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ABSTRACT
In the world of micro-mechanical design of micro-sensors, up to date, there has not been substantial considerations 
given to the actual mechanical or structural aspect of the designs. Hence, most of the currently available designs are 
challenged to linearize the “non-linear” sensor’s output by utilization of electronic circuitry. In this research work, 
a micro-pressure diaphragm which possess linear pressure-deflection behaviour is designed via FEM optimization 
techniques. The diaphragm is modelled as a Silicon (111) plane, which possess plane isotropic properties. A circular 
centre boss section is added to the diaphragm and optimization is carried out, to achieve an optimum diaphragm 
geometry that would allow for flat or rigid deflection of this boss section under the applied surface pressure loading. 
The approximate closed-form deflection solutions are developed using the anisotropic thin plate theory and the 
diaphragm deflection behaviour of the FEM optimized design is compared with this thin plate theory model. This 
diaphragm design is proposed to be used as the top electrode plate of a capacitive pressure sensor, where linear 
pressure-capacitance change behaviour would become present. This pressure diaphragm has a pressure range of 0 to 
206843 Pa (30 psi) with a pressure resolution of 689.5 Pa (0.1 psi).
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INTRODUCTION

Ever since the years 1979-1980, when NASA Langley Space Centre 
conducted the first experiments with embedded optical sensors for 
strain measurements in low temperature composites, there have 
been rapid advancements in the field of “smart” structures. The 
U.S. National Science Foundation among other government and 
non-government agencies have been sponsoring research projects 
for development of cost-effective technologies for remote queried 
sensors for health and usage monitoring of composite structures. 
The sensing and inspection technology systems for composites to 
monitor manufacturing processes, assess and non-destructively 
evaluate structural integrity, passively monitor the external 
environment, internally asses onboard and structural emissions 
and provide situational awareness; are important in defence as well 
as commercial applications.

The need for development of such monitoring systems has risen 
from the fact that mounted instrumentation adds undesirable 
external mass which can adversely affect the static and dynamics 
responses of the parent composite structures. Furthermore, 
extensively wired sensory systems, for structural health and usage 

monitoring of the structures, has some drawbacks which include, 
increasing structural weight and reduction of structural integrity, 
possible structural intractability due to damage to embedded 
interconnects and the unfeasibility of structural reparability. All 
of which lead to an increased need for utilization of micro smart 
structures and consequently leading to the need for utilization of 
micro embeddable sensing systems. 

The NSF research at The University of Texas at Arlington is an 
effort to develop cost effective technology for remotely queried 
sensory units in a composite structure [1]. It is essential to integrate 
research effort among the three areas of thin film antennas, 
electronic circuits and mechanics. This program’s goal has been 
to develop cost effective technology for remotely queried sensory 
units in a composite structure with the objective to design and 
develop micro thin-film antennas which are compatible with 
composite manufacturing procedures, low power transponder, 
query protocols, power acquisition and utilization by sensory units, 
micromechanics of sensing and actuation of closely placed micro-
scale sensors and actuators, manufacturing issues and the optimal 
placement of sensory clusters [2].

This research primarily has addressed structural monitoring at the 
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composite panel level. In detail, The University of Texas at Arlington 
research has consisted of investigative work in the development of 
suitable means to uniquely identify sensor elements, investigate 
the required complexity for the transmitter/receiver circuit, to 
evaluate transmission coupling of energy from the interrogator to 
the sensors, and economical placement of sensors for structural 
monitoring [3]. Also, in specific the research from this dissertation 
work consisted of, determination of methods for sensor placement 
during fabrication, and evaluation of materials for the transducers, 
coupling (antenna) element, IC and interconnections between 
them [4]. 

Hence design of micro embeddable sensing systems is the focus 
of this dissertation. In specific this work has focused on design of 
pressure diaphragms and the means for embedding and full system 
integration of pressure sensing units within carbon fibre composite 
structures. The previous works on MEMS pressure sensors, and 
particularly capacitance type pressure sensors has resulted in an 
outburst of pressure sensors whereas the linearity of the sensor is 
electronically compensated [5]. 

In the specialized field of MEMS pressure sensing device 
development, a global search of available technologies and their 
outcomes, dating back to 1990, has led to some interesting 
discoveries. One of which indicated that, of the available Micro-
Electro-Mechanical-Systems (MEMS) pressure sensors, have taken 
advantage of the electronic compensation techniques to develop 
linear pressure sensors. In many instances, claims are made that 
the developed sensing devices are “highly linear,” whereas the 
published results of the work indicate otherwise. All of which is 
an indicative of designs without careful consideration of structural 
aspects and optimization issues [6].

In general, the MEMS pressure sensor development, both in U.S. 
and Japan, has focused on utilization of the already existing silicon 
wafer technologies which possess already near perfect techniques. 
The sensor developments have branched into two different major 
types of sensors, the piezoresistive type sensors and the capacitive 
type sensors. In the case of piezoresistive sensors, pressure 
measurements are made by recordings of the resistance changes 
due to the diaphragm deflection under an applied pressure. Where 
in the case of capacitive sensors, the pressure measurements are 
made by recordings of the electrical capacitance changes generated 
by the gap change between the diaphragm and a lower capacitance 
electrode plate, due to the diaphragm deflection [7].

The principal advantage for a capacitive type pressure sensor is 
the monotonic increase or decrease of capacitance with applied 
pressure. Hence, there is a direct correlation between the sensor 
output and the applied pressure, which if digitized, would also 
eliminate the sensor signal loss due to any instrumentation parasitic 
capacitances. The capacitive sensors by nature would have a larger 
pressure sensitivity and smaller temperature sensitivity. With 
piezoresistive designs, you had to either know the pressure history 
or be certain that the pressure did not exceed a critical pressure in 
order to know the actual pressure [8].

In this presented dissertation, the pressure diaphragm design 
at micro scale level is done by optimization via finite element 
methods and verification is done by means of developing closed 
form math model solutions which accurately model the non-
isotropic, raised centre diaphragms. The optimization is a tool to 
achieve a “perfectly” linear pressure diaphragm which could exhibit 
linear pressure-deflection response behaviour, father which it must 
translated into linear pressure-capacitance response behaviour. The 
work is based on modelling of non-isotropic (111) silicon wafers 
and the objective has been to achieve a linear capacitance change 

response with utilization of a raised centre section diaphragm 
design configuration. This design optimization has led to a high-
resolution pressure diaphragm capable of measuring 689.5 Pa 
(0.1 psi) pressure change with a minimum of 0.01 pF capacitance 
change resolution. Most of the noteworthy MEMS pressure sensory 
developments, since 1990 to present time have been tabulated, in 
Table 1 following, in a chronological order. One can notice that 
the majority of the pressure sensor development has been on 
piezoresistive type sensors. Also, interestingly, it is shown that in the 
recent years the U.S. MEMS community has increased its interest 
on development of new MEMS pressure sensors in comparison to 
the earlier years of Japanese industries. 

Structural design

A plate or membrane diaphragm, circular or four sided, regardless 
of the boundary conditions and the applied loading could only 
exhibit curvature-deflections (symmetric or non-symmetric). 
However, in the case of pressure diaphragms and in specific 
capacitance type pressure diaphragms it is highly desired to have: 

(1) A linear pressure-deflection behaviour.

(2) A “flat” non-curvature deflection behaviour.

The total pressure-deflection linearity is desired in order to achieve 
a total pressure-capacitance linearity behaviour and the non-
curvature deflection behaviour is desired to control the linearity of 
the capacitance build up. The later desired behaviour would come 
to be of great importance in design of membrane type diaphragms 
since non-linear deflection behaviour could easily be achieved in 
membrane structures depending on the structural configurations.

To achieve the linear deflection behaviour over the design allowable 
pressure range one can, design the diaphragm as a plate rather than 
a membrane. To achieve the “flat” deflection behaviour one could 
design a circular two sectioned diaphragm as illustrated by Figure 1, 
where the outer region would have to possess plate behaviour and 
the centre region would have to possess rigid movement behaviour. 
In other words, the rigid section movement would be restricted 
to “flat” non-curvature vertical deflection, while the outer region 
of the diaphragm possesses a non-restricted movement. This non-
restricted movement could also include bending behaviour or in-
plane loading behaviour [9].

Silicon mechanical properties

Silicon wafers were selected as the base material model for this 
design. At room temperature, Silicon (Si) is a metallic gray 
crystalline material [10-13] with a low density of 2330 (Kg/m3). 
It has a cubic crystal structure which is identical to diamond. 
Silicon wafers cut parallel to the <111> plane possess “transverse 
isotropic” properties. This <111> wafer plane cut would be used 
as the structural modelling base to simplify the material aspects of 
the Silicon. Figure 2 illustrates the Silicon cubic structure with the 
crystallographic coordinate system shown: 

The symmetric elastic stiffness matrix C for stress-strain relationship 
of the silicon cubic crystal structure in crystallographic x, y, z 
coordinate system is [14]:
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The three independent elastic constants for Silicon are shown in 
Table 2 [15]:
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The compliance matrix S, which is inverse of c matrix, for the 
silicon cubic crystal structure is [14]:

The s
11

, s
12

 and s
44

 are functions of the elastic constants as shown by 
equation 2 and equation 3 as follows:
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Let “1” and “2” represent the coordinate axes in the silicon plane 
<111> and “3” represent the coordinate axes perpendicular to the 
plane as shown in Figure 3.

The compliance matrix in the 1,2,3 coordinate system can be 
obtained by utilizing the 3-D stress and strain transformation [14]. 
This compliance matrix can be symbolically represented as shown 
in (4):
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where, the elements of the strain-stress compliance matrix in 
the new crystal coordinate systems are related to the compliance 
coefficients in x, y, z crystallographic coordinate system as given by 
equations 5 through 11, as follows:
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Where, E
ij 

are the in-plane elastic modulus in the <111> Silicon 
plane, υ

ij 
are the Poisson’s ratios in the <111> new Silicon plane, 

and G
ij
 are the shear modulus in the new <111> new Silicon plane. 

The elements of the new compliance matrix, (s
ij
) can be readily 

determined by matrix rotational transformation as noted by earlier 
work by Caddy,  [14]. After determination of these elements and 
substitution into equations 5 to 11 above, the new crystal plane 
<111>, mechanical properties can be evaluated in term of the 
original crystal compliance elements (s

ij
) as follows:

11 22
44

11 12

2

2

E E E
ss s

= = =
 + + 
 

                   (12)

( )33
11 12 44

3
2

E
s s s

=
+ +

                                    (13)

44
12 21 11 12 11

1 5
6 2

ss s Eυ υ υ  = = = + + 
 

                                  (14)

44
31 11 12 33

1 (s 2 )
3 2

ss Eυ = + −                            (15)

44
31 11 12 33

1 (s 2 )
3 2

ss Eυ = + −                          (16)

23 11 12 44 33
1 (6s 12 5 )

18
s s Eυ = + −                   (17)

32 11 12 44 22
1 (6s 12 5 )

18
s s Eυ = + −                                       (18)

( )12
11 12 44

3
2

G
s s s

=
− +                                        (19)

( )23 31
11 12 44

3
2 4 4

G G
s s s

= =
− +                                   (20) 

The mechanical properties of the <111> plane Silicon are shown 
in Table 3. 

Application of Anisotropic Thin Plate Theory for the 
Diaphragm Design using Silicon <111> Crystal

In small deflection plate theory in cylindrical coordinate systems, 
the displacement components in the radial (r) and circumferential 
() directions can be expressed as follows [15]:
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whereas, u is the radial displacement, v is the tangential 
displacement, and w is the vertical displacement.

Also, the strain-displacement components are defined as:
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Figure 1: Pressure diaphragm model with raised rigid centre.
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The differential equations of the equilibrium are:
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Further, by substituting the equations 23 into the equation 24 and 
using the equilibrium equations 25, the stress components can be 
solved for. These stress components in the final form are as follows:
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(For thin plate theory the σ
z
, is much smaller than the other stress 

components and is negligible.)

The moment and shear stress resultants can be evaluated by 
integrating the stress components over the thickness, as follows:
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These strain-displacement components can be rewritten in terms of 
the vertical deflection w. 

By substitution of the equations 21 into the first, second and the 
sixth equations in the 22-equation set, the strain components can 
be expressed in terms of the mid plane deflection w:
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The stress-strain relations from the Hooke’s law are as follows:
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Sensor Type
Diaphragm 

Type
Linearity Author Year Publication Summary

Piezoresistive Si Linear NovaSensor Inc. USA 1990 Sensors and Actuators [2]
Linear output by geometric 

enhancing

Piezoresistive 
Resonant

Si
Amplitude 
Dependent

Yokogawa Electronics Japan 1990 Sensors and Actuators [3] Resonator

Capacitance Si Linear Tohoku University Japan 1990 Sensor Sym. Digest [4] CMOS is used to linearize

Piezoresistive Si Linear Fujikura Ltd Japan 1992 Sensor Sym. Digest [5]
Electronic Circuitry 

Compensation

Capacitance Si Linear Toyota Toyoda Labs Japan 1992 Sensors and Actuators [6] CMOS is used to linearize

Piezoresistive Si
3
 N

4
Non-linear Nippondenso Co. Japan 1992 Sensors and Actuators [7] CMOS technology is used

Capacitance Si
3
 N

4
-Si O

2
Non-Linear University of Michigan USA 1994 Sensors and Workshop [8]

Center boss and Digital 
Compensation

Piezoresistive 
Resonant

Polysilicon No-data
University of Wisconsin 

USA
1995 Transducer Proceedings [9] Resonating beams are used

Piezoresistive
Si

3
 N

4
 and 

Polysilicon
Non-Linear and 

Linear
Sandia National USA 1996 SPIE Proceedings [10] Investigative work

Piezoresistive Si Linear SenSym Inc. USA 1998 SenSym Handbook [11] Digital Compensation

Piezoresistive SiC Linear Daimler Benz Germany 1999 Sensors and Actuators [12]
Center Boss with Structural 

Modification

Table 1: Globally distinguished MEMS pressure sensor device development from 1990-1999.

Constants

c11 1.674 × 1011 Pa

c12 0.6523 × 1011 Pa

c44 0.7959 × 1011 Pa

Table 2: Silicon elastic constants.

Mechanical properties

E11=E22 1.697 × 1011 (Pa)

E33 1.883 × 1011 (Pa)

v12=v21 0.265

v23 0.447

v32 0.237

v13 0.184

v31 0.165

G12 0.671 × 1011 (Pa)

G23=G31 0.580 × 1011 (Pa)

Table 3: Silicon <111> cut mechanical properties.
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For a plate element, the governing force equilibrium differential 
equation in the z direction in cylindrical coordinates would be:

1 1 0r
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NN N q
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θ
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                                              (30)

Similarly, as previously shown, by substitution of transverse shear 
loading shown by equations 29 (N

r
 and Nθ) into the governing 

force equilibrium differential equation 30 in the z-direction in 
cylindrical coordinates, the differential equation for the deflection 
of a anisotropic plate would be shown as: 
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Where the rigidity coefficients are defined as follows:
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In the case of silicon (111) wafer, where you have plane isotropy 
and,
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The bending and twisting rigidities shown by equation 32 would 
all be equal. The coefficient D

rθ likewise would become,
33

2
12(1 ) 12

rr
r r

r r

G hE hD v
v v

θ
θ θ

θ θ

= +
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After the substation of the bending rigidity D
r
. Farther, by 

substitution of  for shear modulus,

G
rθ in equation 34 one would have:
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Hence, one would have:
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3

212 1
r

r r
E hD D D D

vθ θ= = = =
−

                               (36)

Substitution of the equation (36) above into the differential 
equation for deflection shown by equation (31) would simplify the 
derivation of a solution for deflection for the (111) plane Silicon 
wafer.
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After careful observations would be known that the 37 is the 
Laplacian equation,

2 2
2 4

2 2 2

1 1w w w q qor w
r r r r D Dθ

 ∂ ∂ ∂
∇ + + = ∇ = ∂ ∂ ∂ 

                                  (38)

Under the assumption that the distributed loading is applied 
symmetrically over the diaphragm diaphragm would also be 
symmetric. Thus, one can assume that the deflection w, is 
independent of θ. Hence, equation 38 would reduce to: 

2
2

2

1w w q
r r r D

 ∂ ∂
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                                                (39)

likewise,
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                                        (40)

0Nθ =                               (41)

After performing integration, the equation 39 the equation for the 
plate slope would become:

( )
4

2 21 1
64
qrw r Ar nr Br C nr F

D
= + + + +                                      (42)

Now, for a circular diaphragm of radius “Ro” with a raised middle 
section with radius “R” and clamped at the perimeter edges (r=a), 
the following boundary conditions apply:

0W at r Ro= =                                             (43)

0dw at r Ro
dt

= =                                                     (44)

22 rRoN q Ro at r Roπ π− = =                                  (45)

And, under the assumption that the centre boss would deflect 
rigidly,

Figure 2: Silicon crystal structure.

Figure 3: The <111> plane coordinates.
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0dw at r R
dr

= =                                     (46)

The shear load, N
r
, by substitution of equation 42 into 40 can be 

shown as following,

32 4
64r

qr AN D
D r

 =− + 
 

                                   (47)

Then boundary condition 44 can be applied to equation 47 above 
to give,

32 4
2 64 r Ro

qRo qr AD
D r =

 − =− + 
 

                                             (48)

Solving for “B”,

32 0
4 2 64

Ro qRo qRoA
D D

 = − = 
 

                                   (49)

Substitute “A” into the first derivative of the deflection equation 
42 and apply the boundary condition 44 and 46, where

34 2 1 2
64

dw qr CAr nr Ar Br
dr D r

= + + + +                                     (50)

Then, “C” was determined to be,

( ) ( )( )3 3 2 2

16 16
q Ro R q R Ro Ro R

D D
C RoR

Ro R

 − + −
 −
 
 =

−

                                   (51)

And, likewise “B” would be,

( )2 2

32
q R Ro

B
D
+

=−                                                      (52)

Applying the boundary condition 43 to the deflection equation 42, 
“F” constant would be found,

( )( )2 2 2 22 4 1
64

qRo Ro R R n Ro
F

D
− − +

=                          (53)

The final form of the diaphragm deflection equation is as follows:  

( ) ( )
( ) ( )( )

( )
( )( )

3 3 2 2

2 2 24

2 2 2 2

1 1
1 16 16

64 32

2 4 111
64

q Ro R q R Ro Ro R
q R Ro rqr D Dw r

D D Ro R

qRo Ro R R n Ro
Ro R n r

D

 − + −
 −+  = − +
 −
 
 

− − +
−

   (54)

DESIGN OPTIMIZATION

Finite element modelling for optimization

In design of pressure diaphragms with raised sections for capacitance 
type pressure sensors, when Silicon wafers are utilized, first the 
issue of non-isotropic material properties of Silicon wafer must be 
accounted for. Then the need for a flat raised-section deflection due 
to applied pressure as well as the linearity over the entire pressure 
range must be addressed in order to develop a truly linear capacitive 
pressure sensing diaphragm. The mentioned design issues cannot 
be readily answered by the theoretical plate theory formulations. 
The plate theory solutions are derived under the assumption 
that the diaphragm raised section deflection would be linear 
under applied pressure. Furthermore, the raised section thickness 
effects, and the stress stiffening effects would not be shown by the 
theoretical plate theory formulations.

Therefore, a need for finite element analysis optimization is 
established here. However, due to the extreme computational time 
consumption of FEA optimization methods, the axisymmetric 

model of the circular diaphragm would be adequate. Figure 4 
illustrates the physical schematics and FEM mesh of the diaphragm 
axisymmetric model. The mesh was built up with ANSYS Plane 
82 8-Node 2-D solid axisymmetric element type. The mesh density 
was increased at the regions of significant stress concentrations 
to accurately evaluate bending of the diaphragm under applied 
loading. These regions are near the outer edge boundary and the 
raised section area where as the diaphragm thickness changes. The 
stress stiffening and large-deflection are activated for this design 
FEM analysis.

The distributed applied pressure loading and the boundary 
conditions for the FEM optimization are shown in Figure 5.

Formulation for optimization via finite element analysis

In this design a linear pressure-deflection relationship is desired. 
Therefore, it is needed to have the pressure diaphragm (raised 
boss section) to deflect linearly by application of the pressure on 
diaphragm surface. In addition, to avoid additional embedded 
non-linearity, it is also desired to have the raised boss section of the 
diaphragm itself to deflect in a non-curvature flat form too. From 
the above-mentioned design constraints, one can guaranty the true 
linearity of the pressure diaphragm over the entire pressure span.

To formulate the optimization schemes for performing a parametric 
design via finite element analysis, the design variables and the state 
variables as well as the objective function must be established. The 
design variables, which are the independent physical quantities of 
the design that would be varied to achieve an optimum design, 
have to be constrained within a defined range. The state variables, 
which are the dependent design constraint quantities, also need 
to be defined with a minimum and maximum limit. The state 
variables in turn define the feasibility of the design based on the 
specified constraint limits. The objective function would have to 
be optimized or in other words always minimized by modifying the 
design variables during the optimization scheme. The convergence 
of the objective function is indicative of a final best design set.

In this optimization scheme, the geometrical dimensionalities 
of the diaphragm, the thickness (T), the radius (Ro), the raised 
section height (H) and the raised section radius (R), would be 
the design variables. The capacitance changes resolution and the 
deflection resolution would be set as the state variables, which 
will be discussed in their respective sections following. The design 
objective function would be set for minimization of the vertical 
displacement difference between the centre and the edge nodes of 
the diaphragm raised section.

Design variable

For the parametric studies of this design the design variables are 
tabulated in Table 4. Where, as previously mentioned H, is the 
raised boss section height, T, is the diaphragm thickness, R, is the 
raised boss section radius and Ro, is the diaphragm radius.

State variables

The state variables for this optimization are based on the following 
desired operational constraints:

1. The detectable capacitance change resolution has to be greater 
than or equal to 0.01 × 10-12 Farad.

2. The desired detectable pressure resolution must be 689.5 Pa 
(0.1 psi). 

3. At the desired 689.5 Pa resolution the deflection has to be 
greater than or equal to 0.01 × 10-6 m (100 Å).
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Plate capacitance constitutive formulation

For design of capacitance pressure diaphragms where electrical 
capacitance is needed to be derived from diaphragm deflection, 
the fundamental theory of fixed electrical capacitor can be utilized. 
For a fixed capacitor where a capacitance is to be built between to 
plates, insulated usually by air or some other insulating material, 
can be defined by equation 55 as follows [16,17]:

AC
d

ε=                                    (55)

where, ε , is the dielectric material permittivity of insulation, A, 
is the capacitor area and d, is the separation distance between the 
capacitor plates. Furthermore, 

Figure 4: The meshed axisymmetric finite element model of diaphragm.

Figure 5: The loading and B.C. application on the FEM model.

Variable Min Max Range (m)

H 155 × 10-6 205 × 10-6

T 40 × 10-6 100 × 10-6

R 200 × 10-6 2300 × 10-6

Ro 800 × 10-6 2500 × 10-6

Table 4: FEM optimization design variables.

Variable Min. Max. Range

C 0.01 × 10-12 F None

u1 0.01 × 10-6 m None

Table 5: FEM optimization state variables.
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oKε ε=                                           (56)

Where, k is the dielectric constant of the insulation material and 
oε , is the permittivity of the vacuum (8.85 × 10-12 F/m).

Readily equation 55 can be used to derive the governing capacitance 
equation for a variable “pressure deflective” capacitor. For a 
capacitor with one fixed plate and one flat-deflective plate if the 
deflection is defined by a displacement u

c
 as illustrated in Figure 6, 

then the capacitance can be expressed as follows: 

c

AC
d u

ε=
−

                                     (57)

Where u
c
, the diaphragm deflection is to be used as absolute term 

if positive capacitance is desired.

To satisfy the constraints number 1 and 2 simultaneously and to 
formulate for a capacitance optimization state-variable, equation 
57 would be utilized. From this equation we know that, d, is the 
initial no-load-state separation gap distance for the capacitor. 
Therefore, an initial separation distance must be determined. This 
distance must be greater than the maximum diaphragm deflection 
due to the maximum design allowable applied pressure. For this 
design the initial separation gap would be set to deflection at 
the maximum applied pressure (206842.7 Pa) plus an additional 
tolerance of 10 times the deflection due to 689.5 Pa minimum 
resolution pressure. The formulation is as follows:

( )max min10 c

AC
u u u

ε=
+ −                                                (58)

Where, u
max

, is the maximum diaphragm deflection due to the 
maximum design allowable applied pressure, u

min
, is the deflection 

due to minimum resolution pressure, ε ,A and u
c
 are defined same 

as previously shown in equation 58. 

However, in a linear case when the maximum applied pressure 
(206842.7 Pa) is 300 times more than the pressure resolution (689.5 
Pa) then the corresponding maximum deflection (u

max
) would 

also be 300 times more than the minimum pressure resolution 
deflection (u

min
). Thus capacitance equation 55 can be rewritten as 

function of deflection as follows: 

( )
max

max 10
300

c

c

AC u
uu u

ε=
 + − 
 

                                    (59)

To quantify the desired capacitance change and derive a capacitance 
state variable for a circular capacitor plate (A=πr2 2 ), equation 
56 can be used. Let the deflection at desired resolution pressure 
of 689.5 Pa be represented by u

1
 and the deflection at twice the 

resolution pressure be represented by u
2
. Then by substitution of 

u
1
 and u

2
 in equation 59, and equation for capacitance change ∆C 

can be derived as follows:

 ( ) ( )2 1C C u C u∆ = −                           (60)

Also, note

max
1 300

uu =                                               (61)

max
2 2

300
uu =                                        (62)

Thus ∆C can be expressed as: 

12 2

max max max max
max max

1 18.85 10
10 2 10

300 300 300 300

C x r u u u uu u
π−

 
 

∆ = − 
 + − + −
 

                           (63)

3
12 2

max

3.1522 108.85 10 xC x r
u

π
−

−  
∆ =  

 
                                                    (64)

Where, ∆C must be greater than or equal 0.01 × 10-12 Farad for 
FEM optimization.

To satisfy the constraint number 3 a check for max
1 300

uu =  against the 

0.01 x 10-6 m minimum deflection is required. The state variables are 
tabulated in Table 5.

Objective function

The objective function that would be minimized is to check for 
a non-curvature flat deflection of the centre boss raised section. 
The most computationally feasible approach would be to check 
for the deflection of the node at the centre of the raised section 
and the node at the far end of the section in the axis-symmetric 
finite element model. The convergence goal would be to minimize 
the deflection difference between the two nodes while slowly 
approaching the null value.

The optimization formulation scheme described earlier was used to 
achieve the best feasible design. The optimization iterations were 
started with the first order method type iterations. The first order 
method in ANSYS converts the problem to an unconstrained 
problem with penalty functions for the objective function to 
account for imposed constraints. This method uses gradient (or 
instantaneous rate of change) of design variables to determine 
search direction for the subsequent Design Variable values.

As indicated before the objective function in this design 
optimization was the difference of the raised section end and 
centre nodes or in other words defined as the “flatness” error. This 
minimization of the objective function (FLTNERR) against the 
design set number, is tracked by ANSYS and illustrated in Figure 7.

In Figure 7 consistent reduction of flatness error is present. After 
the 18th iteration the minimization is stabilized until at about 
32nd iteration, the best feasible design was reached. However, 
the iterations could continue up to 34th iteration, where no more 
higher order convergence was achievable.

In Figure 8 the computed values of the raised section “centre” and 
“end” node deflection are tracked against the design. The state 
variables govern the design optimization feasibility. The capacitance 
changes ∆C resolution represented here by the “COBJ” variable, is 
tracked against the design sets and shown in Figure 9. As previously 
mentioned, this constraint is set to achieve the desired capacitance 
and pressure resolutions. In this figure, the picks correspond to 
the worst-case values of the “flatness” error, and the tracks closely 
matching the lower limit (0.01 × 10-12 Farad) possess the best-case 
values of the “flatness” error. However, since the magnitude of the 
“flatness” error track and the capacitance change ∆C track (COBJ) 
are at totally incompatible magnitudes, therefore simultaneous 
plot of them would not be any helpful information.

As indicated previously by equations 63 through 64 the capacitance 
changes ∆C resolution is inversely proportional to the diaphragm 
deflection. Which in turn means that capacitance change ∆C 
and the state variable u

1
 which represents the pressure resolution 

deflection are linearly dependent. The state variable or u
1
 as 

indicated in the optimization scheme “UA” is tracked by ANSYS 
and illustrated by Figure 10.

Finally, the simultaneous tracking of the design variables against 
the design set numbers are shown in Figure 11. From this tracking 
and a comparison with the objective function tracking shown in 
Figure 11, it is clearly understood that the minimization of the 
flatness error would be converging once the raised section boss 
thickness(H) is increased at least by four times or more than 
the actual diaphragm thickness(T). For a closer tracking of the 
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diaphragm boss height and the diaphragm thickness refer to Figure 
12.

The FEM optimization revealed the best feasible design set at the 
32nd first order type iteration for 8-node plane solid model. Table 
4 tabulates the optimized design variables, state variables, and the 
objective function.

Based on this optimization, the following conceptual pressure 
sensor design is proposed. The schematics of this integrated sensor 
unit are shown in Figures 13 and 14.

Results and the optimum diaphragm design from the 
FEM analysis

Pressure-deflection-capacitance behaviour

After development of an FEM optimization scheme, a pressure 
diaphragm design with a centre boss thickness of about four times 
than the diaphragm thickness was proven to be the best feasible 
design. Specifically, the optimum parameters were a diaphragm 
thickness (T) of 40.509 µm, a centre boss section thickness (H) of 

Figure 6: A fixed-variable plate capacitor configuration.

Figure 7: The objective function minimization track from ANSYS FEA.

Figure 8: The boss “Centre” node and “End” node deflections tacking from ANSYS FEA.
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Figure 9:  The capacitance change track ∆C (COBJ) from ANSYS FEA.

 

Figure 10: Pressure resolution deflection tracking against design set numbers from ANSYS FEM.

 
Figure 11: Design variables tracking against design set from ANSYS FEA.
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155.47 µm, a diaphragm radius of 1293.9 µm and a boss section 
radius of 587.52 µm. The deflection at the desired pressure 
resolution of 689.5 Pa (0.1 psi) would be about 103 Angstroms. The 
corresponding detectable capacitance resolution would be at about 
0.01 pF. Also, as previously mentioned this circular diaphragm 
model possess <111> Silicon plane mechanical properties. This 
diaphragm is modelled as a clamped-edge circular plate.

 
Figure 12: Design variables tracking of diaphragm thickness and boss height against design set.

. 

Figure 13: The schematics of this integrated sensor unit.

 

Figure 14: The schematics of this integrated sensor unit with optimized design dimensions.

Figure 15 clearly illustrates the linear pressure-deflection behaviour 
of the diaphragm as well as the “flat” non-curvature deflection of 
the centre boss with application of the pressure over the entire 
design pressure range (0 to 206843 Pa). Even though that all the 
nodes were checked and verified at the boss surface, it is only logical 
to compare the “centre” and the “end” nodes of the centre boss 
section. Also, the corresponding capacitance-pressure behaviour of 
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this optimum design is shown in Figure 16. It is only needed to be 
pointed out that, due to the initial capacitance separation gap, the 
capacitance reading at the null pressure loading condition does not 
read null capacitance.

The pressure-deflection behaviour of the diaphragm, from the 
FEM 2-D axisymmetric model was compared, to the theoretical 
deflection model developed earlier, shown by equation 42. Since, 
an exact closed form solution for this type of raised geometry is not 

readily obtainable, careful attention must be given to the boundary 
conditions at the raised section boundary. To exactly match the 
boundary condition 46 used for determination of approximate 
thin plate model of this diaphragm; in the FEM model, the radial 
displacements at all the points away from the diaphragm centre 
at location “R” must be constrained. Figure 17 illustrates this 
pressure-deflection behaviour comparison. From this figure, it 
is readily observed that the thin plate theory exactly matches the 
radially constrained FEM model for this diaphragm.

 
Figure 15: FEM resulted diaphragm pressure-deflection behaviour.

 

Figure 16: The diaphragm pressure-capacitance behaviour.

 

Figure 17: Thin plate theory and FEM model pressure-deflection behaviour comparison.
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Maximum loading-deflection behaviour in radial direction

The pressure-deflection behaviour of the diaphragm along the 
radial direction under the maximum applied pressure of 208643 
Pa, is illustrated by Figure 18. Again, a comparison between the 
2-D FEM model and the thin plate theory are shown in this 
figure, as well. The actual diaphragm deflection behaviour at the 

 
Figure 18: Pressure-deflection attitude comparison of the diaphragm along the radial direction.

 

Figure 19: The diaphragm deflection at max pressure (206843 Pa) 2-D axisymmetric FEA model.

Figure 20: The diaphragm deflection at max pressure (206843 Pa) 2-D axisymmetric FEA model Ux constrained at all x=R (Rigid Centre Boundary).

maximum applied pressure of 208643 Pa, for the unconstrained 
and the radially constraints models, from the FEM analysis 
are shown in Figures 19 and 20 respectively of axial oscillation-
supported drilling systems subjected to excitation forces. A variety 
of analytical axial vibration models have been developed to 
investigate the axial vibrations of drill strings. This study focuses 
on pure axial oscillations and reviews uncoupled axial vibration 
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models. A recent study [7] on drill string vibration models 
summarized the historical contributions of earlier modeling 
studies on axial vibrations in drilling systems. The AOSD systems 
have been modelled as a continuous elastic rod or discrete mass-
spring vibration damper. Generally, the equations of motion for 
continuous systems are partial differential equations (PDE), and 
discrete systems are modelled using ordinary differential equations 
(ODE). Bailey and Finnie and Li modeled axial vibrations in drill 
strings using the undamped wave equation as the equation of 
motion. The natural frequencies (or Eigenvalues) and mode shapes 
are obtained by the method of separation of variables [8,9]. Fixed, 
free, or spring ended boundary conditions are considered at the 
bottom as recommended by Bailey and Finnie.

DISCUSSION

Some studies [10] modelled the drill string as a continuous system 
of stepped shafts. Khan derived a linear equation of motion with 
damping and force terms. The damping term in the linear equation 
of motion represents drillstring-wellbore frictional contact, fluid 
viscous effects, material damping, and radiation losses into the 
formation [11]. The natural frequencies and mode shapes were 
evaluated for three different boundary conditions (fixed at the top 
and bottom, fixed at the top and free at the bottom; mass-spring 
at top and spring at the bottom). The third boundary condition is 
considered the most realistic one because it accounts for the mass 
and stiffness of the draw works and derrick at the top [12,13]. The 
boundary condition with the spring at the bottom (i.e. bit) provides 
a means of varying the bottom end condition from fixed to free or 
to any intermediate value by varying the spring constant [14]. 

Li developed a model considering the wellbore-bit contact as 
a source of excitation in axial vibrations of drill string with no 
distance or velocity of slip between the bit tooth and the hole 
bottom. The source of excitation is modelled as a periodic and 
harmonic force which is expanded using Fourier series. Other 
studies modelled the source of excitation as frictional contact 
between the bit and borehole where a unit harmonic relative 
displacement is introduced at the bit. The influence of the mud on 
the dynamics of the drill string is modelled as an added mass and 
viscous damping distributed along the string. The transfer matrix 
method is used to solve the linear damped equation of motion with 
a force term. 

Recent studies [15] used a multi-degree of freedom discrete 
system (mass-spring) to model the bottom hole assembly (BHA) 
components, the axial oscillation tool, and the entire drill string. 
The equation of motion derived from the spring-mass discrete 
model is an ordinary differential equation with a linear viscous 
term. The viscous damping coefficient assumed by Forster is 
varied at different locations along the drill string model to match 
field data. The results obtained from the discrete model of 
Clausen show an increase in the acceleration response of the axial 
oscillation tool as the operating frequency increases, and high BHA 
acceleration at lower frequencies, which starts to reduce at higher 
frequencies. However, the reduction in BHA axial displacement 
and acceleration predicted at higher frequencies are not consistent 
with practical scenarios because there is a corresponding increase 
in excitation pressure when vibration frequency increases [16]. 

Shor used beam elements to model drill string components and 
mass-spring to model surface equipment. Linear viscous damping is 
assumed in the vertical section while nonlinear Coulomb damping 
(frictional contact) is considered in the curved and lateral sections. 
The equivalent viscous damping coefficient is utilized to represent 
both viscous and Coulomb damping and linearize the equation 

of motion. Results show that the magnitude of axial oscillations 
decreases when the AOT enters the lateral section due to increased 
normal force and higher Coulomb friction. 

According to Tian, the axial vibrations generated by an AOT are 
transmitted in both axial directions (i.e. upward and downward) of 
the tool. The upward vibrations are propagated to the downward 
direction by the disc-spring installed in the upper section of the 
tool. Coulomb friction is considered in the axial vibration model 
of Tian. The excitation force generated by the axial oscillation tool 
is modelled as an axial force created by the change in flow area 
within the tool. The entire drill string is considered as a discrete 
multiple-degree-of-freedom system and solved using a system 
of matrices. The results from the model are consistent with the 
experimental data.

CONCLUSION

A circular centre boss section is added to the diaphragm of 
capacitive pressure sensor and optimization is carried out, to 
achieve an optimum diaphragm geometry that would allow for 
flat or rigid deflection of this boss section under the applied 
surface pressure loading. The approximate closed-form deflection 
solutions are developed using the anisotropic thin plate theory and 
the diaphragm deflection behaviour of the FEM optimized design 
is compared with this thin plate theory model. Pressure-deflection 
attitude comparison of the diaphragm along the radial direction 
exhibits good correlation between the FEM optimized solution and 
the classical closed form solutions.
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