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Abstract

Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized
by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene
silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems
and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in
approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of
carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in
approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have
expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have
shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment.
Here we review the clinical problems of carriers and treatment recommendations.
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Introduction
Fragile X premutation carriers are identified by an expanded

trinucleotide (CGG) expansion in the 5’ untranslated region of the
FMR1 gene. In the past, research mainly focused on the individuals
with the full mutation with fragile X syndrome (FXS) and carriers were
thought to be unaffected. In the last 20 years, our knowledge of clinical
involvement in premutation carriers has expanded to a broad range of
neurological, neurocognitive, endocrine and psychiatric problems
related to RNA toxicity [1,2]. This review will focus on disorders
related to the premutation and recommendations for treatment. The
premutation is common in the general population and approximately
1 in 130 to 250 women and 1 in 250-810 males have the premutation
[3-5].

FMRP, the protein produced by the FMR1 gene, is important in
embryonic development, including the differentiation and migration
of neurons and glia cells, for regulation of synaptic plasticity
throughout life and for adult neurogenesis [6-9]. FMRP is also critical
for normal connectivity with an appropriate balance of excitatory
(glutamate) and inhibitory (GABA) circuits [10,11]. In the absence of
FMRP there is a deficit of GABAA activity [12] and up-regulation of
the metabotropic glutamate receptor 5 (mGluR5) pathway leading to
enhanced long term depression (LTD) of synaptic connections [13].
Hays et al.[14] have demonstrated a prolonged neocortical UP
(depolarized firing of neurons) state in FXS mouse that is rescued by
mGluR5 antagonists. FMRP also regulates presynaptic release of
neurotransmitters. When it is absent or deficient, there is enhanced
release which leads to problems in detecting subtle changes in synaptic
stimulation [15]. Those with the full mutation have little or no FMRP,
whereas the levels of FMRP in carriers of the premutation correlates

inversely with CGG repeat number [16,17]. Most carriers have normal
levels of FMRP but those with a premutation above 120 can have
significant deficits of FMRP [16-21].

The premutation is associated with significant up-regulation (2 to 8
times normal) of the FMR1 mRNA that correlates directly with CGG
repeat number [22]. Elevated FMR1 mRNA leads to a process of RNA
toxicity which is thought to be the main cause of clinical involvement
in premutation carriers [23]. The excess FMR1 mRNA contains the
expanded repeats that form hairpin loops which are sticky and
sequester proteins that are needed for normal neuronal function
(including Sam 68, DROSHA and DGCR8) [23-25]. The elevated
FMR1 mRNA and the sequestered proteins lead to the formation of
inclusions in neurons, astrocytes, and peripheral nervous system and
tissue including the adrenals, testes, pancreas, heart, and other organs
[26-28].

The development of the knock-in premutation mouse has allowed
further studies of the neuronal dysregulation that occurs in carriers.
The premutation mouse also develops inclusions and neurological
symptoms with aging [29]. There is a deficit of GABA inhibition noted
in the mice and also in females with the premutation through
transcranial magnetic stimulation (TMS) studies [12, 30]. In
premutation neuron cultures, the dendritic tree is less complex with
fewer synaptic connections [31]. The mitochondria also have slower
movement within dendrites and axons [32] and the neurons have
enhanced spikes [33] compared to controls.

There is evidence that both mild deficits of FMRP and the RNA
toxicity of elevated FMR1 mRNA can contribute to the phenotype of
premutation carriers [1]. Recent studies have shown that FMRP levels
may vary in the general population in those that do not have an FMR1
mutation [34]. Keri and Benedek [35] studied typical individuals and
found that the level of FMRP correlates with studies of visual contrast
sensitivity and perception, such that those with a higher level of FMRP
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have better visual perceptual abilities. Wang et al. [36] found that the
size of cortical structures correlated with FMRP levels in those without
afragile X mutation. Recently, in those with schizophrenia, it has been
found that the age of onset and the IQ correlated with the level of
FMRP in blood [34,37]. Fatemi and colleagues [38,39] have found that
various neuropsychiatric disorders including depression, bipolar
disorder, autism, and schizophrenia have a deficit of FMRP in the
brain.

Seizures can be deleterious for development and early life seizures
in rats without an FMR1 mutation have been shown to shift FMRP
away from the dendritic spines and into the perinuclear area leading to
FMRP dysfunction at the synapse [40]. These findings emphasize the
need to treat seizures as early as possible so that the levels of FMRP in
the dendrites can be sustained. Seizures in boys with the premutation
have been associated with the development of autism spectrum
disorder (ASD [41]. Therefore both the molecular findings (CGG
repeats, FMRP and FMR1 mRNA) and environmental experiences
such as seizures or exposures to toxins may influence the early
development and aging of carriers (Figure 1).

Figure 1: General model of aging in FMRl premutation carriers.
Normal aging processes, like telomere shortening, gerontogenesis
etc., are exacerbated by FMRl toxicity across the whole lifespan of a
premutation carrier.

FXPOI and FXTAS
In 1991 Cronister et al. [42] discovered an increased prevalence of

premature ovarian failure (POF; menopause before age 40) in females
with the premutation that has been confirmed by many others. This
condition is now called fragile X-associated primary ovarian
insufficiency (FXPOI) [43-45]. FXPOI occurs in approximately 20% of
carriers, whereas cessation of periods before age 45 occurs in an
additional 20% [46].

Ten years later in 2001, the fragile X-associated tremor ataxia
syndrome (FXTAS) was reported in older male carriers [47] followed
by a report of FXTAS in females with the premutation [48].

FXTAS is characterized by intention tremor, ataxia leading to
frequent falling, peripheral neuropathy, autonomic dysfunction
including hypertension, orthostatic hypotension, and cognitive decline
[49,50]. The cognitive problems begin with executive function and
short term memory deficits and then gradual cognitive decline occurs,

sometimes leading to dementia, particularly in males [51-54]. FXTAS
is also characterized by generalized brain atrophy and white matter
disease in the periventricular and subcortical regions in addition to the
middle cerebellar peduncles (MCP sign) [55]. More recent reports
have shown thinning of the corpus callosum with white matter disease
in the splenium, pons and insula [1,56,57].

The diagnostic criteria for FXTAS were described after the original
patients were reported [49]. The original diagnostic guidelines for
FXTAS based on clinical reports were later expanded to include
characteristic FXTAS eosinophilic intranuclear inclusions that are seen
in neurons and astrocytes throughout the brain of individuals with
FXTAS [28,48,58]. The onset and trajectory of the cognitive problems
FXTAS is similar to that of Alzheimer Disease (AD), and, in fact, may
benefit from research into treatments for AD [59,60] or other
neurodegenerative diseases such as Parkinson’s disease (PD).
Neuropathological studies of those with FXTAS have shown the
common co-morbidity of FXTAS, AD and PD suggesting that FXTAS
may stimulate the onset of these other aging diseases [1,59].

Expanding the Premutation Clinical Picture
We now realize that premutation clinical involvement includes

many more conditions than FXTAS or FXPOI alone. In those carriers
that have mild deficits of FMRP [20] there may be features of FXS,
including prominent ears or more significant deficits in executive
function [61,62] and visuospatial perception [35,63],[64,65]. There are
working memory deficits in the premutation carriers both with and
without FXTAS [36,61,66-68].

Studies of the brain of the premutation mouse models have
demonstrated deficits of FMRP throughout the brain [69-71]. The dual
mechanism of involvement, of high FMR1 mRNA and low FMRP is
considered a double hit, including features of FXS and premutation
involvement. The phenotype of these individuals is somewhat different
from typically affected males with FXS because a mild deficit of FMRP
usually causes only mild developmental problems so that these
individuals have a higher IQ, and less severe behavioral problems than
those with full mutation FXS [36,61,66-68].

In a national survey study of over 1,276 families who have children
with either the full mutation or the premutation, Bailey et al. [72]
found a high rate of co-morbidity in boys with the premutation. The
problems that were significantly different from their non-fragile X
brothers included autism in 19.3%, attention problems in 41%,
seizures in 11.3%, developmental disabilities in 33%, and anxiety in
33% of the premutation brothers. Similar results were seen by Farzin et
al. [73] who studied premutation proband brothers who presented
clinically compared to premutation brothers who were identified by
cascade testing and brothers without the premutation. There was a
significantly higher rate of autism, ASD, and ADHD in the probands
compared to the other two groups. However, non-proband brothers
also had an increase in social deficits compared to the non-
premutation brothers. In a subsequent study by Chonchaiya et al. [41],
boys with the premutation had a higher rate of seizures than controls
and the presence of seizures correlated with the presence of ASD. This
study suggests that the occurrence of seizures will further interfere
with the connectivity of the brain in young carriers and make ASD a
more likely outcome. Therefore, early identification and treatment of
seizures is a priority in premutation carriers and in those with FXS
[74,75], because seizures can further reduce the available FMRP levels
in dendrites [40].
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The emotional problems of carriers have been well studied [76-81].
Females with the premutation have been found to have higher rates of
mood disorders than the general population, [82] and those with
FXTAS have higher rates of major depressive disorder, panic disorder,
post-traumatic stress disorder, and specific phobia compared to the
general population [83]. Carriers without FXTAS have higher rates of
social phobia compared to the general population [83]. These
problems are thought to be related to RNA toxicity in the amygdala
and hippocampus. MRI imaging has demonstrated that the size of the
hippocampus directly correlates with the level of anxiety in females
with the premutation who have not developed FXTAS [84]. Therefore,
the higher the anxiety level, the smaller the hippocampus suggesting
that long term stress and anxiety in carriers is deleterious to the brain.
In female carriers, there is a correlation of CGG repeats, cortisol level,
negative life events and the risk for the development of emotional
problems [2,81].

Additional medical problems that are common in carriers,
particularly aging carriers with neurological problems or FXTAS,
include hypothyroidism (50% of females) [85], fibromyalgia (43% of
females) [85], sleep apnea [86], migraine headaches [87], Restless Legs
syndrome [88], fatigue [89] and hypertension[90]. Regular screening
for hypothyroidism, hypertension, migraines, and sleep apnea are
recommended because these problems also require treatment and can
interfere with brain function if untreated. Olfaction deficits with
FXTAS can also cause quality of life issues for premutation carriers
[91].

Sleep apnea may often start before the onset of other neurological
problems with FXTAS [86]. Therefore, we recommend that all
individuals with FXTAS or neurological symptoms be tested for sleep
apnea, since the hypoxia generated by sleep apnea may further
exacerbate the MRI abnormalities seen in carriers including the white
matter disease. Hypertension is significantly increased in FXTAS
compared to controls and this may also be exacerbated by sleep apnea.
Treatment of hypertension is also a necessity in premutation carriers
because uncontrolled hypertension can also lead to further CNS
dysfunction including progression of white matter disease and brain
atrophy [86,92].

MRI studies of Premutation Carriers
Work by Hessl and Rivera has advanced our understanding of the

molecular underpinnings of CNS dysfunction causing problems in
carriers who do not have FXTAS. In their study of 23 young adult
male carriers (mean age 32.9 years), compared to age-matched
controls, they found a significantly smaller left and right amygdala
volume and a significant decrease in the right amygdala activation in
an emotion matching task [93]. The molecular parameters of lowered
FMRP levels and the elevated FMR1 mRNA levels correlated
significantly with the decreased activation of the amygdala, but FMRP
was the most significant molecular factor in these correlations [93].
Additional MRI studies by Hashimoto et al have shown significant
grey matter reduction in the anterior subregions of the cerebellar
vermis and hemispheres [94]. Additionally, in carriers without
FXTAS, as compared to age-matched controls, display decreased
activation in the right ventral inferior frontal cortex and in the left
premotor dorsal inferior frontal cortex on fMRI [95]. The problems in
the frontal cortex may relate to the executive function and memory
deficits seen in some premutation carriers who do not have FXTAS
[61,95]. On DTI studies, there are significant elevations in the axial
diffusivity and in the radial diffusivity in the MCP area in carriers

without FXTAS compared to age-matched controls [96] in addition to
some connectivity loss [97]. A study by Apartis et al. describes corpus
callosum splenium hyperintensities as being as frequent as the MCP
hyperintensities, especially in female carriers [50].

These changes in the MRI studies on brain structure and function
in carriers compared to controls are present in young adults and
therefore likely represent long term effects of RNA toxicity in addition
to mild deficits of FMRP. It is uncertain which, if any, of these deficits
will predict the development of FXTAS, which occurs in 40 % of male
carriers and up to 16.5% of female carriers [77, 78,85,98]. Typically,
the onset of FXTAS occurs in the early 60s, with tremor and then
ataxia [54], but, on occasion, FXTAS may present with cognitive
decline initially [54,99]. However, when FXTAS emerges, the
abnormalities in white matter are apparent on a clinical reading of the
MRI. Battistella et al.[100] have noted significant decreases in gray
matter in the cerebellar and hippocampal areas of asymptomatic
premutation carriers as young as twenty years old (average age of 47)
and also that a later onset of diffuse white matter disease may serve as
a marker for imminent FXTAS onset [100]. These signs indicate a long
progression towards FXTAS and offer hope for a wider window during
which treatments may be effective [36,101].

Premutation Neurons in Culture
Chen et al. [31] have studied premutation mouse neurons in culture

compared to neurons without the premutation. The complexity of the
dendritic tree was reduced and stress proteins were increased in the
premutation neurons compared to controls. The premutation neurons
would die more easily in culture with a significant increase in the
death rate by 21 divisions. Additional morphological differences
include reduced post-synaptic density protein 95 (PSD 95) expression,
reduced synaptic puncta density, and reduced neurite length [102].
Premutation neurons are also functionally abnormal as clustered
spontaneous calcium oscillations have been observed with amplitudes
increased over normal [102,103]. Premutation cells in culture are
hyper-responsive to glutamate in that intracellular calcium
concentrations remained elevated after exposure [102]. These findings
suggest that premutation neurons are more vulnerable to toxicity or
stressful conditions in culture, and this has been seen in clinical cases
who have enhanced neurological problems when exposed to toxins
such as chemotherapy [104] or environmental toxins [105]. Smoking
is another toxin that can negatively impact premutation cells. Smoking
in females with the premutation can significantly lower the age of
FXPOI compared to non-smokers [106]. The premutation neurons
demonstrate enhanced oxidative stress and a rise in heat shock
proteins (including α B crystallin and dysregulation of lamin A/C)
[31,107]. These findings suggest that treatment with antioxidants
would help premutation neurons and cellular studies are underway to
assess this effect. Because of the known oxidative stress, we
recommend treatment with antioxidants in carriers as described below
(Figure 2).
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Figure 2: Recommendations and treatments to support healthy
aging and support for FMRl premutation carriers including
medications, complementary and alternative treatment methods,
and lifestyle changes as evidenced by similar neurodegenerative
disorders.

Mitochondrial Dysfunction and FMR1 RNA Toxicity
The toxicity that excessive FMR1 mRNA levels cause in

premutation cells may be related to several factors. The dysregulation
of lamin A/C is significant, and distortions of nuclear structure can be
seen in fibroblasts, neurons and even embryonic cells [107,108]. The
binding and sequestration of DROSHA and DGCR8 can lead to
microRNA (miRNA) dysregulation [24]. These two proteins are
critical for miRNA maturation, and when they are depleted, related to
sequestration, there is dysregulation of the miRNA levels, which are
important control elements for most of the activities of the cell.
Dysregulation of several miRNA levels have been found those with
FXTAS [25,109]. Additionally, in the Drosophila model of FXTAS, the
activation of specific retrotransposons can modulate
neurodegeneration [110]. The intrinsic mis-folding and aggregation
tendencies of FMR1 RNA has also been suggested as a possible
mechanism in the pathology of the neurodegeneration associated with
FXTAS [111]. A recent report of RAN translation in those with
FXTAS can lead to the development of toxic levels of polyglycine
[112]. Premutation hippocampal neurons have reduced mobility and
higher rates of basal oxygen consumption and proton leakage in
mouse models [32].

There are also abnormalities of mitochondrial functions related to
transport problems of 3 nuclear encoded proteins into the
mitochondria in carriers both with and without FXTAS [113,114]. The
brain’s dependence on oxidative phosphorylation of glucose for ATP
makes this especially important in neural tissues. In addition to iron
dysregulation and deposition, defective zinc bioavailability and/or
transport may be related to this mitochondrial dysfunction [114]. This
problem can be compounded with environmental stress and/or toxins
leading to even more impairment [114]. This is especially problematic
as stress mRNAs appear to accumulate in the nucleus of cells, and may
be linked to neurodegeneration [115]. Deficits in mitochondrial
function are also seen in autism [116] and in other
neurodevelopmental disorders in addition to some neurodegenerative
disorders including PD and AD [117,118].

The premutation has been seen in a limited number of other
neurodegenerative diseases such as PD [56]. In fact, some cases of PD
are nearly indistinguishable from cases of FXTAS [119]. The use of L-
DOPA, deep brain stimulation and other treatments for PD may prove
helpful for carriers [60,120].

FXTAS in Gray Zone and in Unmethylated Full
Mutation Carriers

The original diagnostic criteria for FXTAS state that the
premutation is necessary for the diagnosis [49]. However, recent
reports have documented FXTAS in individuals with a gray zone CGG
repeat expansion (45-54 CGG repeats) [121,122]. In the Liu et al
paper, grey zone individuals with tremor and balance problems were
in families known to have individuals with FXTAS related to the
premutation. Since FXTAS can cluster in families, there may be
additional genetic predisposing or protective factors. One report has
found that an ApoE4 allele, which predisposes to AD, is also associated
with FXTAS [123]. Loesch et al.[124] have demonstrated that the gray
zone shows elevated FMR1 mRNA compared to the general
population. Thus, it is likely that the elevation in FMR1 mRNA is
sufficient to induce FXTAS through FMR1 mRNA toxicity. However,
since the gray zone is very common in the general population
(approximately 1 in 30) most individuals with a gray zone do not
develop FXTAS.

Those individuals with an unmethylated full mutation can also
develop FXTAS because they have elevated FMR1 mRNA. The first
case was first reported by Loesch et al. [125] and this patient was
affected by substance abuse (alcoholism). This patient met all of the
criteria of FXTAS including the MCP sign and cognitive decline. It is
possible that his alcoholism also predisposed him to FXTAS. We have
also seen an unmethylated mosaic patient who presented with a
neurodegenerative condition that was diagnosed as PD [121] but, on
autopsy, FXTAS inclusions were seen, and he demonstrated the
clinical features of FXTAS [126]. Even though these cases may be rare,
they suggest that the definition of FXTAS should be extended to
include those with a gray zone and an unmethylated full mutation.

Toxins and Anesthesia
The issue of exacerbation of the molecular dysregulation in fragile X

premutation carriers by environmental toxins requires further
research [127]. Work in autism has implicated a broad group of toxins
including insecticides, pesticides, polychlorinated biphenyls (PCBs),
fire retardants, mercury and others [127-132]. Organophosphate
pesticides can interfere with acetylcholine and GABA
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neurotransmission. PCBs and related non-coplanar structures such as
triclosan, a common antibacterial, can also activate the ryanodine
receptor and mobilize Ca+2, which disrupts signaling and effects both
neurodevelopment and neurodegeneration [128]. Recent work by
Wolstenholme et al. [133] has demonstrated transgenerational
disruption of mRNA levels in the brain leading to social deficits related
to bisphenol A exposure in mice. These toxins are likely to exacerbate
the clinical picture in both premutation carriers and full mutation
patients with FXS.

Anesthesia and surgery can also lead to neurotoxicity in the general
population, particularly for children who have had multiple surgeries
[134,135] and for more vulnerable populations such as those with AD
[136]. In AD, biomarkers for neuroinflammation are increased in
cerebrospinal fluid after anesthesia [136]. Amyloid β production and
tau phosphorylation are increased as well [136]. Premutation carriers,
particularly those with FXTAS, are also a vulnerable population, and
we have seen the onset of FXTAS symptoms following a prolonged
surgery, particularly in those who are 60 years old and older [1].
However, these cases are anecdotal. There is a need for large-scale
studies to understand the link between general anesthesia and the
development of FXTAS. Even so, avoidance of prolonged general
anesthesia, when possible, is recommended for older carriers,
particularly if neurological symptoms or FXTAS are present.

Drugs of abuse are another source of toxins. In our experience,
premutation carriers who abuse drugs often have faster progression of
their FXTAS symptoms. Heroin, cocaine, methamphetamine, and
marijuana induce oxidative stress in neurons [137-143]. The use of
drugs and/or excessive alcohol is common in carriers [144,145],
perhaps in an effort to self-medicate and improve ADHD symptoms,
anxiety, and chronic pain caused by neuropathy even prior to FXTAS.
However, there may be a biological drive related to elevation of
mGluR5 that modulates alcohol self-administration and relapse
behavior, potentially allowing for treatment with acamprosate
[146,147].

Animal studies suggest that the oxidative stress related to drugs of
abuse can be reversed by antioxidants [137, 148]. Methamphetamine
abuse leads to very significant neurotoxicity relating to a long lasting
glial response with an increase in the number of astrocytes, release of
inflammatory mediators, production of reactive oxygen species (ROS),
and an increase in the blood brain barrier permeability through
modification of the tight junctions [138]. Methamphetamine abuse
augments dopamine levels and dopamine removal by auto-oxidation
or monoamine oxidase, leads to the production of ROS. Some of these
changes can be improved by antioxidants as described below
[137,139,148].

Opioids are also concerning because they can lead to exacerbation
of white matter disease, yet many premutation carriers are prescribed
these drugs because of pain symptoms related to neuropathy or
fibromyalgia. In animal models, opioid use has been shown to cause
brain damage across a broad range of doses [149] and induces cell
death through mitochondrial dysfunction [150]. Similar compounds
that act on opioid receptors, such as methadone, should also be
avoided due to similar effects [151,152].

Alcohol is especially important to avoid in excess. Chronic excessive
alcohol consumption can cause neuroinflammation, brain damage,
and disrupts myelination [153,154]. Alcohol consumption also
decreases white matter integrity [155], potentially complementing a
decline into FXTAS as seen in the Loesch et al case [125]. Although

red wine, in moderation may protect against neurodegeneration (due
to the neuroprotective effects of resveratrol [156], excessive alcohol
consumption should be avoided.

Treatment Implications for Premutation Carriers
A significant question that arises on a regular basis in clinic is what

can be done to reduce the risk of developmental problems and aging
problems in individuals with the premutation. While longitudinal
studies have not yet been done to investigate this issue, current
molecular finding (including enhanced molecular stress and
mitochondrial dysfunction as described above) suggest the use of
treatments proven in similar conditions may be beneficial.
Additionally, premutation carriers may be proactive about treating
other quality of life aspects of global health impacted by the
premutation (such as anxiety or stress) (Figure 2), especially as it has
been suggested that there exists a limited developmental window
during which intervention would be most effective [157].

Medical Interventions
Although no medication has been found to block or reverse FXTAS

so far, new research has opened possibilities of medical interventions
to help mitigate some of the problems with the premutation
throughout the lifespan. Interventions are being studied now to lower
the excess FMR1 mRNA, but they are not available clinically yet [23].
A controlled trial of memantine to block glutamate toxicity
exacerbated by glutamate abnormalities in carriers [103] was not
shown to be efficacious for the tremor, balance or executive function
deficits in FXTAS [158]. However, ERP studies have shown
improvement in brain-language processing in those with FXTAS
treated with memantine compared to controls, so there may be some
minimal cognitive improvements in processing information [159].
Allopregnanolone, a natural neurosteroid, has shown some benefit to
the mouse model of premutation. When administered to premutation
neurons in culture, allopregnanolone mitigated functional
impairments observed in premutation neurons in a reversible manner
[33]. The use of an mGluR5 antagonist (MPEP) was also helpful to the
premutation neurons, suggesting that this category of targeted
treatments for FXS may be helpful in FXTAS.

When depression or anxiety are present, selective serotonin
reuptake inhibitors (SSRIs) are recommended, and their effect is
usually beneficial [160]. SSRIs not only increase serotonin levels, but
they also stimulate neurogenesis [161-163] through increased levels of
BDNF [164]. This may be helpful in FXTAS individuals who have
significant brain atrophy [60]. Encouraging neurogenesis may
facilitate prevention and treatment of depression as well [162,163].

Antioxidants
Based on animal studies or human studies on disorders similar to

the premutation, there are a variety of antioxidants that are likely to be
helpful in reversing the oxidative stress of neurons with the
premutation (Table 1). In newborn KO mice, de Diego-Otero et al
demonstrated that treatment with alpha-tocopherol (vitamin E), in
addition to N acetyl –L cysteine (NAC), normalized synaptic
connections and rescued aspects of the physical and cognitive/
behavioral phenotype [165]. Additional studies have linked vitamin E
to improvements in dementia associated with AD as well as
generalized mild cognitive impairments common with age [166,167].
Chronic pharmacological treatment with alpha-tocopherol (Vitamin
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E) in fragile X mice has been shown to alleviate free radical
overproduction, and reduce oxidative stress [165]. The same study also
showed improved behavior and reversed learning deficits [165].

Vitamin E and other vitamins are likely helpful for premutation
carriers as well. However, further studies of these antioxidants have
not been carried out in patients with the premutation.

Substance Outcome Study Population Reference

Alpha Tocopherol Normalization of synaptic FMR1 KO Mouse [165]

(Vitamin E) connections

Improvements in dementia Alzheimer disease [166,167]

Reduction of oxidative stress FMR1 KO Mouse [165]

Melatonin Glutathione level FMR1 KO Mouse [168]

normalization

Improvement of anxiety and FMR1 KO Mouse [168]

learning abnormalities

Sleep Aid Children with fragile X [169]

Women with the [170]

premutation

Reduction of oxidative stress Parkinson disease [171,172]

Folic Acid Lowers homocysteine levels Fragile X [173,174]

(Vitamin B9) Reduced brain atrophy with Typically aging [175]

age individuals

CoEnzyme Q10 Global symptoms (UPDRS Parkinson Disease [176,177]

Score –Unified Parkinson’s

Disease Rating Scale)

Cognitive Function Alzheimer Disease [178]

Overall energy level Friedreich Ataxia [179]

Early tremor symptoms Huntington Disease [180]

Ginseng Reduction of oxidative stress Cell cultures [181]

Reduction of Mice [182]

neuroinflammation

Mood Mice [183]

Memory Mice [184]

Omega 3s Improved antioxidant activity Humans [185]

Rats [186,187]

Epigallocatechin-3- Reduction of oxidative stress Cell cultures [188-190]

gallate (EGCG)

Humans [189]

Rats [191]

Anthocyanins Reduction of oxidative stress Cell cultures [192]
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N acetyl Normalization of synaptic FMR1 KO Mouse [165]

–L cysteine connections [165]

Table 1: Antioxidant for fragile X premutation carriers as evidenced by their use in similar population.

Melatonin is another antioxidant where use in FMR1 knockout
mice normalized glutathione levels compared to controls [168].
Melatonin has also shown to improve context-depended exploratory
and anxiety behaviors and learning abnormalities [168]. Melatonin has
also shown to be an effective sleep aid in individuals with FXS [169].
As sleep disturbances are very common in individuals with the
premutation, particularly in carrier daughters of men who have
FXTAS [170], earlier and longer sleep may significantly improve
quality of life for premutation carriers. Melatonin, while effective for
sleep, is also effective in preventing oxidative stress in models of PD
and AD [171]. Melatonin is also unique in that it is selectively taken up
by mitochondrial membranes [171] which may enhance its protective
action in the permutation.

Folic acid is an antioxidant that has been studied for years in
individuals with FXS [173,174]. It has a minimal psychotropic effect in
some controlled studies, although the reason for this effect is not
known. It is clearly important for aging because folic acid, combined
with vitamin B12, lowers homocysteine levels. This combination
reduces brain atrophy in typically aging individuals and also in those
with mild cognitive impairment (MCI) [175]. Since brain atrophy is a
severe problem in older premutation carriers with FXTAS, we
routinely recommend treatment with folic acid and vitamin B 12 in
older carriers to lower homocysteine levels.

Coenzyme Q10 (CoQ10) acts as an electron carrier in the electron
transport chain of mitochondria and appears to have antioxidant
effects. CoQ10 deficiencies have been documented in diseases similar
to FXTAS such as PD and AD [178,193]. Although more studies are
needed, widespread preliminary data shows that CoQ10 have shown
encouraging data results in treating neurological disorders such as
Alzheimer, Parkinson, Friedrich and Huntington diseases [176-180,
194].

Other antioxidants that may prove beneficial to premutation
carriers include ginseng and ginsenosides. Korean Red Ginseng has
been shown to protect mitochondria from damage, prevent cell death
during iron-induced oxidative stress, [181] and also to prevent
neuroinflammation associated with neurodegeneration [182]. In mice,
ginseng shows a fluoxetine-like anti-depressant effect and regulates
synaptic plasticity proteins (including BDNF) to prevent cognitive
decline associated with aging [183,184].

Omega 3 fatty acids also have a protective function against oxidative
stress. Human studies show reduced oxidative stress and damage
[185]. Omega 3s increase superoxide dismutase activity in rats [186]
where it is also shown that induced oxidative stress is compensated for
through daily doses of omega 3s [187].

Anecdotally, patients with FXTAS have commented on beneficial
effects of L-Arginine. There are some studies in rats that support a
protective effect of L-Arginine against oxidative stress [195], however
this, in addition to other antioxidants, have not been studied in
premutation carriers.

Glutathione is also an essential cofactor for glutathione peroxidase,
which acts as an antioxidant enzyme in the cell. Deficits of glutathione
peroxidase cause additional oxidative stress in cells. Anthocyanin class
compounds are effective in reducing the iron based lipid peroxidation
and overall levels of oxidative stress in cells [192]. Additionally,
anthocyanins significantly enhance glutathione peroxidase activity in
cell-free assays [192].

Epigallocatechin-3-gallate (EGCG), found in green tea, is another
potent antioxidant whose antioxidant effects in-vivo are well known
[188-190,196]. Consumption of green tea has been shown to alleviate
age- related neuro-degeneration and boost cognitive function and
would thus likely be helpful for FXTAS [189,191,196].

A study by Bowman et al [197] analyzed plasma biomarkers as a
measure of nutritional quality. Higher levels of plasma vitamins and
marine omega 3 fatty acids were linked to higher cognitive ability and
higher brain volume with aging. Conversely, the study found that
higher levels of trans-fats were linked to lower cognitive ability and
reduced brain volume [197]. This evidence suggests that such changes
in diet may be helpful for FXTAS with aging also.

While each of these vitamins and antioxidants have shown
significant protection against oxidative stress, none have been studied
specifically in premutation carriers with or without FXTAS. There is a
need for such studies. Although these interventions are not likely to
reverse FXTAS, they may be important, along with other lifestyle
changes, to stall, delay, or avoid the onset of FXTAS in carriers.

Stress reduction
Raising a child with FXS, taking care of someone with FXTAS, or

other significant involvement from the premutation is stressful to
parents and to the family [80, 198]. Animal models of the premutation
have also shown increased stress and cortisol elevations with age [199].
Mindfulness based stress reduction has been studied for reducing
stress in cases of long term conditions with psychological distress and
well-being issues such as cancer [200], multiple sclerosis [201],
fibromyalgia [202] and rheumatoid arthritis [203] and have yielded
positive results. Fibromyalgia is common in female premutation
female carriers with age and the prevalence rises to 43% if neurological
problems/FXTAS are present 85,204]. Mindfulness stress reduction is
a mental training to develop awareness and acceptance skills to cope
with daily events that otherwise cause heightened elevated stress.
Mindfulness meditation has been shown to reduce anxiety, improve
mood, and increase brain GABA levels [205].

Relaxation is a process that decreases the effects of stress and
supports stress management. Beneficial effects of relaxation techniques
include: slowing heart and breathing rate, lowering blood pressure,
increased blood flow, reduced muscle tension and pain, and improved
concentration. The National Center for Complementary and
Alternative Medicine (NCCAM) published an overview about
relaxation techniques for health [206].
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Bio and neurofeedback treatments for relaxation and other
behavioral interventions have been reported on for over 30 years
[207]. Biofeedback and neurofeedback provides specific information
about internal biological processes (i.e. muscle activity, respiration,
heart rate variability, skin temperature and brain electrical activity) in
an individual. Depending upon the physiological processes targeted,
healthier patterns of activity can be achieved by most people after they
have participated in 10 to 50 sessions of biofeedback or neurofeedback
supported with professional coaching and practice. For example,
Thompson, Thompson and Reid [208] described that effective
neurofeedback plus biofeedback for individuals with Asperger
disorder included several 50-minute sessions of neurofeedback twice
weekly. Ten to fifteen of these sessions combined neurofeedback with
biofeedback of other physiological parameters, such as heart rate
variability, respiration, or electrodermal activity, if an initial
assessment suggested that the individual experienced difficulties
sustaining alertness or heightened anxiety. The therapists also guided
individuals to practice and generalize these skills to daily activities.
Further, once the individual achieved a relaxed, calm and focused state
during the feedback training, they were also trained to maintain this
state while performing mental activities designed to improve their
cognitive processes (e.g., emotional comprehension in listening).

The 2011 study by Prinsloo et al. [209] showed an improvement in
cognitive performance in healthy male volunteers (aged 23 to 41 years
old) after the use of a short duration heart rate variability (HRV)
biofeedback intervention with the StressEraser, a handheld portable
HRV biofeedback device (StressEraser TM, Helicor,USA). Various
biofeedback protocols [210] and assistive electronic technologies such
as the NeXus-10, emWave Personal Stress Reliever® or StressEraser®
exist to enhance the balance of parasympathetic activity, vagal tone,
increase HRV and synchronize respiration with the heart rhythm (i.e.,
the slowing down and speeding up of the heart over time). The
emWave® Coherence System by HeartMath is one example that has an
emerging evidence base for its efficacy with children [211,212].
Although these techniques have not been studied in premutation
carriers with or without FXTAS, the need is great, and they are worthy
of future investigations.

Exercise, Cognitive training, and Neurogenesis
To complement the use of antioxidants to protect against oxidative

stress, exercise may also prove beneficial. Among regularly exercising
older men, there is a marked decrease in vascular endothelial oxidative
stress [213]. This likely holds true for brain tissue as well. A separate
study by Shanely et al finds overall lower levels of inflammation and
oxidative stress in adults who are physically fit and regularly active
[214,215]. Furthermore, Traustadottir et al have found that exercise
helps to blunt the body’s hypothalamic-pituitary-adrenal (HPA) axis
response to psychological stress [216].

Exercise offers other benefits as well. Physical exercise increases
adult neurogenesis and telomerase activity [161,217,218]. Telomeres
are shorter in carriers compared to controls, which exercise would
likely improve [219]. Exercise in rats boosts immune and
neuroimmune cytokines [218]. Exercise also increases the size and
plasticity of the hippocampus and improves memory [220, 221].
Although exercise increases the levels of brain-derived neurotrophic
factor (BDNF) it appears that the increase in hippocampus size is
independent of BDNF levels [215,221]. Exercise in the mouse model of
schizophrenia improves behavioral deficits [217]. Exercise also reduces
feelings of depression perhaps by increasing serotonin levels [222]. A

daily regimen of resistance training can also increase general cognition
[223] and produces a shift in mitochondrial DNA that dilutes
mutational burdens associated with aging [224]. Even brief bouts of
activity increased levels of mitochondria in cells and helps cope with
stress [225].

Several studies have shown beneficial effects of cognitive training to
improve cognitive abilities [226,227]. Cognitive training can be
computer-based, and it typically involves a guided practice of standard
tasks to reflect areas of cognition, such as memory, attention, or
executive function.

Conclusions
The premutation is common in the general population and it can be

associated with both developmental problems in addition to
neurological and psychiatric problems with aging. The molecular
underpinnings of premutation involvement are known and treatment
for specific difficulties including ASD, anxiety, and depression often
responds well to the use of an SSRI and counseling/ therapy.
Prophylactic intervention with antioxidants, exercise, mindfulness
meditation and avoidance of toxins has been anecdotally helpful,
although controlled studies are needed to judge efficacy. This issue is
complex because it is unclear why some individuals with the
premutation have developmental and aging problems, whereas others
do not. The reasons are likely related to both environmental and
genetic effects. Treatments outlined here may offer some benefit for
premutation carriers.
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