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ABSTRACT

As an alternative to the conventional but expensive gold micro carriers regularly employed in micro-projectile 
bombardment method, this study had utilized, novel, promising but cheaper clay particles-MMT (montmorillonite) 
as micro-carriers for gene transfer. Gene expression with novel micro carriers was reported through the universally 
employed GUS expression system at both transient and stable expression levels in comparison to the gold and 
tungsten. 

Results suggest that GUS expression levels are higher with MMT than tungsten carriers but lower to gold carriers. 
It is interesting to note that the GUS expression zones are larger (>1 mm) with MMT carriers in comparison to 
tungsten (0.6 mm) and gold (0.4 mm). Molecular assays on the transformed cells suggest proper gene delivery by 
MMT carriers. The results suggest that novel micro carriers can be a viable alternative to gold for gene transfer with 
high promise in minimizing the costs without compromising the transformation efficiency.
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INTRODUCTION

The biolistic or micro-projectile bombardment method, 
introduced in the late 1980’s (Sanford, 1988), was an efficient 
method of plant transformation. This method is more versatile and 
allows transformation of plants and other organisms that are not 
amenable through other modes of gene transfer like Agrobacterium 
mediated transformation [1]. The Agrobacterium-mediated 
transformation, the other popular method, cannot be applied to 
all plant species/ genotypes due to poor infectivity or other related 
physiological parameters. Biolistic system has become the method 
of choice because it alleviates the need for preparing protoplasts, 
reduces the time needed to regenerate transgenic plants, and 
results in transgenic plants with higher fertility [2]. Employing 
this approach, pure linear transgene sequences can be transferred 
without any vector backbone interference. To achieve higher levels 
of transformation efficiency, biolistic method is preferable as large 
number of cells can be treated and transformed at a single time 
[3]. In addition, particle-mediated gene delivery is the only method 
reported so far to introduce foreign genes into cell organelles such 
as chloroplasts [4]. 

The first generation of this technique for gene transfer into plant 
cells was developed by plant virologist [5]. Particle bombardment 
has been widely exploited to produce tissues and plants expressing 
traits with agronomic value and has a major impact on basic 
plant science research and biotechnology [6-9]. Transgenic plants 

generated by this method have been reported for monocotyledonous 
species such as Kentucky bluegrass [10], jute [11], rice [12,13] and 
dicotyledonous species including moth bean [14], cowpea [15], 
sunflower [16] soybean [17] and wheat [18]. 

Application of biolistic method has demonstrated transient gene 
expression in plant studies by production of genetically transformed 
plants and tissues [7,19-22]. The universality of application 
through cell types, size, shape, presence or absence of cell wall 
and direct introduction of biological material into the cell has 
very high delivery efficiency to enhance the transformation rates 
[23]. This physical method of gene transfer is very often exclusively 
employed for DNA delivery in transient gene expression studies 
like analysis of tissue specific promoters [24] or to deliver DNA 
molecules carrying a marker gene and a chemical that is needed 
for transgene expression into plant cells simultaneously and release 
the encapsulated chemical in a controlled manner to trigger the 
expression of co-delivered transgenes in the cell [24]. Biolistic 
method is highly adaptable and may be used in other fields as 
well. For instance, the use of biolistic as a method to administer 
vaccines to humans is currently in preclinical trials [25]. The use 
of this technology for human vaccination is not unreasonable, as 
it is already being used to inoculate plant tissue with viruses for 
study [26].

Despite of these advantages, biolistic procedure is tedious, 
cumbersome and expensive. Moreover, introduced DNA 
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will be expressed in the plant cell only if it is integrated into 
plant chromosomal DNA [27]. Hence integration of gene into 
chromosomal DNA is a chance factor and this is one of the 
reasons why the transformation efficiencies of biolistic method 
are comparatively lower than that of Agrobacterium mediated 
transformation, but the transient expression levels are always 
higher than that of stable expression as evidenced by GUS 
expression studies [28], which can be explained by the stabilization 
process during various steps of selection after bombardment 
till regeneration. These drawbacks can be avoided by following 
well established tissue culture protocols and stringent selection 
methods to come out with positive transgenic plants. In addition 
to the utilization of effective protocols and selection strategies, 
improvement of biolistic procedure is quite essential for effective 
gene transfer. Micro-carriers play an important role in gene delivery 
to the explants. Depending upon genotype, size of micro-carrier is 
also an important factor that governs the transformation efficiency 
of monocots [29]. A very small micro-carrier will have a lower 
penetration force and a bigger one will increase tissue/cell damage 
[30]. 

Several researchers used different types of micro-carriers for gene 
delivery viz. gold, tungsten, platinum, glass etc. Platinum and gold 
are expensive, while tungsten and glass have limitations in their 
usage. Gold particles are also preferred due to their high density, 
low toxicity and lack of chemical reactivity [31-33]. Moreover, 
gold particles, which are homogenous in size, biologically inert, 
non-toxic and do not degrade DNA bonds, are often preferred 
for particle bombardment. Tungsten particles are highly 
heterogeneous in size and shape, toxic, affects growth of calli and 
regeneration, can also acidify solutions and catalyse plasmid DNA 
degradation and moreover they are non-biocompatible [34-36]. 
There is evidence that tungsten toxicity can reduce the recovery 
of stable transformants in some plant species [37]. Low density, 
biocompatibility and particle impaction are important parameters 
to be considered in this area of research because cell damage may 
occur through particle impaction [38,21]. Hence there is search for 
alternate micro-carriers. MMT carriers have prominent advantage 
as they have low density, and particle impaction. Moreover clay 
particles are more biocompatible, making them a good carrier 
material for gene transfer. In this study, the potential of MMT 
as a micro carrier vis-a-vis gold and tungsten was reported. The 
assumption that clay minerals played an important role in the 
prebiotic formations of biomolecules that are basic to life, has 
paved the way for a series of studies on the adsorption of various 
organic molecules, including nucleic acids [39-41], DNA molecules 
have a persistent ability to transform competent cells when bound 
to clay minerals and other particles [42-44]. Much research has 
used 2:1 type layer phyllosilicates (e.g., montmorillonite) as 
adsorptive particles to understand DNA adsorption by soils. The 
phosphate group at the end of the DNA molecule binds directly 

to the OH groups present on the edges of phyllosilicates such as 
montmorillonite (Figure 1) [45,46].

DNA retention can occur on negatively charged phyllosilicates 
through the formation of bridges by cations. Ca2+ binds to the SiOH 
groups of minerals such as silica and depresses the negative charges 
on the mineral surfaces, resulting in increased DNA adsorption 
[47]. This can be co-related to one of the important steps during 
preparation of micro-carriers where Cacl

2
, when added, enable 

DNA to bind onto the micro-carriers. As it is evident that clay 
particles like montmorillonite could adsorb DNA, the present 
study reports an assessment of MMT with gold and tungsten as 
controls for delivery of DNA in biolistic mode of transformation.

MATERIALS AND METHODS 

Genotypes

The rice genotypes selected for the study were three elite indica rice 
cultivars Swarna, Gayatri and Samba Mahsuri. Swarna, a widely 
grown indica rice variety in eleven states of India, is highly popular 
with a yield potential of 8.0 t/ha [48]. It is also being extensively 
grown in Bangladesh and Myanmar suggesting its wide adaptability 
[49]. Gayatri, a high yielding cultivar released from NRRI, is widely 
grown in shallow and medium low land ecology in Eastern India.  
Samba Mahsuri (BPT 5204) is one of the India’s most popular and 
highly prized rice varieties because of its high yield 4.5 to 5.0 t/ha 
and excellent cooking quality [50].

Callus induction and proliferation

Mature dehusked grains of the three cultivars were washed with 
sterile distilled water and were surface sterilized successively with, 
70% ethanol for two min, sodium hypochlorite (contains 4% (v/v) 
active chlorine) for 15 min and with 0.1% (w/v) aqueous mercuric 
chloride solution for 5 min with intermittent repeated washings 
with sterile distilled water [51]. The kernels were inoculated in 
culture tubes containing semisolid callus induction (CI) medium 
[MS medium supplemented with 2, 4-dichlorophenoxy acetic acid 
(2, 4-D) (2 mgl-1), maltose (30 gl-1) and solidified with gel-rite (2.6 
gl-1)] [52] and the cultures were incubated in dark at 25 ± 1ºC for 
three weeks. The scutellum-derived calli were excised and sub 
cultured on the same CI medium for another four days and clusters 
of highly embryogenic compact calli (3-5 mm in diameter) were 
selected and arranged (80-100 no/dish) side up in the center of 
petridishes (90 X 15 mm) containing 20 ml of semi-solid modified 
MS medium (MS salts and vitamins, maltose (30 gl-1) L-proline (500 
mg l-1), casein hydrolysate (300 mg l-1) and 2,4-D (2.0 mgl-1), Myo 
Inositol (100 mgl-1), Mannitol (36.4 gl-1), Sorbitol, (20 g l-1)  Gelrite, 
(2.6 g l-1) pH 5.8) ready for bombardment.

Plasmid preparation

A single colony of E.coli strain DH5α/pCAMBIA1301 carrying a 
GUS reporter gene and hygromycin selectable marker gene, under 
control of 35S promoter was picked from a freshly streaked selection 
plate and inoculated into 5 ml of LB medium [53] supplemented 
with the appropriate selective antibiotic to initiate a starter culture 
(Figure 2). The starter culture was incubated for approximately 8 h 
at 37°C with vigorous shaking (~220rpm). The starter culture was 
diluted (100 µl of starter culture was added to 100 ml LB medium 
supplemented with selective antibiotics) and the cells are grown at 
37°C for 12-16 h with vigorous shaking (~ 200 rpm). The bacterial 

Figure 1: Conceptual figure of DNA adsorption by Phyllosilicates (MMT).  
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cells were harvested by centrifugation at 6000 g for 15 min at 4°C. 
Further plasmid extraction steps were followed using Quiagen 
Plasmid extraction kit as per manufacturer’s instructions. 

Transformation 

Micro-carriers were prepared as per standard protocol using gold 
(1 µ), tungsten (>1 µ) and MMT (<1 µ) particles.  Embryogenic 
calli were bombarded at 1100 psi helium pressure with the 
transformation vector pCAMBIA1301 (contaning both GUS 
and Hpt genes) coated on three different micro carriers in three 
individual experiments using the particle gun PDC-1000/He 
system (BIORAD) following manufacturer’s instructions.

Selection

After the bombardment, the calli were plated on media 
supplemented hygromycin (30 mgl-1 for Swarna and 40 mgl-1 for 
Gayatri and Samba Mahsuri) and the selection was continued for 
four selection cycles and GUS  expression was studied in the first 
(transient) and last (stable) selection cycles. 

DNA Extraction and PCR assay

Actively growing calli on the selection media were selected and from 
a half portion of the callus, DNA was extracted following the mini 
prep method [54] while, GUS histochemical assay was conducted 
on the second half of the callus as per [55].  The presence of GUS 
gene was examined by polymerase chain reaction (PCR) with the 
help of specific primers to give an amplification product of ~1.2-kb 
size.  The plasmid DNA (pCAMBIA1301) was used as the positive 
control and non-transformed callus DNA is taken as negative 
control.  The PCR mix contained 1 µl of plant DNA (20 ng), 0.8 

µl of 2.5 mM dNTPs (Fermentas), 1.0 µl of 10X PCR buffer (10 
mM Tris, pH 8.4, 50 mM KCl, and 15 mM MgCl

2
; Sigma), 0.2 µl 

of Taq DNA Polymerase (5 U/µl Sigma), 1 µl each of both forward 
and reverse primers (5 pico moles/µl Sigma) and 5 µl of autoclaved 
sterile distilled water in a total volume of 10 µl. The amplification 
was done in a thermal cycler (Eppendorf Vapo protect) under 
following conditions: An initial denaturation of template DNA 
at 94°C for 2 min followed by 36 cycles of amplification i.e., 30 
sec denaturation at 94°C, 30 sec primer annealing at 55°C, 1 min 
primer extension at 72°C and 10 min final primer extension at 
72°C. Isolated DNA was also examined for the presence of Hpt 
gene which was used as the antibiotic selectable marker as per the 
conditions similar to that of GUS gene amplification mentioned 
above but with the different PCR program as per the following 
conditions: an initial denaturation of template DNA at 94°C for 5 
min followed by 40 cycles of amplification i.e., 1 min denaturation 
at 94°C, 1 min primer annealing at 58°C, 1 min primer extension 
at 72°C and 5 min final primer extension at 72°C. PCR products 
were separated in 1.2% agarose gel (in 1X TBE electrophoresis 
buffer) containing 0.5 g/ml ethidium bromide. Separated PCR 
products were visualized under UV light and photographed by gel 
documentation system (Alpha innotech) to examine the size of the 
product. 

GUS assay

The GUS gene expression analysis was performed on calli within 2-4 
days after bombardment before subjecting the tissues for antibiotic 
selection [56] and also at the end of the 4th selection cycle.  For the 
histo chemical detection, segments (5 mm in length) of rice tissues 
were incubated in a reaction mixture of 50 mM phosphate buffer 
(pH 6.8), 1% Triton X-100, 20% methanol and 1 mM 5-bromo-4-

Figure 2: GUS expression recorded with three different micro carriers. 
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chloro-3-indolyl-β-D-gluronide (X gluc). The reaction was initiated 
under a mild vacuum for few min and carried out overnight at 
37°C. The frequency of transient transformation is expressed as 
the ratio between the number of calli showing GUS expression and 
the total number of calli kept for staining. For qualitative assay, 
the area of GUS expression and intensity of the blue colour at 
each spot were given due weightage so as to give a holistic picture 
of the effects of the various micro-carriers used.  Through visual 
observations, distinction could be made between small spots (<0.5 
mm in diameter) representing one or few GUS expressing cells, 
and large spots (>1 mm in diameter), representing a complete cell 
cluster expressing the GUS gene [57].

RESULTS AND DISCUSSION

The results suggest that gold carriers were ranked first both in 
transient (8.75%) and stable (20%) assays and MMT, was ranked 
2nd in  transient (7.84%) but 3rd in stable assays (16.6%) while 
tungsten was  ranked last  in transient expression (7.36%) but 2nd 
(20%) in stable expression assays (Tables 1 and 2). From the results 
it is evident that gene transfer is feasible with MMT carriers at 
reasonable frequency in all the genotypes tested.

When the GUS expression zones were measured, the area 
(diameter) of the zones varied for different types of micro-carriers. 
It is interesting to note that the diameter of the zone with MMT 
carriers is more (>1 mm) compared to that of  both tungsten (0.6 
mm) and gold (0.4 mm) carriers though for the number of GUS 
expression zones category, gold is ranked first followed by tungsten 
and  MMT (Table 3 and Figure 3). Though gold carriers can induce 
higher number of expression zones, it is interesting to note that 
area of GUS expression zone is large in the case of MMT carriers 
followed by tungsten and gold.  

The results on the amplification of GUS and Hpt gene sequences 
through PCR assays suggest that the presence of both GUS and 
Hpt genes was detected with all the three micro-carriers with 

varying frequencies. While 12 positives were recorded with gold, 
9 positives were recorded with tungsten and 4 positives were 
recorded with MMT for both the genes where as amplification was 
not observed in the wild types (Figure 4a-c). The stable integration 
of the GUS gene was corroborated by molecular analysis and the 
same is case with Hpt gene. It is clear from the results that with all 
the three micro-carriers, stable transformation is possible. 

However, one of the important factors to be taken into 
consideration is the presence of regions with dark brownish colour 
in the calli in case of both tungsten and MMT. However, these 
dark regions are in higher frequency in tungsten than in MMT 
and in case of tungsten, the origin of these regions is attributed 
to toxicity of the tungsten to the cells [37]. In addition, from this 
study, it is evident that genotypes vary in the transformation rates 
and influenced by the type of carriers employed. These results are 
in accordance with our earlier report on the variation in genotypes 
for transformation rates [28]. 

As in the other transformation experiments, the transient gene 
expression rates are more in this study also. Since the transient 
gene expression is temporary and it occurs almost immediately 
after gene transfer, its rate was higher but this require stable 
integration of the transgene. Transient gene expression is a rapid 
and useful method for analysing the function of gene of interest 
[58] and the transient expression frequency provides the most 
convenient measure of the frequency of introduction of DNA 
into explants during the optimization of bombardment conditions 
[59]. In contrast, although the stable expression occurs with the 
lower frequency, the expression was maintained for long term as 
the DNA gets incorporated into the chromosome of the recipient 
cell [60,61]. 

Introduction and expression of an exogenous gene into cells does 
not always involve stable integration of the gene into the genome 
of the recipient cell. This may be because of the tissue culture 
conditions and the regeneration capability of the genotypes used 

Variety Particle No. of calli tested No of GUS positive calli
Transformation
Efficiency (%)

Rank

Swarna Gold 190 26 13.68 1

Gayatri Gold 80 7 8.75 2

Swarna MMT 102 8 7.84 3

Samba Mahsuri Tungsten 190 14 7.36 4

Table 1: Transient GUS expression observed with three different micro carriers. 

Variety Particle No. of calli tested No of GUS positive calli
Transformation
Efficiency (%)

Rank

Gayatri Gold 5 1 20.0 1

Samba Mahsuri Tungsten 20 4 20.0 2

Swarna MMT 18 3 16.6 3

Swarna Gold 18 2 11.1 4

Table 2: Stable GUS expression observed with three different micro carriers. 

Type of Micro-carrier
No of GUS expression zones per callus

Area of GUS expression (dia)
Swarna Gayatri Samba mahsuri

Gold(Au) 28 25 26 0.4 mm

Tungsten(Tn) 6 12 4 0.6 mm

Montmorillonite (MMT) 2 1 1 1.0 mm

Table 3: GUS expression zones (in dia) observed with the three micro carriers. 
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for transformation. It is evident in our previous experiments that 
the cultivars with good callus induction abilities may not have 
good regeneration potential and vice versa [28] and also due to 
stabilization in gene integration process. Frequently, plasmid DNA 
may be introduced into host cells and may express in a transient 
fashion. This activity declines over time and eventually disappears. 
Even though measuring levels of such transient activity may be useful 
in specific cases, when it comes to the creation of stable transgenic 
phenotypes, only transformation events leading to integration of 
the foreign gene into the genome of the host cell are useful [62-65].

Though more experiments are needed to standardize the 
protocols and to improve its efficiency in gene delivery, the 
present results suggest that MMT can be viewed as a viable 
alternative to the highly popular but expensive gold micro-
carriers [66,67]. Since MMT constitutes only clay particles, major 
toxicity concerns associated with the metal micro carriers may 
not be issue with MMT and being inexpensive, the experimental 
costs to develop new Transgenics can be minimized and more 
number of Transgenics can be generated.   

a: Gold micro carriers 

 

b: Tungsten micro carriers 

 
 

c: MMT micro carriers 

 

L-0.1kb ladder, P- positive control (plasmid pCAMBIA1301),  
N-Negative control (wild type), Nos (1-12) (13-21) (22-25) – samples 

Figure 3: PCR amplification of GUS gene with three different micro carriers. 

 
L-1kb ladder, P-positive control (plasmid pCAMBIA1301), 

N-Negative control (wild type) Nos (1-25) – samples 

Figure 4: PCR amplification of Hpt gene. 
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