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Introduction
Nuclear Receptors (NR) are one of the most important current 

drug targets [1]. The development of new synthetic NR ligands for 
various diseases has been complicated by the fact that once affinity 
towards a certain receptor has been accomplish by medicinal chemistry 
a second level of selectivity among NRs has to be optimized in order 
to specifically modulate the gene regulation mediated by a particular 
NR. Recently, coregulators have been identified as master regulator of 
NR-mediated gene regulation [2]. Therefore, NR ligand interactions 
with NRs can influence gene regulation by modulating the specific 
recruitment of co-regulators [3]. 

In respect to 48 identified NRs and more than 300 coregulators 
there are more than 10,000 possible interactions between NRs and 
coregulators. Limited biochemical approaches to determine the influence 
of NR ligands in regard to these interactions have been reported [4,5]. 
A virtual screening approach was introduced by Schapira et al. [6] using 
a model based on NR ligands bound to NR ligand binding domains to 
predict the affinity of small molecules towards different NRs. Based on 
this approach it seems feasible to predict small molecule modulation of 
NR-coregulator interactions based on crystal structures of NRs bound 
to coregulators.

Generally, coactivators bind NRs in the presence of ligand whereas 
corepressors interact with NRs in the absence of ligand [7,8]. Corepressor 
binding has also been observed in the presence of NR antagonists [9]. 
Fortunately, crystal structures of NRs bound to antagonist or agonist in 
the presence of coregulator peptides are available to develop a model to 
predict NR-coregulator modulation of new synthetic NR ligands [10-
13]. However, for the vitamin D receptor (VDR), crystal structures of 
VDR-corepressors complexes are still missing. Although many VDR 
crystal structure in the presences of antagonist have been solved [14], it 
seems that the antagonistic structure of VDR is induced by corepressors 
rather than the ligand. 

Recently we have introduced GW0742, which was developed 
by GlaxoSmithKline as highly a selective agonist for the peroxisome 
proliferator activated receptor δ [15], as a novel antagonist for VDR 
[16]. Subsequently, we determined the activity of GW0742 for 12 
nuclear receptors in the antagonist and agonist mode to determine 
the selectivity of GW0742 towards different nuclear receptors. Herein 

we describe the ability of GW0742 analogs to mediate agonistic and 
antagonistic effects together with the nuclear receptors VDR and PPAR δ.

Materials and Methods
Reagents

1,25-(OH)2D3 (calcitriol) was purchased from Endotherm.
GW0742 was purchased from Tocris.LG190178 was synthesized using 
a published procedure [15].

Labeled coactivator peptides

The peptide SRC2-3 (CLQEKHRILHKLLQNGNSPA) [16], was 
purchased and labeled with the cysteine-reactive fluorophore, Alexa 
Fluor 647 maleimides, in a 50:50 DMF/PBS mixture. After purification 
by high performance liquid chromatography, the corresponding labeled 
peptide was dissolved in DMSO and stored at -20ºC.

Protein expression and purification

The VDR-LBDmt DNA was kindly provided by Nandhikonda, 
et al. [17] and cloned into the pMAL-c2X vector (New England Biolabs). 
A detailed expression and purification protocol for VDR was reported 
previously [16].

Fluorescence polarization assay with VDR−SRC2-3

Agonistic activity and competitive inhibition were studied using a 
FP assay. This assay was conducted in 384-well black polystyrene plates 
(Corning) using a buffer [25 mM PIPES (pH 6.75) 50 mM NaCl, 0.01% 
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Abstract
Herein we describe the evaluation of GW0742 analogs in respect to their ability to modulate transcription 

mediated by the Vitamin D Receptor (VDR) and the peroxisome proliferator activated receptor (PPAR)δ. The 
GW0742 analog bearing carboxylic ester functionality in place of the carboxylic acid was partially activating both 
nuclear receptors at low concentration and inhibited transcription at higher compound concentrations. The GW0742 
alcohol derivative was more active than the ester in respect to VDR but less active in regard to PPARδ. Importantly, 
the alcohol derivative was significantly more toxic than the corresponding acid and ester. 
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NP-40, 2% DMSO, VDR-LBD protein (0.1 μM), LG190178 (0.75 μM), 
and Alexa Fluor 647-labeled SRC2-3. Small molecule transfer into a 
20 μL assay solution was accomplished using a stainless steel pin tool 
(V&P Scientific), delivering 100 nL of the serially diluted compound 
solution (1:3 dilution starting at a 10 mM concentration).Fluorescence 
polarization was detected after initial mixing at excitation and emission 
wavelengths of 650 and 665 nm (Alexa Fluor 647). Three independent 
experiments were conducted in quadruplicate, and data were analyzed 
using nonlinear regression with a variable slope (GraphPadPrism).

Transcription assays

HEK 293T cells (ATTC) were cultured in 75 cm2 flasks using 
DMEM/High Glucose (Hyclone, catalog no. SH3024301), nonessential 
amino acids, HEPES (10 mM), penicillin and streptomycin, and 10% 
dialyzed FBS (Invitrogen, catalog no. 26400-044). At 70-80% confluency, 
2 mL of untreated DMEM containing 1.56 μg of NR plasmid, 16 μg of a 
luciferase reporter gene, Lipofectamine LTX (75 μL), and PLUS reagent 
(25 μL) was added. After 16 h, the cells were harvested with 0.05% 
trypsin (3 mL) (Hyclone, catalog no. SH3023601), added to 15 mL of 
DMEM/High Glucose (Hyclone, catalog no. SH3028401), nonessential 
amino acids, sodium pyruvate (1 mM), HEPES (10 mM), penicillin 
and streptomycin, and 2% charcoal-treated FBS (Invitrogen, catalog 
no. 12676-011), and spun down for 2 min at 1000 rpm. The cell were re-
suspended in the same medium and plated in sterile cell culture-treated 
black 384-well plates with an optical bottom (Nunc, catalog no. 142761) 
at a concentration of 15000 cells/well, which had been previously 
treated with a 0.25% solution of Matrigel (BD Bioscience, catalog no. 
354234). After 2 h, plated cells were treated with small molecules in 
vehicle DMSO, followed by 16 h incubation. The NR agonists used for 
VDR and PPARδ were 1, 25-(OH)2D3(10 nM) and GW7647 (30 nM), 
respectively. Transcription was assessed using Bright-Glo (Promega). 
Cell viability was assessed using CellTiter-Glo (Promega) for identically 
treated cells. Two independent experiments were conducted in 
quadruplicate, and data were analyzed using nonlinear regression with 
a variable slope (GraphPad Prism).

Results and Discussion
The activities of compounds 1-3 with respect to VDR were 

determined using a reported fluorescence polarization assays employing 
recombinant VDR-LBD, Alexa Fluor 647 labeled SRC2-3 peptide, and 
the synthetic VDR ligand LG190178 [17]. The results are presented in 
Table 1. 

A VDR-LBD concentration used was 0.1 µM. Inhibition of VDR-
SRC2-3 interaction in the presence of LG190178 (0.75 µM). Three 
independent experiments were conducted in quadruplicate and data 
were analyzed using a nonlinear regression with a variable slope 

(GraphPad Prism).

Compounds 1-3 possess no agonistic activity;thus they do not 
support the interaction between VDR-LBD and coactivator peptide 
SRC2-3.The antagonistic behavior of all compounds was determined in 
the presence of VDR agonist LG190178 [18]. Compound 1, GW0742, 
was most the active inhibitor with an IC50 of 7.73 ± 1.68 µM in the 
presence of 100 nM VDR-LBD. We observed that higher concentrations 
of VDR-LBD result in ligand depletion and therefore higher IC50 values 
for instance the recently reported IC50 of 27.2 ± 2.7 µM for GW0742 
in the presence of 600 nM VDR-LBD [16]. Interestingly, compound 
2 bearing carboxylic ester functionality instead of the carboxylic acid 
is significantly less active. The corresponding alcohol 3 however has a 
similar inhibitory activity as GW0742 with an IC50 of 9.03 ± 5.5 µM.

To further explore the biological role of compounds 1-3, 
transcription assays mediated by VDR and PPARδ were employed 
using transiently transfected HEK293-T cells [17]. The results are 
summarized in Table 2. 

As expected, GW0742 was inactive as a VDR agonist and could 
inhibit VDR-mediated transcription with an IC50 value of 12.7 ± 8.0 
µM (Table 2). Furthermore, we could confirm the activation of PPARδ 
at nanomolar concentrations of GW0742 (EC50 3.5 ± 0.31 nM) and 
inhibition of PPARδ-mediated transcription at higher concentration 
(IC50 3.9 ± 2.41 μM) [16]. Interestingly, compounds 2 and 3, which 
were not able to initiate the interaction between VDR-LBD and 
SRC2-3 peptide (Table 1) exhibited partial VDR agonistic effects 
at concentrations between 110-150 nM (Table 2, entries 2 and 3). 
Compound 3 activated the VDR-mediated transcription with a 38% 
efficacy in respect to VDR agonist calcitriol and an affinity of 0.12 ± 
0.03 μM (EC50). For the activation of PPARδ-mediated transcription 
compound 2 was superior to compound 3 with an EC50 of 3.9 ± 0.38 
nM and an efficacy of 35% in comparison to GW0742. Importantly, 
compound 2 and 3 inhibited PPARδ and VDR-mediated transcription 
at sub-micromolar concentrations. In addition, the toxicity of analogs 
2 and 3 is more pronounced than that of GW0742. Compound 2 
has three-fold selectivity towards the inhibition of PPARδ-mediated 
transcription with an IC50 of 0.26 ± 0.12 μM and compound 3 is two-
fold more active to inhibit VDR-mediated transcription with an IC50 of 
0.36 ± 0.055 μM. 

Overall, we demonstrated agonistic behaviors of GW0742 and its 
analogs at lower concentrations for PPARδ and inhibition of PPARδ-
mediated transcription at higher concentrations. In addition, GW0742 
analogs 2 and 3 exhibited a similar behavior for VDR but at significantly 
higher concentrations for the partial agonist effect. The toxicity of 
both compounds is significant and may play a role in the relative low 
inhibition of transcription for the both receptors.
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