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ABSTRACT
The pandemic spread of Coronavirus leads to increased burden on healthcare services worldwide. Experience shows

that required medical treatment can reach limits at local clinics and fast and secure clinical assessment of the disease

severity becomes vital. Biomarkers are regularly determined for intensive care patients. Machine learning tools can be

used to select appropriate biomarkers in order to estimate the state of health and to predict patient mortality risk.

Transparent prediction models allow further statements on the properties and development of the biomarkers in

connection with specific health conditions of the intensive care patients.

In this work, alternative and advanced model approaches (Support Vector Machine, naive Bayes, Fuzzy system) are

compared with models proposed in literature. In addition, aspects such as gender of patients and changes in

biomarkers over time are included in the modeling. An artificial neural network (SOM) is used for selecting the

biomarkers. A statistical analysis of the biomarkers reveals their values and changes in the critical state of the patients.

In a model comparison, a Sugeno-type Fuzzy predictor achieved the best results for health assessment and decision

support. The Fuzzy system delivers continuous output values instead of binary decisions and thus doubtful cases can

be assigned to a rejection class. An extended Fuzzy model takes into account the patient’s gender and the trend in key

features over time and thus provides excellent results with an accuracy better than 98% with the training data.

However, this could not be finally verified due to the lack of suitable test data. The generation and training of all

models was fully automatic with Matlab© tools and without additional adjustment.
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INTRODUCTION

In the outbreak of COVID-19 pandemic causing severe health
concerns and consequences for health care services worldwide
has been described in a catchy way [1]. It is stressed that the
severity of cases is putting medical services under great pressure.
Furthermore, the importance of distinguishing patients that
require immediate medical attention is described and that there
is a lack of capacity to identify cases at imminent risk of death.
Blood tests and the identification of relevant biomarkers are
considered the basis for important applications in connection
with COVID-19 patients, such as a disease prognosis or an
assessment of the condition of a patient in the clinic [2]. So far,
no prognostic biomarkers have been determined to estimate the
patients risks.

Consequently, research group [1] analysed blood samples of 
485 patients from the region of Wuhan, China [1]. Then, a state 
of the art machine learning algorithm was used to identify the 
most discriminative biomarkers. Most crucial biomarkers have 
been revealed through optimization of a supervised XGBoost 
classifier [3]. Three key features have been derived: lactic 
dehydrogenase (LdH), lymphocytes (Lymp%), and high-
sensitivity c-reactive protein (hs-CrP). A clinically operable 
decision tree (recTree) was developed and the decision rules with 
the three features as predictor variables and their thresholds 
were devised recursively by supervised learning.

The advantages of the recTree model are its simplicity and that it 
is easy to interpret, but it only delivers binary decisions and only 
offers orthogonal hyperplanes for the delimitation of predictor 
variables. There are many other possibilities for building a
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classification or prediction model [4]. We examined another
three of them with very little effort for creation: 1st a Support
Vector Machine (SVM), 2nd a naive Bayes classifier (nBayes),
and 3rd a Sugeno-type Fuzzy classifier (Fis) [5]. All classifiers are
transparent in explaining a specific input transformation to a
specific classification output.

The classifiers SVM and nBayes delivered binary predictions at
least as accurate as the classifier recTree. The classifier Fis is
different from the three others as its output esteems the grade
about how much the input belongs to one of two classes
(positive, negative) specified as patient outcome in the data
samples. This may be an advantageous property when predicting
the patients risk value in practice.

There are also many possibilities for feature analysis and
selection [6]. In our approach we put emphasis on finding those
features that show signatures similar to the patient outcome and
that are little to not correlated. Artificial neural networks of type
Kohonen can be used to map the distribution of features in the
feature space into 2D component planes (maps) revealing the
signature of the according feature (Self Organizing Maps SOM)
[7]. These maps can be compared visually and those maps
similar to the map of patient outcome can be identified for
feature selection. In addition, correlation analysis about the
features can be used to determine the minimum feature set
covering the feature space in an efficient way, e.g. in terms of a
minimum dominant set (MDS). The key features selected in
have been confirmed this way. Furthermore, two other features
(Albumin, International Standard Ratio (ISR)) have been
proposed and then used with the Fis classifier in an extended
analysis.

If one looks at the determined biomarker values in the data base
one will of course notice a change in the biomarkers from the
days before the last sample was taken before discharge from the
hospital [1]. In addition, an analysis of the statistical
characteristics of the biomarkers shows that there are differences
in the values for the two genders that advise separate use. It is

therefore obvious to consider gender and the trend of the 
biomarkers in the risk assessment. This is successfully examined 
here with an expansion of the Fuzzy model. In this way, the Fis 
system enables a prediction of the mortality risk with an 
accuracy better than 98%. The time horizon can be up to 
approx. 20 days until the day of discharge, although this is not a 
forecast but a risk prediction based on the patient ’ s health 
condition before discharge. Ultimately, the Fis system shows 
potential for outstanding prediction results, although it must be 
said restrictively, that this has not yet been finally verified due to 
insufficient test data.

DATA RESOURCES

Basically, two data sets have been available for this study 
provided by [1]: trainData for training and external testData 
for testing or verifying the models [1]. trainData collects 
74 biomarkers (features) together with age, gender, data 
sample time, admission time, discharge time, and class of 
patient outcome (alive, deceased) for 375 patients. testData 
collects three biomarkers LdH, Lymp%, and hs-CrP together 
with data sample time, admission time, discharge time, and 
class of patient outcome for 110 patients. Of the 375 
patients in trainData, these three biomarkers are completely 
recorded in 351 patients. We have no biomarkers recorded 
continuously and uniformly, on the contrary, the biomarkers 
are incomplete and recorded at different times. To make 
matters worse, the data is not available as a time series with a 
time profile and fixed time intervals. The temporal horizon of 
any predictor below can only be estimated indirectly on the 
basis of the time delay between the date of the input data and a 
specified date (discharge date).

Only data of the final feature samples per patient is used for 
training and testing of the rule decision classifier recTree [1]. 
The distribution of patient outcome (positive: outcome 
deceased, and negative: outcome alive) over the space of the 
three features are depicted (Figure 1).

Figure 1: Patient outcome in train Data (left) and in test Data (right).
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Figure 2: Component planes CP (map size [8,3]) of 10 features 
(biomarkers) and patient outcome created by training SOM network 
with train data.

The component planes represent the weights of the respective
feature in each neuron (hexagon) of the SOM map [8]. Each
map position (hexagon) represents the weight value in color, and
together with its neighbours around it corresponds with similar

inputs (feature vectors) of the training set. A good approach for 
analyzing is to look for boundaries and color changes in a 
component plane and similar situations in other planes (colors 
must not be similar). In this way we recognize good matches in 
Figure 2 between outcome, Lactate dehydrogenase, (%) 
lymphozyte, Hypersensitive c-reactive protein, and with some 
restrictions also albumin and International standard ratio. The 
first three features correspond to the features selected for 
recTree and replicate the results of XGBoost classifier.

The second step of our feature analysis is to find the minimum 
dominant set MDS of features. For this, the mutual correlation 
of feature elements are evaluated and a greedy algorithm 
searches MDS after determination a threshold for mutual 
feature correlation [10]. Figure 3 shows the resulting 
correlation graph. We see the features Lactate 
dehydrogenase, (%) lymphozyte, and Hypersensitive c-reactive 
protein cover very well the MDS when we restrict it to the 
features with good matches with patient outcome. A strictly 
reduced MDS would consist only of (%) lymphozyte, and 
Hypersensitive c-reactive protein (Figure 3).

Figure 3: Correlation graph (lines show mutual correlation with
threshold=0.95).

Feature distribution aspects

When selecting a suitable classifier method, both the
distribution of the elements in the feature space and the class-
conditioned distribution of the feature values themselves are
important. We now consider the latter based on the patient’s
outcome class. Figure 4 shows the histograms of the three
features for the last samples in train Data. And accordingly
Figure 5 shows this for testData. The features are neither
uniformly distributed nor disjoint, which may influence the
choice of the predictor method and parameters.
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FEATURE AND DATA ANALYSIS

Feature analysis can be carried out with different objectives: a) 
selection of the features for best prediction results, or b) 
selection of features for an optimal description of the patient’s 
state of health. The results do not have to be the same but not 
contradictory. Feature analysis resulted in determination of 
three features LdH, Lymp%, and hs-CrP out of 10 most 
promising features found with optimal XGBoost classifier 
output [1]. Our approach looks for features that correspond in 
their distribution to the patient’s outcome and then selects a 
minimum number of features that cover the input space well. 
The biomedical relevance of the biomarkers was initially not 
taken into account, but the selection found makes it possible to 
draw conclusions about the biomedical relevance and the 
relationship of the biomarkers to the prediction goal.

Here, feature analysis is accomplished in two steps: 1) a 
Kohonen neural network (SOM) is used for transforming the 
feature data into component planes CP, and 2) a Greedy 
algorithm is used for finding the minimum dominant set MDS 
of features based on their mutual correlation. Both, CP and 
MDS can be rendered and visually inspected. Figure 2 shows the 
component maps of 10 features selected in [1] after training 
SOM with 344 complete data samples in train data. The map 
size of SOM was 8x3=24 neurons (Figure 2).
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Figure 4: Histogramm of main biomarkers LdH, Lymp%, and hs-CrP (from left to right) in trainData (last sample).

Figure 5: Histogramm of main biomarkers LdH, Lymp%, and hs-CrP (from left to right) in testData (last sample).

Gender aspects

Biomarker values are usually different for women and men.
Accordingly, we also consider the values of the three biomarkers
separately by gender in testData; trainData does not contain
patient gender information. There are similarities in the
distribution but also certain differences in the numerical values
of the biomarkers with regard to the two outcome classes (please
refer to the supplements for details). This becomes clear
quantitatively when one compares the statistical values mean
and standard deviation of the biomarkers (Table 1). These
differences can also be seen in the values of the biomarkers
immediately after admission to the hospital (Table 2). We can
see a trend in biomarkers from the day of admission to the day
of discharge: LdH increases on average for the deceased and
decreases for the survivors, Lymp% decreases for the deceased
and hs-CrP decreases for the survivors.

Table 1: Statistical values mean and standard deviation (STD) of
selected biomarkers for women and men in trainData (last sample).

Biomarker
LdH Lymp% hs-CrP

mean ± std mean ± std mean ± std

Female alive 208.6 ± 60.1 26.8 ± 10.0 26.8 ± 10.0

Female deceased 727.2 ± 320.0 5.5 ± 2.9 113.0 ± 72.7

Male alive 218.9 ± 70.2 25.1 ± 10.3 10.3 ± 19.9

Male deceased 803.0 ± 469.2 6.1 ± 6.8 6.1 ± 6.8

Table 2: Statistical values mean and standard deviation (std) of selected
biomarkers for women and men in trainData immediately after
admission.

Biomarker
LdH Lymp% hs-CrP

mean ± std mean ± std mean ± std

Female alive 246.6 ± 83.7 26.7 ± 10.7 25.8 ± 36.4

Female deceased 550.4 ± 256.1 7.6 ± 4.9 118.0 ± 106.6

Male alive 276.7 ± 134.0 22.1 ± 11.5 44.9 ± 47.9

Male deceased 622.1 ± 394.8 14.5 ± 77.8 147.6 ± 190.5

BUILDING A PREDICTION MODEL

Various methods are available for developing a predictor model 
[4]. In principle, one can differentiate between deterministic and 
probabilistic models. The former calculate nominal values as a 
membership degree of an input element X belonging to a class c, 
the latter calculate the posterior probability with which an input 
element X belongs to a class c, which makes a big difference. It is 
also important to consider whether the objective is to identify a 
trend or a fact. Furthermore, a distinction can be made between 
models with categorical and continuous output values.

A recursive decision tree (recTree) is chosen as the predictor 
model in [1]. With three input variables and associated 
threshold values, the input space is divided by means of
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probability, depending on the prior class probability (Bayes’ 
Rule). But who do you trust more in practice, the likelihood or 
the degree of class membership?

So the objective remains still to find a transparent model for the 
medical decision making process that is sufficiently adaptable, 
does not necessarily provide a binary decision and can also take 
temporal developments into account. A Fuzzy model Fis is 
recommended. We assume a human decision maker would 
prefer to refer to the technical estimation of risk grades when 
finally deciding about the risk and clinical treatment of patients. 
Furthermore, the mapping of biomarkers by humans likely will 
rather be in terms like small, high, or something unsharp like 
that than in sharply defined intervals. Fuzzy systems enable the 
description of models based on Fuzzy rules of type Ri: IF x1 is 
small AND x2 is large, THEN yi is small with input vector X 
in the premise (IF) part and output yi in the conclusion 
(THEN) part [9]. Building up a Fuzzy model requires first 
the definition of unsharp terms like small, medium, so 
called Fuzzy terms, covering the input elements and 
second the generation of the rule base describing the complete 
mapping of the input space into the output function. Finally, 
the mapping of the rule ’ s outputs yi into a sharp output 
value y, has to be established. Fortunately, there are a lot 
of machine learning tools that can automatically generate 
an operable Fuzzy model from training data.

We used a Sugeno-type Fuzzy model with linear functions 
yi=f(X) in the conclusion part and Matlab© function ANFIS for 
generating and training of the Fuzzy model. With trainData 
and three features as input ANFIS creates a Fuzzy model Fis 
with three Fuzzy terms per feature and N=33=27 rules. The 
model is trained by ANFIS with 10 epochs and trainData 
with all 351 patient’s final data samples only. Figure 6 shows 
prediction results of Fis for validation with trainData and 
verification with external testData.

Figure 6: Prediction results of Fis classifier validated with trainData (left) and tested with testData (right); false classified data points circled.

ESTIMATION OF PREDICTION OUTPUT

Some details on the development of the Fis model are described
below. First, however, there is a performance comparison of the
four model approaches recTree, SVM, nBayes, and Fis with the

training data trainData and test data testData. The performance
comparison consists of two steps (except recTree defined in [1]):
1) modeling with 10-fold cross-validation from trainData (always
patient’s last sample), and 2) testing the models with the fewest
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orthogonal discriminating hyperplanes into two class regions. 
The output is categorical (binary) and therefore an input 
element X is always assigned with the membership to one of the 
two possible classes c positive, or negative . A trend in the 
input data is not considered with this model. The 
advantage of recTree is its simplicity and interpretability, 
which can be advantageous for practical use in a decision-
making process. A disadvantage is the lack of plasticity in 
the linear decision hyperplanes in the case of an 
inhomogeneous distribution of the training samples.

Other nonlinear geometric and categorical predictor models 
such as Support Vector Machine SVM or k-nearest neighbour 
kNN are much more flexible, but unfortunately not as 
transparent and therefore more difficult to interpret. With k-
nearest neighbour, assignments to similar patterns from the 
training set and thus classifications can be made. Initial tests 
with kNN were not promising and are therefore not considered 
further. With SVM, the margin between the support vectors of 
both classes that are equally closest to a decision boundary D(X) 
can be maximized. Input vectors X are thus assigned to the class 
depending on their position above or below the decision 
boundary D (D(X)>0 or D(X)<0). In cases of overlapping classes 
soft margin hyperplanes can be used that separate many but not 
all data points X.

The class-conditioned distribution of the three biomarkers is not 
disjoint, as can easily be seen in Figure 1. This raises the 
question of whether a probabilistic predictor model is better 
suited. This would then provide an indication of how likely an 
element belongs to either class positive or negative, but not to 
what degree the element belongs to a class due to its biomarkers. 
A possible probabilistic model can be created quite simply with 
a so-called naive Bayes model. For this purpose, the multivariate 
distribution of the input data points X is modeled and an input 
element X is assigned to class c, which has the greatest posterior
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The four models described above delivered the same results
when tested with three biomarkers from testData, which is
primarily attributable to the distribution of the test events (Table
3). In cross-validation, however, the Fuzzy model Fis delivers
better results than the other models.

Table 3: Performance data of models during validation with trainData (351 samples) and verification (test) with testData (110 samples).

recTree SVM nBayes Fis

Validation Test Validation Test Validation Test Validation Test

Errors total 9 3 8 3 10 3 5 3

Sensitivity (%) 98.1 92.3 98.1 92.3 98.1 92.3 98.7 92.3

Specificity (%) 96.9 97.9 96.9 97.9 96.4 97.9 98.4 97.9

Accuracy (%) 97.4 97.3 97.4 97.3 97. 2 97.3 98.6 97.3

We know the appropriate data representation often improves
the effectiveness of a model more than different methods for
model building. For this reason, we also considered interacting
data in addition to the selected biomarkers. We examined the
effect of the interacting features gender and age on the main
biomarkers Lymp%, LdH, and hs-CrP. Since age and gender are
not included in testData, we performed a 10-fold cross-validation
with trainData and selected the best model than for testing with
complete trainData. These investigations were only possible with
the SVM, nBayes, and Fis models. For the comparison, the
models are trained with standard settings for the task and
without manual optimization in order to recognize the basic
potential. Even if the accuracy of the models was not
significantly improved with the addition of a further biomarker
and or the patients ’  age, the Fuzzy predictor here reaches a
specificity of 100%. However, this was also achieved by
considering the patients’ gender with the Fuzzy predictor and
three biomarkers. The influence is also dependent on the
predictor model, whereby it should be noted that with the
addition of the interacting features, the models become more
complex and the size of the training data can become too small
for the supervised learning (see supplementary information for
details).

Even as a medical layperson, it can be assumed that the patient’s
physiological state and the health risk can also be judged by the
development of the biomarkers over time and not only by their
last value. Therefore, we tried to include the biomarkers’ trend
in time into the model for risk assessment. However, it is now
the case here that the blood samples and thus the biomarkers in
the data records were not systematically recorded over time.
Thus, it is only possible to determine the temporal trend here as
an example. To do this, we simply chose the gradient as
weighted difference between the last and penultimate data
sample as a measure for the trend over time. The results were
positive for all models and with ideal results for Fis (see
supplementary information for details). The very good results of
all models with the gradient of a biomarker are to be judged

cautiously, because ideal overfitting cannot be ruled out because 
of the relatively small number of training samples. Nevertheless, 
it remains a clear indication that the gradient of the biomarkers 
is an important feature for mortality risk prediction.

In comparison of the models, the Fuzzy Model Fis has a high 
degree of flexibility and provides the best performance data. In 
addition, the primary model output specifies the degree to 
which an input can be assigned to class positive, for example, 
and thus offers the possibility for further interpretations. Since 
there is a two-class problem here, a rejection class critical can be 
introduced for model issues in the disputed area, for example 
for degrees around 0.5±0.1. Figure 7 shows the results of the 
Fis classifier with two classes plus rejection and how 
rejected elements are distributed in the input space.

Figure 7: Distribution of patient samples in trainData (left) and
testData (right) classified with Fis in two classes positive, negative
plus rejection critical; false classifications with circles.

This supports an interpretation of the model output by medical
professionals. If one looks at the real risk values that model Fis
calculates for the external test data, one can see that the wrongly
classified items in most cases are very close to the decision limit
θ=0.5. Figure 8 shows the statistical values of the risk
assessment with the training and test data using boxplots. After
assigning the incorrectly classified examples (FN=2, FP=1 in
Figure 7), the associated boxplot shows that the real output
values are close to the decision value θ and can therefore be
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total errors in 10-fold cross-validation with trainData or testData 
completely. For evaluation of the classifier results the following 
performances measures have been considered: total number of 
classification errors E, sensitivity = TP/(TP+ FN), 
specificity = TN/(TN+FP), and accuracy = (TP+TN)/(TP+TN
+FP+FN); TP, TN, FP and FN stand for true positive, true 
negative, false positive and false negative rates.
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better assessed by a medical expert than the wrong binary
decision. The continuous model output enables further

opportunities for technical support for medical experts in
COVID-19 risk assessment.

Figure 8: Statistical distributuion of risk assessment (real model outputs) with prediction model Fis and training data trainData (left) and test data
testData (right), boxplots with 25, 75 percentil (blue), median and outliers (red).

Time horizon

With regard to the prediction horizon, it was already criticized
above that there is no actual time series for the biomarkers and
that a trend cannot be determined uniformly. In order to be
able to make statements about the forecast horizon under this
restriction, the time delays between the classified facts and the
discharge date can be considered. For this purpose, the Fis
model with three input features LdH, Lymp%, and hs-CrP was
used to predict the mortality risk of the last and penultimate
samples from trainData and determine the time delay from the
recording date of the biomarkers (all three markers recorded at
the same day) to the discharge date. Figure 9 shows the
distribution of the correct and incorrect risk prediction values
with regard to the time delay and also the relative accuracy of
the prediction. However, this consideration can only be
interpreted as how many days before the discharge the patients
had reached a state of health so that it could be decided how the
discharge would be (deceased or alive). This should not be
confused with a forecast, because it would say something about
the future development of the patient ’ s health status and
ultimately about the expected discharge status.

Figure 9: Histogram of the correct and incorrect mortality risk
values estimated in days before the discharge and the corresponding
accuracy with Fis with three inputs LdH, Lymp%, and hs-CrP; days
are the time interval between the recording date of the data and the
patient’s discharge date.

Fis model characteristics

The Fis model is represented by its rule base, making it 
transparent and relatively easy to interpret. Figure 10 shows a 
rule base with N=33=9 rules for a Fis model with two input 
variables LdH and Lymp% (reduction of model complexity 
for ease of presentation). The resulting decision surface of 
the predictor model is also shown (Figure 10).
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Figure 10: Rule base (left) and decision surface (right) of Fis model with two input variables LdH and Lymp% and N=9 rules.

It is a practical experience to build models with as few rules as
possible and to achieve the desired plasticity. In purely
automated approaches, which is the case here, all the input
variables are used with a uniform number of membership
functions in the rules. If we use three biomarkers as input
variables and define three membership functions for each
variable, we get a rule base with rules. Each membership
function is described by a parameter set, e.g. three parameters
for generalized bell-shaped membership function (Matlab©
glbellmf). The output of a rule is formed by a linear
combination of the input variables and then summarized
linearly over all rules (e.g. weighted average). This results in
J=N(3+1)+N=135 parameters in total in this example. These
parameters are optimized in an adaptive neural learning process
(Matlab© ANFIS). From personal experience, it also applies
here that at best about 10 training samples should be available
for each parameter. This would require, for example, 1,350
training examples in the training set trainData. However, since
there are significantly fewer training samples (351) and still very
good results achieved, it cannot be ruled out that the models are
overfitted to the training examples. This problem is
counteracted during training with 10-fold cross-validation. The
limits can also be seen from the fact that Fis models with more
input variables do not achieve better results, because already a
Fis model with four input variables generates a rule base with
N=81 rules and J=441 parameters in total. trainData is clearly
too small for automatic model optimization with more than
three input variables.

DISCUSSION

This study shows the potential of Fuzzy models for the mortality
risk assessment of COVID-19 intensive care patients in several
ways. First of all, the results of Fis are continuously better than
in literature and no other of the methods considered here
achieved better results. The Fis system also enables non-binary
risk assessments and thus a differentiated assessment of the
patient ’ s health condition. The consideration of patients ’
gender as an interacting feature improves the prediction
performance, whereby it should be noted when developing the

model that only about half of the size of the training data is still
available.

The consideration of the temporal development of the
biomarkers in the models had a decisive influence on the model
performance. However, this could not be tested in detail because
the training and external test data contained too few examples
and in particular the blood samples had not been recorded
systematically over time. For further model examination based
on these positive results, more and systematically recorded
training and test data are absolutely necessary.

The Fis model is transparent and its decision is easy to convey in
an operational model application. No special optimization
options were used here. However, it can be assumed that with
specially selected and dimensioned Fuzzy membership functions
for the input data, a simplification of the system can be achieved
with the same performance.

CONCLUSION

In summary, this study compares a Fuzzy logic based prediction
system for COVID-19 mortality risk assessment of intensive care
patients with other deterministic and probabilistic prediction
methods evaluated here or in literature. It could be shown, that
Fuzzy logic based prediction delivers the best performance data
in terms of accuracy, sensitivity and specificity. This provides a
good basis for the development of a transparent and operational
system for risk assessment of COVID-19 patients. It is advised,
that patients’ gender and feature changes over time be integrated
in the model input. The model output is non-binary and is
therefore particularly suitable for a decisive interpretation by
medical experts. An investigation of the time horizon was
carried out to the extent that the time from the critical patient
condition to discharge was determined. There is still great
potential here for further investigations into the course of the
medical features up to the discharge of the patients, for which
patient data are required as suitable time series. This also
includes the development of a prediction model for COVID-19
patients with mild symptoms.
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