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ABSTRACT

Background: The bioequivalence (BE) assessment of generic (Test) and brand name (Reference) formulations of 
drugs with steep exposure-response relationships exhibiting high pharmacokinetic (PK) variability such as dabigatran 
represent an expensive challenge for pharmaceutical companies. Supported by the population pharmacokinetics 
(pop-PK) approach, the present article investigates modelling potential to assess BE using a reduced number of blood 
samples.

Methods: Pop-PK models for the Reference and Test formulations were developed retrospectively using standard 
modeling techniques for a BE study of dabigatran. Reduced sampling scenarios were selected and the developed pop-
PK models were refitted on each dataset for the respective formulations.   These models were simulated to generate 
virtual PK profiles to be tested with the standard BE criteria, in order to identify the scenarios maintaining the 
original BE conclusions with the least samples required.

Results: The BE study original data was best described as a pop-PK model presenting two compartments with first 
order elimination and absorption, as well as an absorption lag time. Sex was identified as a significant covariate 
with impact on bioavailability. Using a rational sampling selection procedure under the framework of modeling 
and simulation, the results proved that the BE verdict could be maintained with only five of the 20 original blood 
samples using the current regulatory BE standards and criteria.

Conclusion: We conclude that the pop-PK model-based BE assessment can be an efficient tool for aiding the BE 
assessment of dabigatran by significantly reducing the number of samples required, and consequently lower trial 
costs and increase benefits for enrolled participants.
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INTRODUCTION 

The manufacture of generic drugs is an important part of 
pharmaceutical industry worldwide. In fact, close to 90% of current 
prescriptions in the United States and 70% in Canada are generics 
[1], since their inexpensive pricing allows patients a relatively easy 
access to innovative therapies. For a pharmaceutical company 
investing in generic drug development, holding the majority share 
of a highly competitive and profitable market by being the first 
regulatory approved generic formulation is a priority. 

For drugs with high intra-individual variability as well as steep 
exposure-response relationship such as dabigatran [2,3], this 
endeavor is particularly arduous. The high variability indicates that 
a large number of subjects will be required to conclude in favor 
of bioequivalence (BE) with a sufficient power, resulting in more 

expensive studies. Moreover, the presence of an abrupt exposition-
response relationship for dabigatran prevents the use of widened 
BE limits suggested by regulatory agencies for highly variable drugs 
[4]. As a result, the odds of failing a BE trial are increased for 
tested dabigatran generics. These peculiarities render the task of 
demonstrating BE between the Test formulation (the generic not 
yet approved) and the Reference product (currently marketed drug) 
of dabigatran extremely difficult, as well as often overpriced, in the 
development period under the current framework of BE practices 
supported by regulatory agencies. 

Population pharmacokinetic (pop-PK) modeling is a computational 
approach that can provide solutions to these concerns. Pop-PK does 
not present a strict requirement in terms of the number or timing 
of blood samples for each subject, in contrast to other approaches 
that usually need many observed concentrations (“rich” sampling 



2

Legault C, et al. OPEN ACCESS Freely available online

J Bioequiv Availab, Vol. 12 Iss. 3 No: 396

data) to characterize the pharmacokinetics (PK) of a molecule [5]. 
However, the rule of same number and timing of samples must be 
maintained for both formulations in order to preserve the integrity 
of the double-blind criterion expected in a BE trial. Otherwise, 
the drug given to a subject could be identified and thus make 
the results biased. Moreover, a pop-PK model-based approach 
renders unnecessary the use of a replicate design to determine the 
inter-individual variability of the Reference formulation, which is 
time-consuming and expensive in practice. Although the current 
regulatory guideline for BE assessment is the final golden standard, 
applying a pop-PK model approach in the development process of 
a dabigatran generic could significantly improve the study design 
and efficiently reduce the costs of subsequent BE trials.

In this article, we will investigate the potential of developing a pop-
PK modeling approach to improve the efficiency and cost in the 
BE evaluation for highly variable drugs such as dabigatran. Based 
on the results, a model-based reduced sampling strategy will be 
proposed to assist in the BE assessment of these drugs in their 
future generic development.

MATERIALS AND METHODS

Study data

The data used to build the pop-PK model was extracted from a single 
dose, 2-period, 2-sequence, crossover comparative bioavailability 
study performed by Contract Research Organization. The aim of 
the trial was to determine the BE of a dabigatran Test formulation 
under development to a Reference product in the market. The 
Reference formulation used was Pradaxa [dabigatran etexilate 
mesylate, developed by Boehringer Ingelheim Pharmaceuticals Inc, 
application number N022512] 150 mg capsules, available upon 
prescription. Dabigatran etexilate mesylate is a non-hygroscopic 
yellow-white powder with no chiral centres, a melting point 
occurring close to 180°C, two dissociation constants (pKa1 at 4.0 
and pKa2 at 6.7), an apparent partition coefficient of 3.8 and 
an increased solubility in acidic pH (water solubility of 1.8 mg/
mL) [2]. The study population was comprised of healthy male and 
female volunteers. Sixteen subjects were included in the pop-PK 
dataset, corresponding to 640 plasma concentrations values.

Population pharmacokinetic modelling

The pop-PK modeling was processed using the NONMEM 
software (NONMEM® 7.4, ICON Development Solutions) 
assisted with Perl-speaks-NONMEM (PsN). The whole procedure 
followed the standard model selection process using the first-order 
conditional estimation method, a widely accepted pop-PK model 
building algorithm [6]. The selection process of models was based 
on goodness-of-fit plots, precision of model parameter estimates 
as well as the difference in the minimum values of the objective 
function as provided by NONMEM [5,6].

Reference base and final models

To develop a generic formulation (Test), adequate available 
PK information on the already approved brand name product 
(Reference) was supposed. This generally means a sufficient 
number of collected concentrations of active ingredient of the 
Reference product is accessible.  Since rich information on PK is 
a prerequisite in routine BE trials, this requirement in the design 

of model-based BE assessment was deemed reasonable and kept. 
Under this assumption, a base pop-PK model was developed 
with the available rich data of the Reference product. Then, the 
standard stepwise forward-inclusion and backward-exclusion were 
performed for the statistical significance of each covariate on 
the base model. Significant covariates were added to the pop-PK 
base model to obtain the final pop-PK model. This final pop-PK 
model was then validated through two internal methods: a visual 
predictive check (VPC) and a bootstrap analysis. 

As the second assumption, it was further assumed that the pop-
PK model of the Reference product was suitable for the Test 
formulations in terms of model structure such as the number 
of compartments, the mechanics of absorption and elimination 
processes. This inference is predicated upon the fact that Test 
formulations are comprised of the same active ingredient as 
the Reference product, and are designed to be similar in terms 
of absorption and exposure to meet the requirements of BE 
assessment [7]. Hence, after validation, the final pop-PK model 
of the Reference product was used to refit the dataset of the Test 
formulation to obtain its own pop-PK model. As discussed above, 
the putative pop-PK model structure for both the Reference and 
Test formulations is an appropriate hypothesis since we assumed 
both should share the same pharmacological features as a 
manufacturing requirement, with only very limited differences in 
terms of their parameter estimates [8]. Thereby, the cumbersome 
requirement in data collecting and model building procedure 
for the Test formulation can be simplified such that a reduced 
sampling of blood concentration of the Test formulation could be 
possible.

Bioequivalence verdict

The purpose of the current study was to investigate the potential 
of using a pop-PK model-based approach to reduce the number of 
blood samples of the Test and Reference formulations as required 
in a standard BE trial (Figure 1).

To do so, various reduced sampling scenarios were chosen from 
the original sampling scheme for the Test formulation. The 
corresponding pop-PK models for the Test formulation were 
obtained by refitting the final pop-PK model of the Reference 
product to these datasets of Test formulation of reduced sampling 
scenarios. The simulated concentration datasets following the 
original complete sampling scheme of these scenario specific pop-
PK models were compared with Reference product data using the 
standard BE testing procedure.

The determination of BE between a Test formulation and a 
Reference product is done through  statistical tests of balanced 
subjects, which compare their respective PK parameters of rate and 
extent of drug exposure such as C

max
, AUC

0-T
 and AUC

0‑∞
 [4]. These 

parameters are obtained by performing a non-compartmental 
analysis (NCA) on the full drug concentration-time data of each 
subject. In this instance, the pop-PK models of the Reference 
and Test formulations were used to simulate the full PK profiles 
for sampling concentrations of multiple virtual subjects used for 
different reduced sampling scenarios for the Test and Reference 
products. 

As recommended in the FDA Guidance [4], these estimated AUCs 
and C

max
 were first log-transformed, then their geometric least-

squared means (LSmeans) were calculated. The 90% confidence 
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interval (CI) for the exponential of the difference in LS
means

 
between the Test and Reference products (Test to Reference 
ratio of geometric LS

means
) were calculated for the log-transformed 

parameters of C
max

, AUC
0-T

 and AUC
0‑∞

, which were obtained from 
the NCA analysis. BE was declared if all CIs of these ratios were 
within the standard BE range of 80.00% to 125.00%.

Reduced sampling scenarios

The original sampling dataset available for the Test formulation 
included 20 sampling time points. From this complete sampling 
dataset, several sub-datasets with reduced number of sampling 
times were chosen to investigate reduced sampling scenarios. For 
all these sampling scenarios, several key time points were kept 
based on know dabigatran PK properties, such as the expected 
C

max
, the inter- and intra-subject variation around C

max
 and its 

elimination half-life. According to known data on dabigatran [2], 
it is expected to attain C

max
 within 2 hours with close to 50% of 

variability, and eliminated with a half-life of approximately 10 
hours. Consequently, the time points at hours 1, 2, 3 and 8 were 
relevant to these properties and were kept in all chosen sampling 
scenarios to adequately represent the drug PK profile. Moreover, 
the predose time point (at 0 hour) was kept for clinical reason to 
reflect the actual BE testing environment. Thus, sub-datasets with 
19, 15, 10, 8, 6, 5 and 4 of the original 20 samples were generated 
by removing time points from the complete sampling dataset. 
In the evaluation plan, multiple combinations of different time 
points were considered.  

As a technical measure for quality control, when fitting with the 
final pop-PK model of the Reference product to these sub-datasets 
of Test formulation, the minimum number of samples that can 
be judged for an adequate modeling of the PK profile of Test 
formulation was determined until the model could no longer 
converge (“minimization terminated” in NONMEM output). 
Using the pop-PK model obtained for each of these limited 
sampling scenarios, the PK profiles were simulated to produce a 
complete synthetic sampling scenario for the Test formulation. 
Based upon these simulated data, C

max
, AUC

0-T
 and AUC

0‑∞
 

parameters were calculated using NCA approach. A standard BE 

test was subsequently performed between the Test and Reference 
formulations using these PK parameters. For each of these limited 
sampling scenarios, the BE results were thereafter compared to the 
primary BE conclusions obtained based on the original sampling 
datasets of the Test and Reference formulations.  The scenario 
with the least number of samples while being able to maintain the 
BE conclusion was identified.

Additional metrics

In fact, when sampling numbers are reduced, there is a direct 
impact on the estimation of various PK parameters compared to 
that of the original complete samplings. To investigate how close 
the NCA results of the reduced sampling scenario are to those 
obtained from the original sampling dataset, which are in terms 
of the Test/Reference ratios of C

max
, AUC

0-T
 and AUC

0‑∞
 that are 

used in BE assessment, we calculate the absolute relative prediction 
error (E) as described below:

                  Equation (1)

where P indicates the Test/Reference ratio of the average values of 
the concerned NCA PK parameter.

Moreover, the median logarithm accuracy ratio (MdLQ) was also 
introduced to calculate for C

max
, AUC

0-T
 and AUC

0‑∞
 values in 

each reduced sampling scenario to provide a robust estimation of 
bias as well as an indication of the over or under prediction of the 
parameter’s value7:

                       Equation (2)

where Pi indicates the Test/Reference value of the concerned NCA 
PK parameters for each subject in the original complete data or 
simulated ones with the same characteristics.

Since the standard pop-PK modeling in NONMEM is based on 
algorithms of linear approximation, the convergence of a model for 
a given dataset is a crucial issue. This means, given a dataset, there 
is no absolute guarantee from NONMEM that successful estimates 
of the parameters will be obtained.  To measure the likelihood of a 
successful modeling for a specific sampling scheme, its convergence 
success rate was also computed. Using the bootstrap tool provided 
by Pearl Speaks NONMEM (PsN) [5], this success rate for a 
specific reduced sampling scheme was estimated by fitting the 
corresponding Reference pop-PK model to multiple datasets, each 
consisting of subjects resampled from the original dataset, and then 
summarizing across the model fits. For each reduced scenario, 500 
replicates were done, and the number of successful convergences 
was recorded. This metric presented in Equation 3 was performed 
and compared across all the reduced sampling models: 

     Equation (3)

RESULTS

Population pharmacokinetic model of the reference 
product

By performing the standard pop-PK modeling procedure on 

Figure 1: Model-based limited sampling procedure to evaluate the BE of 
drug formulations.
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the data of Reference product, plasma concentrations were 
best described by a two-compartment linear disposition model 
with first order elimination and absorption, and a lag time was 
identified as relevant for absorption. The base and final Reference 
model parameters estimates are shown in Appendix 1. The final 
parameters were estimated with good precision (relative standard 
error [RSE] ≤ 34.7%). The goodness of fit plots are presented in 
Appendix 2. 

In the final Reference model, sex was the only covariate that 
influenced bioavailability (F) and explained part of its variability, 
albeit slightly.

Validation of the reference and test population 
pharmacokinetic models

The validated final Reference model was used to fit the Test 
formulation data. The estimates of parameters were sensibly the 
same as shown in Table 1.

Using both the Test and Reference pop-PK models, NCA analyses 
were performed. Simulated Test/Reference ratio of PK parameters 
C

max
, AUC

0-T
 and AUC

0‑∞
 were obtained and compared to the 

standard NCA BE analysis originally performed (Table 2). It 
can be seen that all BE conclusions of the original dataset were 
maintained though there is a small change in values for the ratios 
of Test/Reference with pop-PK models.

These results confirmed that the Reference’s pop-PK model was 
indeed suitable for the Test formulation in terms of model structure 
such as the number of compartments, the mechanics of absorption 
and elimination processes, as was assumed at the beginning of this 
study.

Elaboration of the limited sampling scenarios

With this validated premise, reduced sampling scenarios carefully 
selected as explained in the Methodology. The investigated reduced 
sampling scenarios are presented in Table 3.

To evaluate the performance of each scenario, the Test/Reference 

ratios of NCA PK parameters used in BE assessments were 
calculated and were compared to that from the original complete 
samplings using the absolute relative prediction error E (Equation 
1) and median logarithm accuracy ratio MdLQ (Equation 2).

The results show that the original BE conclusions were maintained 
for every reduced sampling scenarios in terms of all concerned 
parameters in BE assessment (Appendix 4) when the number of 
samples was reduced.  In fact, it is natural to see an increase of the 
absolute relative prediction error E of the C

max
, AUC

0-T
 and AUC

0‑∞
 

values and MdLQ because of the information loss by the reduction 
of sampling numbers (Table 4).

To have a visual check of the simulated PK profiles, we simulated 
all scenarios and compared them to the profile of the complete 
sampling dataset (20 samples), and it can be observed that they 
are very close to the full data (Figure 2, panel A). However, it is 
noteworthy the highest variability between the complete sampling 
profile and the sparse sampling scenarios was situated around the 
C

max
 (Figure 2, panel B). This is a local difference that may influence 

the comparison of C
max

. Since our BE assessment is between the 
same reduced scenarios of Reference and Test, this difference was 
almost equally changed for both and thus reduced the influence.

Robustness of the reduced sampling scenarios

While reducing the number of samples as provided in Table 3, both 
the Reference and Test final models were able to converge, with 
the exception of the scenario with only four samples. This model 
displayed parameters estimates; however, the minimization process 
was terminated (convergence rate of 0%, as displayed in Table 5). 
Thus, the sampling scenario with five samples was selected as a 
conservative approach.

To identify the optimal combination of five samples, multiple 
scenarios were explored and compared with their absolute relative 
prediction errors, MdLQ, integrity of BE verdict and convergence 
success rates (Table 6).

Table 1: Parameter estimates of the Reference and Test population pharmacokinetic models.

Parameters1 Description Base model value (RSE) Final model value (RSE)

CL (L/H) Clearance 146 (10.30%) 183 (11.6%)

V
2
 (L)

Volume of distribution, central 
compartment

522 (34.30%) 677 (23.5%)

Ka (h-1) First-order absorption rate constant 0.426 (30.30%) 0.445 (21.8%)

V
3
 (L)

Volume of distribution, peripheral 
compartment

525 (16.90%) 686 (16.2%)

Q (L/h) Inter-compartmental clearance 61.2 (16.30%) 85.8 (14.5%)

Tlag (h-1) Absorption lag time 0.455 (1.80%) 0.456 (1.6%)

F Relative bioavailability 1* 1*

Sex Effect of sex on F - 0.545 (34.7)

IIV V
2
 (CV%)

IIV in the apparent volume 
of distribution of the central 

compartment
42.90 (26.90%) 44.3 (7.5%)

IIV F (CV%) IIV in the relative bioavailability 31.10 (17%) 30.6 (14.3%)

PRV (%) Proportional residual variability 0.458 (8.30%) 0.444 (7.5%)

ARV (%) Additive residual variability 0.001* 0.001*
1Model parameters selected based on NONMEM’s ADVAN4 TRANS4 routine
*Parameters fixed 
CV: Coefficient of Variation; IIV: Inter-Individual Variability; RSE: Residual Standard Error 
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The scenarios without any time point within the elimination phase 
(after 20 hours) were not able to converge successfully or maintain 
the BE verdict. The sampling scenario with the highest convergence 
success rate still preserving the conclusions was the combination of 
the following time points: 0, 1, 2, 8, 36, which included two time 
points close to the expected C

max
 (1 and 2 hours) as well as points 

in the first (8 hours) and the second elimination slope (36 hours).

DISCUSSION

As shown in the current study, the pop-PK modeling approach 

is a promising BE evaluation tool for developing new generic 
formulations of dabigatran, where BE clinical trials are often 
expensive and of low success rate. By using only a small number 
of samples, this model-based approach shows a great advantage 
compared to standard data-based evaluation method for BE trials, 
which can only be performed with a rich and complete sampling 
dataset. Not suggested to replace the current regulatory guidelines, 
this approach provides an economic and efficient way to help 
quickly pinpoint to-be-rejected or promising Test formulations as 
early as possible in generic drug development. It is certain that the 

BE Parameters Standard NCA Ratio (%) Model Simulated Ratio (%)

C
max

84.36 84.29

AUC
0-T

87.47 93.98

AUC
0‑∞

87.83 94.2

BE: Bioequivalence; NCA: Non-Compartmental Analysis

Table 2: Comparison of Test/Reference bioequivalence ratios.

Number of Samples Time Points Preserved (hours post administration)

20 (Original Sampling) 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60

19 0, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60

15 0, 0.5, 1, 1.25, 1.75, 2, 2.5, 3, 4, 8, 12, 16, 24, 36, 60

10 0, 1, 1.75, 2, 2.5, 3, 8, 16, 24, 36

8 0, 1, 1.75, 2, 3, 8, 16, 36

6 0, 1, 2, 3, 8, 36

5 0, 1, 2, 8, 36

4 0, 1, 3, 24

Table 3: Limited sampling scenarios.

Table 4: Comparison of BE results using the absolute relative prediction error and median log accuracy ratio.

Number of Samples PK Parameter E (%) (Test/Reference ratio) MdLQ (Test/Reference ratio)

19

C
max

0.02 0

AUC
0-T

11.51 0

AUC
0‑∞

11.77 0

15

C
max

2.7 -0.02

AUC
0-T

13.83 -0.01

AUC
0‑∞

14.4 -0.01

10

C
max

6.3 -0.01

AUC
0-T

9.3 0.01

AUC
0‑∞

14.83 0

8

C
max

3.95 -0.01

AUC
0-T

10.07 0

AUC
0‑∞

12.84 0

6

C
max

4.54 -0.02

AUC
0-T

17.49 -0.01

AUC
0‑∞

17.97 -0.01

5

C
max

4.54 -0.02

AUC
0-T

17.49 -0.01

AUC
0‑∞

17.97 -0.01

BE: Bioequivalence; CI: Confidence Interval; E: Absolute Relative Prediction Error; MdLQ: Median Logarithm Accuracy Ratio; PK: Pharmacokinetic
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Figure 2: Pharmacokinetic profiles of the simulated reduced sampling scenarios (solid lines) compared to the complete sampling (dotted line).

Table 5: Sampling scenarios and their respective convergence success rates.

Number of Samples 20 (Original Sampling) 19 15 10 8 6 5 4

Convergence Success Rate (%) 75 77 82 86 83 71 62 0

Table 6: Comparison of five samples scenarios sub-datasets.

Time Points 
Preserved

Cmax ratio E 
(%)

AUC0-T ratio 
E (%)

AUC0-∞ ratio 
E (%)

Cmax ratio 
MdLQ

AUC0-T ratio 
MdLQ

AUC0-∞ ratio 
MdLQ

BE Verdict 
Preserved

Convergence 
Success Rate (%)

0, 0.5, 1, 3, 4 - - - - - - - 0

0, 0.5, 4, 6, 8 - - - - - - - 0

0, 1, 2, 12, 24 3.45 3.69 3.79 -0.01 0.01 0.01 No 54

0, 1, 2, 3, 24 5.96 2.4 2.17 -0.02 -0.01 -0.01 Yes 52

0, 1, 2, 3, 8 - - - - - - - 0

0, 1, 2, 8, 16 1.52 1.94 22.55 0 -0.01 -0.09 No 94

0, 1, 2, 8, 36 3.49 4.83 5.32 -0.02 -0.01 -0.01 Yes 80

0, 1.5, 3, 12, 16 6.07 4.43 4.6 0.03 0.01 0.01 No 60

0, 2, 6, 10, 24 10.89 6.1 6.08 -0.05 0 0 No 72

0, 2, 6, 8, 24 0.25 8.13 7.99 0 0.01 0.01 No 90

BE: Bioequivalence; E: Absolute Relative Prediction Error; MdLQ: Median Logarithm Accuracy Ratio

later should further go through a more thorough standard BE test 
before entering market.

The pop-PK models of this study developed from the full dataset 
were successfully refitted for all selected reduced sampling 
scenarios with at least 5 samples. The BE testing demonstrated 
that BE conclusions could be maintained for all relevant PK 
parameters in these scenarios. As shown in Figure 2 and Appendix 
4, most of the variability was observed around C

max
 values, which 

in turn influenced the area under the curve measures obtained 
from the NCA analysis. Dabigatran is a highly variable drug, with 

intra-subject coefficient of variation above 50% for C
max

 [2]. The 
model also reflected this variability, with relatively high residual 
errors observed for both volumes of distribution (both V

2
 and 

V
3
) and first-order absorption rate constant (k

a
) values. Although 

the AUC values were affected by the variability of the C
max

 values 
as shown in Table 6 by considerable absolute relative prediction 
errors observed, these deviations were not substantial in the overall 
characterization of the PK profile. The only disparity was in the 
C

max
 region, however the results were not influenced in this study, 

as the impact was equal on both the Test and Reference pop-PK 
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models. Further investigation of BE conditions on this parameter 
is needed for the modeling approach. 

The realisation of this project demonstrated how accurately the 
Reference data could be used to build the frame of the Test pop-
PK model. Indeed, the parameters estimates of both the Reference 
and the Test models were similar. Thus, the assumption that 
future BE testing can be accomplished through pop-PK modeling 
of Reference data is correct. Therefore, generic industries could 
replicate a similar methodology for other highly variable drugs, 
without prior Test formulation data as a must. Moreover, as the 
generic development is a step-by-step process, the identified key 
sampling time points could be repeated for future dabigatran BE 
trials, thereby significantly reducing subsequent clinical costs. In 
our case, the preferred scenario predictably included sampling 
times corresponding to known critical PK elements, such as the 
C

max
 and elimination phase.

Therefore, as long as the Reference final pop-PK model could be 
obtained from prior study, public information or available data 
of Reference product, we may propose a new paradigm of model-
based approach for future studies of new Test formulations in their 
developing period following the procedure outlined in Figure 3.

Since the key sampling time points have been identified, a 
pharmaceutical company may explore multiple Test formulations 
simultaneously. A pilot BE study can be performed using the 
predetermined reduced sampling scenario strategy. The reduced 
sampling will drastically curtail the cost of the study by reducing 
the number of samples to be collected, stored and analysed. 
Furthermore, less samples implies a lower number of visits for the 
participant, thus further raising the benefits for both the subject 
and the generic industry (Appendix 3).

CONCLUSION

Our study shows how pop-PK modeling approach can significantly 
reduce the number of samples used in a BE assessment, and 

thus potentially lower the costs of future BE trials. However, its 
standardisation in application needs to be developed. First, to 
obtain an acceptable pop-PK model, the design of data collection 
must be different than the standard BE trials that was used here. In 
pop-PK modeling, some specialized software packages are developed 
for this purpose. The approval of these modeling-oriented design 
of protocol is to be discussed within the BE community. Moreover, 
the successful model refitting for a reduced scenario is not a 
deterministic event, but an event of probability. This is an important 
feature of NONMEM modeling, since the majority of general 
algorithms use the linear approximation approach, which does not 
guarantee a successful modeling convergence. Although a slight 
adjustment of the parameters estimates can result in a successful 
convergence, this methodology has yet to be standardized. 

Finally, specialized trained personnel possessing knowledge 
of modeling, simulation techniques and its software is also a 
constraint to implement this approach across the generic industry. 
Despite the challenges mentioned above, this work shows that the 
blood sampling burden in the BE testing process of highly variable 
drugs such as dabigatran could be reduced with the assistance 
of a pop-PK modeling approach. Implementing modeling and 
simulations in all branches of drug development, including generic 
testing, culminates in saved expenses and time for pharmaceutical 
companies, regardless of the expertise required to construct such 
models.
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Figure 3: Model-based limited sampling procedure to evaluate the BE of 
future test formulation.



APPENDIX 1: 

Table 7: The reference pop-PK model. 

Parameters1 Description 
Base model value 

(RSE) 
Final model value 

(RSE) 

CL (L/H) Clearance 146 (10.30%) 183 (11.6%) 

V2 (L) Volume of distribution, 
central compartment 

522 (34.30%) 677 (23.5%) 

Ka (h-1) 
First-order absorption 

rate constant 
0.426 (30.30%) 0.445 (21.8%) 

V3 (L) 
Volume of distribution, 
peripheral compartment 

525 (16.90%) 686 (16.2%) 

Q (L/h) 
Inter-compartmental 

clearance 
61.2 (16.30%) 85.8 (14.5%) 

Tlag (h-1) Absorption lag time 0.455 (1.80%) 0.456 (1.6%) 

F Relative bioavailability 1* 1* 

Sex Effect of sex on F - 0.545 (34.7) 

IIV V2 (CV%) 

IIV in the apparent 
volume of distribution 

of the central 
compartment 

42.90 (26.90%) 44.3 (7.5%) 

IIV F (CV%) 
IIV in the relative 

bioavailability 
31.10 (17%) 30.6 (14.3%) 

PRV (%) Proportional residual 
variability 

0.458 (8.30%) 0.444 (7.5%) 

ARV (%) Additive residual 
variability 

0.001* 0.001* 

1Model parameters selected based on NONMEM’s ADVAN4 TRANS4 routine 

*Parameters fixed  

CV: Coefficient of Variation; IIV: Inter-Individual Variability; RSE: Residual Standard Error  
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Figure 4: Goodness-of-fit plots for the final pop-PK model of the reference. 
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Figure 5: VPC of the reference final model. 

APPENDIX 4: 

Table 8: Comparison of bioequivalence results. 

Number of Samples Lower 90% CI Limit 
(%) 

Ratio 
Test/Reference (%) 

Upper 90% CI 
Limit (%) 

Bioequivalence 
Conclusion 

Cmax 

20 72.23 84.29 98.36 - 

19 72.25 84.31 98.38 Maintained 



15 74.51 86.57 100.59 Maintained 

10 62.63 78.98 99.6 Maintained 

8 66.18 80.96 99.04 Maintained 

6 76.11 88.12 102.03 Maintained 

5 74.85 87.23 101.67 Maintained 

AUC0-T 

20 82.92 93.98 106.51 - 

19 82.92 93.99 106.53 Maintained 

15 84.51 95.95 108.95 Maintained 

10 80.35 92.13 105.63 Maintained 

8 80.84 92.78 106.47 Maintained 

6 86.21 99.03 113.77 Maintained 

5 86.3 98.52 112.47 Maintained 

AUC0-∞ 

20 83.11 94.2 106.78 - 

19 83.11 94.21 106.79 Maintained 

15 84.92 96.43 109.51 Maintained 

10 82.04 96.79 114.18 Maintained 

8 81.67 95.11 110.76 Maintained 

6 86.18 99.44 114.74 Maintained 

5 86.41 99.21 113.9 Maintained 

CI: Confidence Interval 
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