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Abstract

Deformation of soft tissue is a significant simulation part in minimally invasive surgery. This paper presents a 
dynamic nonlinear finite element method for modeling of soft tissue deformation. This method models large-range 
deformation via the second-order Piola-Kirchhoff stress. It condenses the stiffness matrix to reduce the degrees 
of freedom of the entire soft body at each node for every time step to improve the computational performance. 
Simulations and comparison analysis show that the proposed method can predict the nonlinear behaviors of soft 
tissues and requires a small amount of time.
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Introduction
Soft tissue deformation plays a vital role in surgical simulation [1-

3]. Surgical simulation requires the mechanical interaction between 
soft tissues and surgical tools be realistic and in real-time [4]. However, 
due to the complexity of soft tissues, it is difficult to achieve both 
conflict requirements, and realistic modeling of soft tissue deformation 
in real time is still a challenging research problem [4]. 

The mass-spring model and finite element method (FEM) are the 
most common modeling methods for soft tissue deformation [5]. The 
mass-spring model uses springs connected masses to carry out soft 
tissue deformation. It is simple in computation and easy to implement, 
but lacks the physical accuracy. The FEM is the exact opposite to 
the mass-spring model. It carries out soft tissue deformation based 
on rigorous laws in continuum mechanics, leading to high accuracy 
for modelling. However, it is expensive in computation. Due to the 
complexity in computation, the existing FEM models are mainly based 
on linear elasticity.

In this study, modelling of nonlinear FEM for soft tissue 
deformation is presented. The Second-order Piola-Kirchhoff stress has 
been used for modeling of nonlinear soft tissue behaviors. The technique 
of matrix condensation is also developed to improve the computational 
performance by reducing the degree of freedom. The rest of the paper 
is organized as follows: After the literature survey in section 2, section 
3 details the proposed method for modelling of soft tissue deformation. 
Section 4 evaluates the performance of the proposed method. Finally, 
Section 5 concludes the paper and discusses about the future work.

Literature Review
There have been significant research efforts in soft tissue modeling 

for surgical simulation and robotic-assisted surgery, and development 
of virtual surgical schemes for education [6]. Various FEMs have been 
developed for linear elastic 2D and 3D simulations [7-10]. DiMaio 
and Salcudean established force distribution over the needle shaft, and 
developed a 2D finite element simulation using a linear electrostatic 
material model to measure the tissue deformation path in a phantom 
tissue [7]. They also applied fast low-rank matrix updates to achieve the 
real-time contact simulation [11]. Alterovitz et al. developed a dynamic 
system for needle insertion using the mass-spring model. This system 

can simulate the needle insertion process with improved accuracy and 
computational performance [9].

Okamura et al. developed an empirical force model for soft tissue 
deformation and penetration, where the needle forces are considered to 
be a combination of the stiffness force, friction force and cutting force 
[12]. Webster et al. studied the motion of needle insertion with the 
use of a bevel-tip needle [13]. Misra et al. reported a mechanics-based 
method for steering of needle motion by exploring the connections 
at the tip and the overall bending of the needle with consideration of 
material properties and the needle tip geometry [14]. Mahvash and 
Dupont extended Misra’s work and developed a dynamic model for 
characterizing rupture events, showing that the rupture force would 
decrease when the needle insertion velocity increases [15]. Wang 
and Hirai developed a dynamic model of needle-tissue interaction 
by considering needle insertion as a mixture of contact, rupture and 
friction forces [6]. They also applied a local constraint method to avoid 
re-meshing, which is generally needed due to the collision between 
discontinuous finite element structures and continuous needle 
movement.

In general, the existing FEM methods are mainly dominated by 
linear elasticity to reduce the computational cost, thus unsuited to 
handle nonlinear elastic behaviors of soft tissues.

Methodology
Proposed 3D dynamic nonlinear soft tissue model

Modeling of soft tissue behaviors depends on material 
properties. The mechanical behavior of an object, which results 
from the object internal structure, can be characterized using 
constitutive relations. Consider an isotropic and homogenous 
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object with nonlinear elastic behavior. For large deformation, the 
strain is described as
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where ε x is the normal strain, and γxy = γyx is the shear strain. The 
other terms of the strain can be defined similarly.

In order to describe the large deformation in a global form in terms 
of nonlinear quadratic strain, let us consider a fixed global coordinate 
system for the entire simulation. Therefore,

0
1= A
2

ε + Θe eB u                          (2)

Where 0
eB  and eu  represent the linear displacement differentiation 

matrix in size of 6 × 3 and the nodal displacement in size of 3 × 1, 
respectively. 0 1 2 3 4[ ] = [    ]eB B B B B is for each element in the tetrahedron. 
The second item on the left side represents the nonlinear displacement 
differentiation matrix and the nodal displacement, where A is a 6 × 
9 nonlinear matrix, and Θ  is a 9 × 1 matrix with three-dimensional 
identity ( 3I ).

Under the assumption of nonlinear elastic material, the stress σ and 
the strain ε are in a non-linear relationship, which can be defined by 
Hooke’s law as

0 0= ( )Dσ ε ε σ− +                     (3)

where σ0 and σ are the stresses at times t0 and tn+1 respectively, D 

is the elasticity matrix, =
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are the 

material parameters, and ε0 and ε are the strains at times t0 and tn+1. E 
and v denote the Young’s modulus and Poisson’s ratio, respectively.

Constitutive relation for nonlinear FEM

The strain energy density function (SEDF) is a common method to 
describe material behavior. The deformation of a physical object can be 

characterized by the deformation gradient = xF
X
∂
∂

, where X and x are 

the original and the deformed configurations, respectively [16]. In the 
3-D nonlinear case, the second-order gradient tensor (internal force) 
at a given point inside a material has nine strain components, which 
define the state of stress and strain at the point for the deformation 
configuration. The material will be hyper elastic when such SEDF 
exists, from which the stress components can also be derived. Let W 
be the strain energy per unit volume of the tissue. In a hyper-elastic 
material, when SEDF (which is derived from the Cauchy stress tensor 
in the material because of deformation) is known, it can be obtained 
from the second Piola-Kirchhoff stress
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where E is the Green (nonlinear) strain tensor, S is the second Piola-
Kirchhoff stress, U= x-X is the displacement vector, I is the identity 
tensor, J is the determinant of F, and τ is the Cauchy stress tensor. For 
a hyper-elastic material, the SEDF can be derived from Hooke’s law as

2 2= ( ) ( )
2

W E Eλ µ+                                      (5)

Element stiffness matrix

The global deformation is large and involves the entire body. This 
type of deformation is essential to surgical simulation, and can be 
mathematically applied to any large motion and deformation. The 
nonlinear stiffness is

0
1( ) =
2

e e e eT e eK u K B AG d
Ω

+ Ω∫                 (6)

where ( )e eK u is the local nonlinear stiffness matrix, which is 
dependent on the displacement ue. A and Ge are the nonlinear deferential 
matrices. Equation (6) can be further simplified as

0 0 0
1( ) =
2

t e eT e eT eK u B DB V B AG V+                   (7)

where ( )t eK u is the nonlinear strain incremental stiffness matrices 
at time t, and V is the volume of the integral element.

Global equation to nonlinear finite element modelling 

The element behavior is characterized by the partial differential 
equation governing the motion of the material points of a continuum, 
resulting in the following discrete system differential equation (equation 
of motion):

( ) =t t t t t t e t t t
tM U C U K u U R F+∆ +∆ +∆ +∆+ + −  F                (8)

Where U is the displacement vector at a node, U and U are the 
acceleration and velocity at time t +∆t, F is the external force vector at 
time t, M and C are the time-dependent mass and damping matrices, 
and R is the external load applied at the nodal at time + ∆t t .

Static condensation method

The static condensation method is employed to reduce the number 
of degrees of freedom for the element, that is, condense out the internal 
nodes. This method is to determine a part of the solution to solve the 
total finite element system equilibrium equations prior to assembling 
the structure matrices K and U based on the system boundary, leading 
to reduced computations. The stiffness matrix and corresponding 
displacement and force vector of the element under consideration can 
be decomposed into the form
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where m and s are the degrees of freedom of master (to be returned) 
and slave nodes (to be condensed out), and Um and Us are the desired 
displacements of the master and slave nodes, and Fm is the load vector.

From (9), we have the condition
=sm m ss s sK U K U F+                   (10)

which can be used to eliminate Us. From (10) we can obtain
1 1=s ss s ss sm mU K F K K U− −−                  (11)

Substituting (11) into (9) yields
 =m mmK U F                  (12)

where




1

1

=

=

m mm ms ss sm

m m ms ss s

K K K K K

F F K K F

−

−

−

−
                 (13)

The new stiffness matrix Km in the reduced form (12) is obviously 
denser than the stiffness matrix in the original form (10). This means 
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that the condensed method is mathematically equivalent to the 
volumetric FEM, keeping the volume characteristic in the solution, but 
only at the computational expense of the surface FEM.

Model dynamics

The dynamics of the nonlinear FEM is achieved using an implicit 
Lagrangian formulation. The implicit Lagrangian formulation can be 
solved with the Newmark’s method, leading to unconditionally stable 
solutions.

By linearizing the motion (8), the nonlinear FEM at each time step 
after the initial calculation can be described as follows:

1) Calculate effective loads at time t + ∆t
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2) Solve for displacements at time t + ∆t. 

  =  T t t t tLDL U R+∆ +∆                 (15)

3) Calculate the accelerations and velocities at time t + ∆t:

0 2 3

6 7

=  (  )   
=     

+∆ +∆

+∆ +∆

− − +
+ −





t t t t t t t

t t t t t t

U a U U a U a U
U U a U a U

                  (16)

Where δ=0.5 and α=0.25 are the parameters to obtain the 
accuracy and stability, a0, a1…a7 are the coefficient parameters, and 


0 1=   + +=TK K a ML aLD C is the effective stiffness matrix. Using 
the de-factorisation (Skyline) method, K can be reduced to an upper 
triangular form, from which the unknown displacement U can be 
calculated by back-substitution.

Deformation region selection 

With the model dynamics, the topology structure of the deformation 
for soft tissue modeling using FEM will be reformed and subsequently 
the stiffness matrix of the deform structure will be updated. Therefore, 
in order to reduce the computational time and cost, the minimum faces 
of the model mesh at the deformation region must be determined. 

Strictly speaking, a set of triangles from the mesh, which are close 
to the surgical tool need to be selected. Generally, the selection of the 
minimum deformation region is according to the interaction between the 
surgical tool and soft tissues, which is detected based on the information 
of faces, edges and vertices. Figure 1 shows the three cases for the 
determination of the minimum deformation region. The interaction 
process between the surgical tool and soft tissues is highlighted in red 
and the minimum deformation area is displayed in green. The minimum 
deformation region is determined based on the following interaction 
configurations: (a) Vertex: six triangles are adjusted; (b) Edge: two 
triangles are adjusted; and (c) Face: one triangle is adjusted.

Implementation and result

The prototype system for simulation of soft tissue deformation 
with the proposed FEM was implemented using Java3D on a PC with 
Intel Core i7 MacBook Pro (13-inch, Early 2011) at 2.7 GHz with 16 
GB 1333 MHz DDR3 RAM memory and Intel HD Graphics 3000 512 
MB. Simulations were conducted to investigate the performance of the 
proposed nonlinear FEM. The values of materials parameters were set 
according to those reported in [7].

Trials on the interaction between a surgical needle and soft tissues 
were conducted by the proposed nonlinear FEM. Different shapes of 
tetrahedron volume models such as the cube, human liver and kidney were 
tested. Table 1 shows the element numbers after condensation and the 
average iteration computational times. For example, for the cubic volume 
model which is made up of 953 elements, it is condensed to 266 tetrahedron 
elements, and the average time for one iteration of deformation is around 
0.174 seconds. As the visual refresh rate should be more than 25 frames 
per second [11,18]. Yin and Goulette proposed FEM is able to provide 
real-time visual feedback [11,18]. Figure 2 shows the deformations of the 
cubic model under a tensile and compression force, respectively. Figure 3 
illustrates the deformations of the virtual human liver and kidney models. 
Figures 4 and 5 show more deformation results on the cubic model as 
compression and tensile forces.

To further evaluate the performance of the proposed FEM, 
we further compared the simulation results with experimental 
data reported in the literature [7]. The simulation results in terms 
of the relationships between stress and strain as well as force and 
displacement are shown in Figures 6 and 7, while the corresponding 
experimental data are shown in Figure 8. It is obvious that the proposed 
FEM demonstrates the nonlinear deformation behavior remarkably. 
Therefore, the proposed FEM can achieve large deformations via the 
nonlinear relationship.

Conclusion
Simulating of soft tissue deformation is discussed in this paper 

based on dynamic nonlinear FEM in surgical simulation. Soft 
tissue deformation is carried out by using the second-order Piola-
Kirchhoff stress. The model dynamics is conducted based on the 

(a) (b) (c)
Figure 1: Different interaction cases between the surgical tool and soft tissues (a) Vertex (b) Edge and (c) Face [17].

Object
Test

Number of 
elements

Condensation Average of one iteration time 
costs (Second)

Condensed elements Dynamic
Cubic 953 266  0.174
Liver 4094 873  0.881

Kidney 11494 2188  7.142

Table 1: Matrix condensation and time performance.
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implicit Lagrangian formulation to define the nonlinear constitutive 
relationships for large deformations. The Newmark’s method under 
the assumption of isotropic and homogenous materials is established. 
Moreover, a technique of matrix condensation based on continuum 
mechanics of solid is also developed to reduce the number of the 
degrees of freedom for each element.

(a) (b)

(c) (d)
Figure 2: Cubic modeling (a) wireframe (b) shade (c) and (d) deformed force 
(under a tensile and compression force, respectively).

Figure 4: Different views of the deformation of the cubic model under a tensile 
force.

(a) (b)

(c) (d)

(e) (f)
Figure 5: Different views of the deformation of the cubic model under a 
compressed force.

(a) (b)
Figure 3: Deformations of the virtual human (a) kidney and (b) liver.

Figure 6: Stress (Y Axis) vs. strain (X Axis) curve.

Figure 7: Force (Y Axis) vs. displacement (X Axis) curve.
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Future work will focus on the improvement and application of 
the proposed FEM for surgical simulation. The proposed FEM will be 
integrated with a haptic device for achieving force feedback for surgical 
simulation. It is expected to establish the methods of haptic modeling 
and rendering for soft tissue deformation with real-time haptic 
feedback in real time. The proposed FEM will also be applied to model 
the typical surgical procedure of needle insertion and further develop 
a surgical simulation system for training and procedure planning of 
needle insertion.
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