95 59 89 100 62 78 92 85 78 86 98 57

Table 1: Average percentage of feasible countries in the final country swarm with 30 independent runs.

It can be seen from Table 3, our algorithm MICA can find a better
“best” result, compared with the other five algorithms OICA, SAEA,
SMEA, RCEA and ISEA in four functions g02, g07, g10 and g13. In
addition, algorithm MICA found a similar best solution in five
problems g01, g03, g06, g08, g11, and g12 (ISEA didn’t give the results
for g12). Slightly better best results were found by MICA in the
remaining functions g04, g05, g06, and g09 (in fact, our algorithm
obtained a similar best solution in g04 and g06 along with the

compared three algorithms SMEA, RCEA and ISEA). Our approach
found better mean and worst results in seven test functions g02, g05,
g06, g07, g09, g10, and g10 except the compared algorithm ISEA for
test g02 does [34]. It also provided similar mean and worst results in
six functions g01, g03, g04, g08, g11, and g12. Also, the proposed
algorithm obtained the slightly “worse” mean in test functions g01,
g08, g12 and g13 for RCEA, and in g02 for the compared algorithm
SMEA and ISEA.

I.N.

Function 1500 3000 4500 6000 7500 9000 10500 12000 13500 15000

g01 0 0 0 0 0 0 0 0 0 0

g02 0 0 0 0 0 0 0 0 0 0

g03 6.21E-03 4.42E-01 5.92E-13 0 0 0 0 0 0 0

g04 0 0 0 0 0 0 0 0 0 0

g05 3.28E-06 1.12E-04 0 0 0 0 0 0 0 0

g06 0 0 0 0 0 0 0 0 0 0

g07 0 0 0 0 0 0 0 0 0 0

g08 0 0 0 0 0 0 0 0 0 0
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g09 0 0 0 0 0 0 0 0 0 0

g10 0 0 0 0 0 0 0 0 0 0

g11 2.86E-14 1.85E-05 2.72E-17 0 0 0 0 0 0 0

g12 0 0 0 0 0 0 0 0 0 0

g13 3.24E-12 5.32E-11 1.54E-07 2.34E-14 3.35E-06 0 0 0 0 0

Table 2: Average distance from the best individual of the imperialist swarm to the boundaries of the feasible region at every 1500 generations for
the 30 runs.

The compared results in Table 2 verifies that MICA has the
capability in convergence rate, and the compared results in Table 3
reflects the fact that our algorithm is capable of performing a robust
and stable search. Furthermore, feasible solutions are consistently

found for all test problems in Table 1. The above observations validate
that the proposed algorithm MICA has substantial potential in coping
with various nonlinear constrained optimization problems.

Methods

Function Optimal Status OICA [19] SAEA [9] SMEA [16] RCEA [17] ISEA [26] MICA

g01 -15 best mean worst std.  -15.000  -15.000  -15.000  -15.000  -15.000  -15.000

-15 -15 -15 -15 -14.494 -15

-15 -15 -15 -15 -12.446 -15

-15 0 0  0.0E+00 9.30E-01 1.30E-11

g02 -0.80362 best mean worst std.  -0.80342  -0.80297  -0.803601  -0.803515  -0.803376  -0.803619

-0.79212 -0.7901 -0.785238 -0.781975 -0.798231 -0.793421

-0.76213 -0.76043 -0.751322 -0.726288 -0.768291 -0.783461

1.50E-03 1.20E-02 1.70E-02 2.00E-02 9.00E-03 2.50E-02

g03 -1 best mean worst std.  -1.0000 -1  -1.0000  -1.0000  -1.0000  -1.0000

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

6.40E-03 7.5E-05 2.10E-04 1.90E-04 9.70E-05 2.30E-12

g04 -30665.5 best mean worst std.  -30665.405  -30665.500  -30665.539  -30665.539  - 30665.539 - 30665.539

-30665.531 -30665.2 -30665.539 -30665.539 -30665.539 -30665.539

-30665.523 -30665.3 -30665.539 -30665.539 -30665.539 -30665.539

0 4.90E-01 0 2.00E-05 0 7.20E-10

g05 5126.498 best mean worst std.  5126.964  5126.989  5126.599  5126.497  NA  5126.4981

5432.08 5432.08 5174.492 5128.881 NA 5126.4981

5883.95 6089.43 5304.167 5142.472 NA 5126.4981

3.30E+05 3.90E+03 5.00E+01 3.50E+00 NA 1.51E-10

g06 -6961.81 best mean worst std.  -6961.800  -6961.800  -6961.814  -6961.814  -6961.814  -6961.814

-6961.8 -6961.8 -6961.284 -6875.94 -6961.813 -6961.814

-6961.8 -6961.8 -6952.482 -6350.262 -6961.812 -6961.814

0 0 1.90E+00 1.60E+02 8.50E-05 1.21E-10
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g07 24.30621 best mean worst std.  24.47  24.48  24.327  24.307  24.338  24.3062

25.38 26.58 24.475 24.374 24.527 24.3457

28.32 28.4 24.843 24.642 24.995 24.3812

1.20E+01 1.10E+00 1.30E-01 6.60E-02 1.70E-01 2.53E-09

g08 0.095825 best mean worst std.  0.095825  0.095825  0.095825  0.095825  0.095825  0.095825

0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

0.095825 0.095825 0.095825 0.095825 0.095825 0.095825

0 0 0 2.60E-17 0 3.21E-14

g09 680.6301 best mean worst std.  680.64  680.64  680.632  680.630  680.630  680.630

680.7 680.72 680.643 680.656 680.631 680.63

680.83 680.87 680.719 680.763 680.634 680.63

5.30E+00 5.90E-02 1.60E-02 3.40E-02 8.10E-04 4.20E-09

g10 7049.331 best mean worst std.  7051.31  7061.34  7051.903  7054.316  7062.019  7049.330

7625.87 7627.89 7253.047 7559.192 7342.944 7049.33

8187.54 8288.79 7638.366 8835.655 7588.054 7049.33

3.40E+01 3.70E+02 7638.366 5.30E+02 1.40E+02 1.10E-09

g11 0.75 best mean worst std.  0.750 0.750  0.750 0.750  0.750  0.750

0.75 0.75 0.75 0.75 0.75 0.75

0.75 0.75 0.75 0.75 0.751 0.75

0 0 1.50E-04 8.00E-05 2.60E-04 5.31E-08

g12 -1 best mean worst std.  -1.0000 -1.0000 -1.0000 -1.0000  NA  -1.0000

-1 -1 -1 -1 NA -1

-1 -1 -1 -1 NA -1

0 0 0 0.00E+00 NA 6.80E-12

g13 0.05395 best mean worst std.  0.053997  NA  0.053986  0.053957  0.05517  0.053949

0.066531 NA 0.166385 0.067543 0.28184 0.025432

0.097569 NA 0.468294 0.216915 0.471 0.043957

1.60E-02 NA 1.80E-01 3.10E-02 1.80E-01 1.50E-01

Table 3: Comparison of the proposed algorithm MICA with respect to OICA [19], SAEA [9], SMES [16], RCEA [17], ISEA [26] on 13 benchmark
functions. “NA” presents not results.

Conclusions
This paper introduces a new imperialist competitive algorithm

(MICA) for solving nonlinear constrained optimization problem. The
proposed algorithm has three important characterizes:

1) Combining multi-objective optimization with local search
models;

2) To achieve a better balance of the exploration and exploitation
through the method of exchanging positions of the imperialist and
colony;

3) Speeding up the convergence by taking advantage of a new local
search method. Based on the comparison between the proposed
algorithm and the five compared algorithms, it is concluded our
algorithm NICA has shown its potential to handle various nonlinear
constrained optimization problems, and its performance is much
better than all other state-of-the-art evolutionary algorithms referred
in this paper in terms of the selected performance metrics.

An important subject of ongoing work is of applying our approach
to the solution of real-world optimization problems. Additionally, try
to design different global and local search models since suitable search
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model can improve the capability of the algorithm remarkably. Last, we
aim to explore the possibility of decreasing its computational cost after
reaching the feasible region.
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