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Short Communication
Uveitis (i.e. intra-ocular inflammatory disease) is a leading cause of

blindness worldwide in that in years of vision morbidity, it accounts
for approximately the same amount of visual loss as macular
degeneration or diabetes because it affects children as well as young
adults [1-7]. Clinically, uveitis is classified by its phenotype and
anatomical locality of inflammation within discrete ocular tissues [8].
Uveitis encompasses a heterogeneous group of inflammatory disorders
whose etiology may be infectious, non-infectious (i.e. autoimmune),
drug-induced, or trauma-related. In all cases, uveitis is believed to be
immune-mediated and results from aberrant control of the immune
system [9-12]. Consistent with the autoimmune or autoinflammatory
basis for uveitis, it is one of the most clinically important
manifestations in a number of systemic immunological disorders
including ankylosing spondylitis, Behçet’s disease, sarcoidosis, and
inflammatory bowel disease [5]. Despite its prevalence, however, very
little is understood of the cellular and molecular underpinnings of
uveitis. Even less is known of how early innate responses may
participate in orchestration of ocular inflammatory disease.

Our innate immune system functions as an important initial barrier
of host defense. It relies on a gamut of germ-line encoded families of
innate immune receptors that elicit inflammation in response to
pathogenic or endogenous insults. The discovery of the first such
family, the toll-like receptors, or TLRs [13,14], has revolutionized our
understanding of host-microbial interactions and for which numerous
reviews have been written. Within the past decade other families and
signaling pathways such as the NLRs (NOD-like receptors) have come
to be recognized as an important aspect of defense against intracellular
challenges including bacterial, viral, parasitic, fungal, as well as
endogenous danger signals [15-17]. The NLRs are cytosolic proteins
comprised of 3 structural domains: the C-terminal leucine-rich repeat
(LRR) domain, which is essential for their agonist-sensing ability; a
central NOD (nuclear oligomerization domain), which is important
for ATP-dependent self-oligomerization; and varying N-terminal
domains including caspase recruitment domains (CARD) or pyrin
domains (PYD) both of which are considered important for protein-
protein interactions and formation of signaling platforms. Activation
of NLRs results in rapid initiation of signaling pathways that leads to
cytokine and chemokine production, which then amplify
inflammation and subsequently shape adaptive immune responses for
optimal host defense. Whilst there are over 22 NLR family members
that have been identified, the specific functions and agonists of many
NLR family members remain unknown. Even less is known of how

NLRs are involved within immune privileged organs such as the eye.
The role of NLRs (particularly NOD2 and NLRP3, the best-studied of
NLRs to date) within the eye has been previously reviewed [11,18];
here, we expand upon our understanding of NLRs in the research
arena of uveitis.

NLRP3 is encoded by the gene CIAS1, mutation of which is
associated with cryopyrin-associated periodic syndrome (CAPS) a
spectrum of autoinflamatory diseases with ocular manifestations
[19-24]. In this disease, uncontrolled inflammation ensues and is
mediated by IL-1β [21,22,25-27]. Unfortunately, the role for NLRP3 in
uveitis is not well-studied. NLRP3 may be involved in ocular Behçet’s
in human patients [28,29], but little is known about its functional role
in experimental models of uveitis. Constitutive expression of NLRP3
occurs at the transcriptional and translational level in healthy murine
ocular tissue and is upregulated as a consequence of LPS exposure
[30,31]. Studies have investigated its function in an established acute
uveitis model adapted in mice, historically referred to as endotoxin-
induced uveitis (EIU) [32]. Mice are extremely sensitive to an
intraocular injection of the TLR4 agonist LPS, which results in a rapid
inflammatory uveitis. However, studies using gene-deficient mice
show that NLRP3 is not essential for endotoxin-induced uveitis [31].
NLRP3 and caspase-1 were demonstrated to be critical for IL-1β
production (considered an integral aspect of inflammatory diseases
such as CAPS, Blau Syndrome and ocular Behcet’s disease) within the
eye; yet caspase-1 KO mice develop similar severity of uveitis as
NLRP3 KO and WT controls. Their lack of functionality in this
particular murine model of uveitis is consistent with the report that
mice deficient for the IL-1 receptor (IL-1R) do not show reduced
ocular inflammation [33]. The role for IL-1β in this context seems
somewhat paradoxical since the eye is in fact responsive to IL-1β and
IL-1R antagonist (IL-1Ra) plays an important role in suppressing local
ocular responses [33]. Collectively, these data suggest that even though
NLRP3 is dispensable for EIU it is likely that IL-1β is still an important
aspect of uveitic diseases. Moreover, the context in which NLRP3 may
participate in uveitis is more complicated beyond what is modeled by
direct activation of TLR4. NLRP3 has been reported to be involved in
other types of eye diseases such as ischemic retinopathy [34] and age-
related macular degeneration [35], an ocular disease whose association
with inflammatory processes is increasingly being elucidated. Thus, it
seems entirely likely that NLRP3 participates in other aspects of
uveitis, especially since this pathway is known to play a role in shaping
pathogenic Th17 effector responses. IL-1 signaling in fact necessary for
the prototypical T cell-mediated model of uveitis, autoimmune
experimental uveitis (EAU) [36], underscoring the importance of
future studies that examine how NLRP3 and other NLRPs are involved
in orchestration of autoimmune T cell responses that target the eye.
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NOD2 was one of the first NLR family members to be characterized
in terms of its structure and function. NOD2 is unequivocally linked
with human uveitis, as mutations in NOD2 result in the autosomal
dominant multi-organ disease, Blau syndrome, which is characterized
by uveitis, arthritis, and dermatitis [37-40] NOD2 senses the bacterial
cell wall component peptidoglycan, or PGN, of which the minimal
moiety required for NOD2 activation is muramyl dipeptide (MDP))
[41-43], and thus is critical for host defense against intracellular
bacterial infection [44]. NOD2 has more recently been shown to
participate in MDP-independent responses such as viral infection [45],
thereby indicating a more complex role for NOD2 than may have been
originally appreciated. Moreover, most of the described inflammatory
actions of NOD2 have been attributed to its interaction with the
signaling kinase RIP2, yet NOD2 is capable of directly interacting with
many other proteins [46-50] thereby suggesting its involvement in
alternate signaling pathways. Polymorphisms in NOD2 are associated
with susceptibility to a number of other granulomatous inflammatory
diseases such as Crohn’s disease and sarcoidosis [51-54] that are also
linked to ocular inflammation, but little work has focused on NOD2
biology and function within the eye itself. NOD2 is expressed in ocular
tissue and specifically by human vascular endothelial cells from iris,
choroid, and retinal blood vessels where its activation by MDP
amplifies TLR2 or TLR4-triggered cytokine production [55]. NOD2
may also play an important functional role in promoting cellular
responses within the iris in vivo in that intraocular injection of MDP
results in acute inflammatory uveitis (i.e. manifested as increased
leukocyte-endothelial interactions within the iris) that is abrogated in
NOD2 KO mice [56].

Surprisingly, and in contrast to MDP-triggered ocular responses,
NOD2 attenuates ocular inflammation induced by PGN [57], which
triggers complex signaling responses that involve TLR2, NOD2, and
PGRPs (peptidoglycan recognition proteins) amongst other proteins
[58-61]. NOD2 KO mice demonstrate exacerbated cell trafficking
responses into the iris, cell infiltration into the vitreous, and cytokine
production. This observation suggests that NOD2 may serve
differential roles in the eye to either promote or temper inflammation,
which would be akin to the intestine wherein NOD2 exerts a role in
suppressing inflammation triggered by PGN and other TLRs in the
context of colitis [62-64]. Studies conducted in our own lab have
found an involvement of the NOD2-RIP2 pathway in the protection of
the eye to PGN (Figure 1). Such a capacity of NOD2 to mitigate
inflammation of the eye may be intrinsic to cells within the retina, as
organotypic retina cultures derived from naïve NOD2 KO mice
produce greater amounts of IL-12p40 in response to PGN (personal
communication). Studies to further dissect the molecular pathways
through which NOD2 affects ocular inflammatory responses would be
of interest.

Figure 1: The NOD2-RIP2 pathway is protective in PGN-induced
uveitis. RIP2 KO mice and C57BL/6J controls were intravitreally
injected with 1 µg PGN. The cellular influx into anterior and
posterior segments of the eye at 24 h was quantified histologically.
Data are mean+SEM of individual mice (average of both eyes); n=6
mice/genotype; *p<0.05 PGN-injected RIP2 KO vs. WT mice.

The relevance of the above described experimental models for
understanding uveitis in human patients could be disputed since the
uveitis manifested is not sustained and is independent of adaptive
immune components. In contrast, experimental autoimmune uveitis
(EAU) in rodents shares many similarities with clinical uveitis in that
it is a chronic and T cell-dependent disease [6,65,66]. EAU can be
considered the prototypical T cell-dependent disease wherein animals
peripherally immunized with retinal antigens develop organ-specific
autoimmune disease. Using the EAU model, Jiang et al. [67] have
examined the influence of direct activation of NOD2 by MDP in
cultured retinal astrocytes. Their studies support the inflammatory
actions of MDP and its potential to amplify TLR2-initiated priming of
uveitogenic T cell responses and EAU disease severity. Retinal
astrocytes have the potential to act as antigen-presenting cells (APCs).
They may play a critical role in host defense by priming immune
responses and contribute to adaptive immunity, thereby placing
NOD2 at the interface between innate and adaptive immunity in the
eye. However, once again the biological functions of NOD2 seem to
deviate in more complex situations wherein NOD2 is not directly
activated by MDP in the eye. Studies conducted in our own lab using
the EAU model have uncovered a protective role for endogenous
NOD2 in mitigation of ocular inflammation in that NOD2 deficiency
markedly exacerbates EAU [68]. Collectively, such experimental
observations may help better inform us as to the underlying
pathogenesis of uveitis as occurs in Blau syndrome; especially in light
of paradoxical clinical observations. Due to its inheritance pattern and
the excessive inflammation that occurs in Blau syndrome, it has been
presumed that disease results from gain-of-function mutation in
NOD2. However, recent clinical studies that examined cellular
responses of peripheral blood mononuclear cells in patients with Blau
syndrome did not necessarily support such a paradigm since excessive
cytokine production was not observed, and if anything it was
diminished [39,69,70].

In conclusion, very little work has investigated the contribution of
NLRs with respect to ocular inflammation. The above mentioned
studies indicate that NLRs such as NOD2 or NLRP3 may serve as
important early sentinels contributing to ocular inflammation but it is
quite possible. They also mediate endogenous protective mechanisms.
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Given that current uveitis therapies generally target later events (e.g.
adaptive T cell functions) which occur after tissue damage has likely
already occurred, NLR pathways that operate within the eye may be
ideal targets on which to capitalize for development of novel therapies
for uveitis. It is important to keep in mind, however, that studies have
demonstrated differential effects of NLRs in the eye versus other organ
systems, exemplifying how NLRs may function uniquely within
individual organs, especially the eye wherein the immune-privileged
microenvironment is controlled differently from other areas of the
body [18]. Future studies are warranted to understand the complexity
of NLRs and how they may use different molecular pathways in
immune privileged organs such as the eye.
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