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Background
For many years, the vascular endothelium, a monolayer of cells 

covering the vascular lumen was thought to be relatively inert. It is now 
recognized, as metabolically active with important paracrine, endocrine 
and autocrine functions, requisite for the maintenance of vascular 
homeostasis under physiological conditions [1,2]. The endothelium 
plays a vital role in the regulation of vascular tone, controlling tissue 
blood flow and inflammatory responses and maintaining blood 
fluidity [3-5]. Endothelium releases various vasoactive substances: 
vasodilators (NO, prostacyclin, endothelium–derived hyperpolarizing 
factor (EDHF), bradykinin, adrenomedullin, C–natriuretic peptide) 
and vasoconstrictors (endothelin–1, angiotensin–II, thromboxane 
A2, prostaglandins, hydrogen peroxide (H2O2) and free radicals) 
which help in regulating the vascular tone [6]. As a major regulator of 
vascular homeostasis, the endothelium maintains the balance between 
vasodilation and vasoconstriction and disturbing this tightly regulated 
equilibrium leads to endothelial dysfunction [7].

There is a growing data (epidemiological and animal studies) 
associating mercury exposure with higher risk of CVD which has 
been thoroughly documented [8-18]. One of the events that triggers 
development of cardiovascular disease is functional disruption of the 
vascular endothelium. Man has been exposed to mercury for centuries 
as it occurs naturally in the environment, and anthropogenic activities 
causes the release of this element into the environment, leading to 
pollution of air, water, and soil [19,20]. Its exposure is the second–most 
common cause of heavy metal poisoning. Toxicity from mercury is 
associated with in-vivo oxidative stress. The loss of endothelial function 
due to oxidative stress is one of the most commonly observed vascular 
effects of mercury exposure [21-24]. 

This review investigates and appraises the impact of mercury 
exposure on endothelium derived vasodilator, NO, highlighting 
the molecular basis for mercury-mediated alteration on endothelial 
function and modulators of NO. 
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Abstract
Epidemiological and animal studies have suggested a strong association between the environmental and 

occupational exposure to mercury and risk of cardiovascular diseases (CVD). One of the triggering factors of 
CVD is endothelial dysfunction. The endothelium can evoke relaxations and contractions of the underlying smooth 
muscle, by releasing vasoactive agents. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), is the best 
characterized endothelium derived relaxing factor (EDRF). The release of NO is down regulated/upregulated by 
factors like oxidative stress, estrogen and diseases like diabetes and hypercholelestrolemia, etc. The inhibition/
activation of eNOS by mercury, affecting the NO release is one of the proposed mechanisms for mercury-induced 
vascular diseases. In addition, during exposure to mercury, overproduction of reactive oxygen species (ROS) can 
occur, resulting in oxidative stress, which is another major risk factor for endothelial dysfunction. In this article, 
molecular basis for mercury-mediated alteration in endothelium derived vasodilator (NO) and factors modulating the 
release of NO are being reviewed. 

Vascular Function, NO and Mercury
Nitric oxide

The L–arginine–NO pathway is thought to be the most important 
enzymatic vasodilator source. In addition to its function as a vasodilator, 
NO released from endothelial cells is also a potential inhibitor of the 
aggregation and adhesion of platelets to the vascular wall.  

The endothelial cells synthesize NO using substrate L–arginine 
with help of an enzyme eNOS (endothelial nitric oxide synthase). The 
by-product of the reaction, l-citrulline, inhibits arginase II, which cause 
hydrolysis of arginine [7]. eNOS is an NADPH–dependent oxygenase 
that requires tetrahydrobiopterin, flavin adenine dinucleotide (FAD) 
and flavin mononucleotide (FMN) as cofactors [25,26]. In endothelial 
cells, the enzyme is localized preferentially in caveolae following 
post–translational acylation [27,28]. NO is formed when eNOS is 
stimulated by agonists such as bradykinin, acetylcholine and shear 
stress. Stimulation of endothelial cells causes the dissociation of the 
caveolin/NOS complex. This dissociation of caveolin/NOS causes 
binding and activation of Ca2+/calmodulin and NO synthesis by eNOS 
[27,28]. During, shear stress activation of NOS is Ca2+–independent 
and protein tyrosine kinase–dependent [29]. NO relaxes the vascular 
smooth muscle by stimulating of soluble guanylate cyclase which 
results in an increased formation of cyclic GMP (cGMP) [30]. The 
cGMP activates cGMP –dependent protein kinase which results in 
an increased extrusion of Ca2+ from the cytosol in vascular smooth 
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muscle, and the inhibition of the contractile machinery [31]. Cyclic 
GMP–dependent protein kinase also phosphorylates K+ ATP channels 
which culminates into hyperpolarization and thereby inhibition of 
vasoconstriction [32]. In certain arteries, NO directly activates K+ ATP 
channels independently of cGMP [33] (Figure 1). 

Mercury exposure and NO signaling

NO release from vascular endothelium is affected by mercury 
exposure (Figure 2) was reported for the first time by Golpon and 
co–workers [34]. They observed that in the isolated aortic tissue, low 
concentrations of mercury produced an endothelium dependent 
vasorelaxation which was blocked by the NOS inhibitor L–NAME. 
However at higher concentrations, mercury altered the structure 
and function of vascular endothelium and vasoconstriction was 
observed [34]. Further studies from our group on isolated aortic rings 
validated that mercury produces a dual response: vasoconstriction 
at high concentration and vasorelaxation at lower concentrations. 
L–NAME and glybenclamide block the vasorelaxation produced at 
low concentrations of mercury suggesting that mercury acts through 
activation of NOS and K+

ATP channel [35]. It may be hypothesized 
that mercury stimulates NOS, which forms NO and consequently 
the synthesis of cGMP. cGMP increases extrusion of Ca2+ from the 
cytosol in vascular smooth muscle, causing vasorelaxation [35]. The 
cGMP and NO also directly phosphorylate K+

ATP channels. K+
ATP 

channels induce hyperpolarization, which results also in vasorelaxation 
[31,32].   Decreased acetylcholine (ACh) induced vasorelaxation 
has been observed when rat aortic rings were exposed to mercury 
chloride (10-5 M) and methyl mercury chloride (10-5 M) separately in-
vitro suggesting endothelial dysfunction. However, an increased ACh 
induced vasodilation was observed in rat aortic rings exposed to low 
concentrations of mercury chloride (10-9 M), and methyl mercury 
chloride (10-9 M), separately indicating modulation of the endothelial 
function. The NOS inhibitor, L-NAME significantly reduced the ACh 
induced vasorelaxation in mercury chloride (10-9 M) and methyl 
mercury chloride (10-9 M) exposed aortic rings, in comparison to 
mercury chloride (10-5 M) and methyl mercury chloride (10-5 M) 
exposed aortic rings. Mercury induces increased/decreased production 
of NO depending on the dose of exposure [36]. The above experiments 
by Golpon and our group were performed on isolated vascular tissue 
where other physiological mechanisms do not play any role. In an 
animal model many factors get involved, the effects of mercury on 
vascular function especially those on NO and factors modulating the 
release of NO are interesting. 

Mercury and modulation of protective role of Nitric oxide 

The ability of the endothelium to release NO can be upregulated/
downregulated by several factors. NO is upregulated by shear stress, 
estrogen, insulin, adiponectin, aldosterone, arginine and ω unsaturated 
fatty acid, etc. NO is downregulated by oxidative stress, aging, obesity, 
hypercholesterolemisa etc [7]. Several studies have shown a connection 
between mercury exposure and factors which may upregulate and 
down regulate the release of endothelium from NO. 

Reactive oxygen species

Several enzymes in the endothelial cells namely NADPH oxidase, 
xanthine oxidase, cyclooxygenase and eNOS itself generate super-oxide 
anions [7]. eNOS, generates super-oxide anions when it is uncoupled 
by lack of substrate (l-arginine) or shortage of the essential co-factor 
tetrahydrobiopterin (BH4) [37]. Super-oxide anions are dismutated 
to hydrogen peroxide (H2O2) by superoxide dismutase (SOD). H2O2 
contribute to endothelium-dependent relaxations or is broken down 

by catalase [3,38]. However, superoxide anions also react avidly with 
NO resulting in the formation of a potent vasoconstrictor peroxynitrite 
[37,39,40]. Superoxide anion also reduces the bioavailability of NO 
resulting in reduced endothelium-dependent relaxations [39] (Figure 
1). Antioxidants have shown to acutely improve endothelial responses 
in-vitro and in-vivo both in animals and humans [41-44].

 

Figure 1: Schematic representation of possible mechanisms (only those 
mechanism affected by mercury exposure) by which production of nitric oxide 
is regulated in endothelial cells. Nitric oxide is produced through enzymatic 
conversion of l-arginine by nitric oxide synthase (eNOS). Insulin and estrogen 
cause upregulation of eNOS by Akt phosphorylation. Oxidative stress causes 
downregulation of eNOS due to low tetrahydrobiopterin (BH4). The by-product 
of the eNOS reaction, l-citrulline (l-Cit), inhibits arginase which hydrolyses 
arginine.

Figure 2: Schematic representation of effect of low/high mercury exposure on 
endothelium-derived vasoactive factors. In response to low mercury exposure, 
an increase in the eNOS activity/expression causes an increase in NO. In 
response to high mercury exposure decrease in the eNOS activity/expression 
causes decrease in NO with persistence or upregulation of EDHF. Mercury 
exposure also causes oxidative stress, hypercholesterolemia, decrease in 
insulin and affects estrogen. 
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an acute exposure study of methyl mercury chloride (5 mg/kg; po.) in 
rats. Oxidative stress was produced along with an increase in serum NO 
levels. A significant increase in the acetylcholine vasodilator response 
in isolated aortic rings from mercury exposed rats was observed. 
This effect was mediated by increased production of NO, because of 
stimulation of eNOS. It is interesting to note that this increase occurred 
even when there was oxidative stress, suggesting a state of inclination 
towards NO [63] (Figure 2).

Contrary, to above an opposite interaction between NO and 
oxidative stress was observed in a chronic study on healthy wistar rats 
exposed to inorganic mercuric chloride in drinking water for 30 days. 
Oxidative stress accompanied with increased NO levels and endothelial 
dysfunction, was observed. Even though there was an increase in 
the serum NO level, endothelial dysfunction was detected.  As there 
was a significant increase in free radical production, the free radicals 
must have interacted with NO and reduced the bioavailability of NO 
resulting in endothelial dysfunction. The EDHF pathway was relatively 
resistant to mercury exposure and oxidative stress, suggesting that 
there may be an up-regulation of K+

ATP channels in order to maintain 
circulation to compensate the attenuated NO-mediated vasodilatation 
(Figure 2) [58]. 

The evidence available suggests that antioxidants may play an 
important role in abating some health hazards (endothelial dysfunction) 
of mercury exposure.

Insulin 
In-vitro studies on insulin have recorded an enhancement in 

the expression of eNOS in native endothelial cells in- vitro [64] and 
facilitation of NO-dependent vasorelaxations in-vivo [65-67] suggesting 
that NO is upregulated in presence of insulin (Figure 1). Decrease in 
insulin may result in attenuation in endothelium release of NO. There is 
a significant correlation between diabetes (impaired/decreased insulin 
secretion) and total hair mercury levels [68-71]. Follow up studies of 
patients with Minamata disease (organic mercury poisoning) in Japan, 
have also shown an increased incidence of diabetes 1 due to pancreatic 
β-cells dysfunction [72]. Similarly, in-vitro studies have furthermore 
shown a mercury dependent decrease in the function and viability of 
pancreatic β-cells due to increased oxidative stress, causing impaired 
insulin secretion [73]. One of the reasons of endothelial dysfunction 
in mercury exposure worth characterizing may be decrease in insulin 
levels leading to downregulation of eNOS and endothelial dysfunction 
(Figure 2).  

Estrogen
The potentiating effect of estrogens on endothelium-dependent 

relaxations involves both genomic and non-genomic effects [74-76]. It 
depends presumably both on a reduction in oxidative stress leading 
to an increased bioavailability of NO and an increased responsiveness 
of the vascular smooth muscle cells to vasodilator stimuli [76-79] 
(Figure 1). Rowland et al. (1994) reported that 418 women with high 
exposure to mercury (i.e., female dental assistants) were less fertile than 
unexposed controls [80]. In a study by Baranski and Szymczyk (1973), 
female rats exposed via inhalation to metallic mercury (at an average of 
2.5 mg/m3, 6 hours a day, 5 days a week for 21 days) experienced longer 
estrous cycles than unexposed animals [81]. Decrease in estrogen level 
after mercury exposure renders testis more susceptible to oxidative 
damage leading to its functional inactivation [82]. Mercuric chloride 
also exhibits estrogen-like effect through binding and activating 
estrogen receptor (ER) [83]. It is likely that the potentiating effect of 
mercury on NO release presumably may be due to its estrogen like 

There are a number of studies revealing that mercury exposure 
generates oxygen radicals, with subsequent oxidative damage in 
several organs and systems as well as alters the antioxidant defense 
system in the cells [45-49]. Cell toxicity caused by heavy metal ions is 
attributed to oxidative and nitrosative stress, defined as an excess of 
oxidants over antioxidants. Macromolecules in cells are damaged by 
mercury–induced production of oxygen and nitrogen–containing free 
radicals (oxidants) and/or metal–induced depletion of the antioxidant 
defences. The vascular endothelium is very sensitive to oxidative stress 
[50-52]. Although multiple processes may lead to endothelial damage, 
the generation of oxygen–derived free radicals and subsequent lipid 
peroxidation may be one of the key components in the cascade of 
events. 

On exposure to mercury, vascular Endothelial cells (ECs) in culture, 
generates superoxide anions (oxidative stress) in ECs. Mercury induced 
oxidative stress in ECs is caused by the activation of phospholipase D 
(PLD) which results in generation of, 2-diacylglycerol (DAG), a second 
messenger for vasoconstriction [53]. Similarly in Bovine Pulmonary 
Artery Endothelial Cells (BPAECs), mercury-induced PLD activity 
is attenuated by L-type calcium channel blockers demonstrating the 
importance of calcium and calmodulin in the regulation of mercury-
induced PLD activation and the protective action of L-type calcium 
channel blockers against mercury cytotoxicity in vascular ECs [54]. 
In bovine pulmonary artery endothelial cell monolayers, it has been 
reported that mercury ions induce oxidative stress through depletion 
of GSH and inactivation of thiol enzymes [55]. 

Studies on isolated aortic rings indicate that the dual response 
(vasoconstriction at high concentration and vasorelaxation at lower 
concentrations) produced by mercury is ameliorated by antioxidants 
SOD and catalase and L-type Ca channel [35].

In another in-vitro mercury exposure (HgCl2, 6 nM) study, 
mercury induced modulation of vascular reactivity was observed due 
to increased release of ROS derived from NADPH oxidase which 
culminated into reduced bioavailability of NO [56]. Mercury causes 
contraction of the vascular smooth muscle in isolated rat vascular 
bed which is mediated by the formation of superoxide anions and by 
reduction in the endothelial vasodilator activity [57]. 

Acute and chronic exposure to mercury in rats causes an increase 
in vascular O2− production, plasma malondialdehyde levels and total 
antioxidant [35,55,57-61].  Low dose of mercury exposure causes 
endothelial dysfunction and alters the coronary vascular reactivity. 
This alteration is partially, due to increase in both NOX-1 and NOX-4 
subunits suggesting the involvement of NADPH oxidase resulting in 
increased ROS production. A decrease in antioxidant defenses could 
also be a contributory factor to the  increased superoxide production 
observed after mercury treatment [60]. In contrast several authors have 
reported augmented antioxidant defenses to protect cells against the 
increased oxidative stress after acute and chronic mercury exposure 
[55,56,62,63]. 

The interplay between NO and oxidative stress  occurs on mercury 
exposure as free radical scavengers along with L-NAME blocks the 
mercury induced vasorelaxant or vasoconstrictor response in isolated 
aortic rings. SOD þ catalase blocks the ROS mediated vasoconstrictor 
response and L-NAME blocks the NO-mediated vasorelaxant response. 
Mercury evokes the production of both NO and ROS, and it is their 
percentage that produces the response. If ROS produced is more than 
NO, peroxynitrite is formed and a vasoconstriction is produced [35].

This interaction of NO and oxidative stress was further validated by 
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effect and further studies are needed to test the hypothesis (Figure 2).

Omega-3 Unsaturated Fatty Acid
 Consumption of fish has always been considered beneficial for the 

health of the cardiovascular system. The benefits of fish are mainly due 
to its content of omega-3 long chain polyunsaturated fatty acids (n-3 
PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA). Fish consumption is associated with decreased circulating 
biomarkers of endothelial dysfunction and inflammation [84], and 
flow mediated dilation values seem to improve after n-3 PUFA intake 
[85] The chronic intake of Omega-3-unsaturated fatty acids potentiates 
the endothelium-dependent relaxations of coronary arteries [86-88]. 
Omega-3 fatty acid might attenuate Mercury chloride-induced toxicity 
by improving antioxidant status and acute phase response in mice [89]. 
There are a contrary number of studies, that say the consumption of 
fish contaminated with mercury, causes high mercury levels in blood, 
hair, urine and toe nail, which diminishes/does not diminish its cardio 
protective effect [90-94]. Omega 3-fatty acids  attenuates vascular 
endothelial dysfunction, by activating eNOS through opening of K+

ATP 
channels in sodium arsenite exposed rats [95]. As mercury is known 
to modulate eNOS and also K+

ATP channels the beneficial effect of 
habitual consumption of high amounts of fish is associated with better 
endothelial function despite higher serum concentrations of mercury 
[96].

Hypercholesterolemia
Hypercholesterolemia reduces endothelium-dependent relaxations 

due to increased oxidative stress leading to a reduced bioavailability 
of NO [97-100]. Long-term MeHg treatment induces dyslipidemia, 
characterized by increased serum cholesterol levels in mice [101]. In 
a study done on 274 school children, an increased level of mercury in 
urine was associated with elevated cholesterol level which is a known risk 
factor of myocardial infarction, coronary disease, and cardiovascular 
disease [102]. Hypercholesterolemia reduces eNOS activity and may 
act as a triggering factor of mercury induced reduction in endothelium 
dependent relaxation (Figure 2). 

Conclusion
Vascular endothelial cells respond to low concentration of mercury 

by releasing NO, which relaxes the vascular smooth muscle that 
surrounds them. High concentration of mercury causes decrease in 
endothelial NO and vasoconstriction. Decrease/increase in release of 
NO on mercury exposure is majorly regulated by superoxide anions 
and minorly may be by insulin, estrogen, omega-3 unsaturated fatty 
acid and hypercholesterolemia. It emerges that a fragile equilibrium 
exists between NO released and superoxide anions generated by 
mercury exposure. When this balance leans towards NO, enhanced 
endothelial function is detected. When the equilibrium inclines 
in favour of oxidative stress, endothelial dysfunction is observed. 
The endothelial dysfunction caused by the imbalance between the 
production of NO and oxidative stress on mercury exposure can be 
compensated by EDHF-mediated vasorelaxation. Mercury exposure 
affects insulin (decrease/impaired) and causes hypercholesterolemia, 
downregulating the release of NO. Mercury has estrogen like affect and 
may be increasing the release of NO. The beneficial effects of omega-3 
unsaturated fatty acid on mercury exposure and endothelial vascular 
release of NO are a point of contention. NO signalling mechanism 
and oxidative stress play a vital function in the mercury-induced 
cardiovascular diseases in the populations exposed to mercury. 
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