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Early Studies
At the end of my visit to the Johnson Foundation at the University 

of Pennsylvania as an assistant to Professor Britton Chance in 1959, 
I discovered the uptake of Ca2+ by energized rat liver mitochondria 
(RLM), associated with drop of the medium pH. It was my task to use 
a sensitive pH meter to measure the synthesis of ATP in mitochondria 
and the ATPase activity. The pH drop in Ca2+ activated mitochondrial 
ATPase was larger than due to the ATP hydrolyzed! When a threshold 
of uptake was reached, mitochondria underwent swelling, the Ca2+ 
was released and medium pH was raised back. Sr2+ was taken up in 
the same way but was not released except by addition of an uncoupler. 
This was reported at a meeting of Finska Kemistsamfundet (Chemical 
Society of Finland) on my return in September 1959 [1], and was 
the subject of my doctoral dissertation a few years later, in 1963 [2]. 
This active uptake of Ca2+ was also reported at a Nordic Biochemical 
Meeting in 1962 [3], and by Chance in 1963 [4]. In the thesis was 
also shown that in energized RLM Mn2+ also caused similar though 
slower pH changes indicating its uptake. Before 1963 the Ca2+ uptake 
in RLM was described by DeLuca and Engström [5] and in kidney 
mitochondria by Vasington and Murphy [6]. A more complete history 
of early mitochondrial Ca2+ uptake studies can be found in [7]. In 
this publication is also mentioned the stimulation of swelling by Ca2+ 
uptake [8] and the formation of free fatty acids [9]. Sr2+ uptake had also 
been detected by Mraz [10]. Historically it is of interest that binding of 
Ca2+ by mitochondria (heart) was first observed by Slater and Cleland 
in 1953 [11], but it was not clear that it was an energized one. That 

other effects [15]. Low-affinity binding sites at the outer surface of 
the mitochondrial inner membrane [16] correspond to 20 nmol/mg 
protein [17]. They are mainly phospholipids [18,19], that may take 
part in the Ca2+ transport, as has been shown for cardiolipin that may 
act as a Ca2+ carrier [20]. Models of active transport and binding of 
cations in mitochondria has been treated in detail in [21,22]. Reviews 
of mitochondrial calcium handling have been published by Mela 1977 
[23], and with methodological aspects more recently [24].

The association between mitochondrial Ca2+ uptake and medium 
drop in pH could be due to a Ca2+/H+ antiport in the inner membrane. 
Indeed, we found an apparent Ca2+/2H+ stoichiometry during Ca2+ 
uptake, while in the efflux of Ca2+ the stoichiometry was Ca2+/H+, though 
charge stoichiometry was 1:1 when efflux was driven by valinomycin 
mediated influx of K+ [24]. However, about this time Mitchell presented 
the chemiosmotic hypothesis according to which electron transport 
in the respiratory chain is associated with efflux of protons from the 
matrix [26], causing formation of a membrane potential (∆Ψ), negative 
on the matrix side. That was driving protons back into matrix. A more 
detailed description is given in a book by Mitchell [27]. This ∆Ψ drives 
uptake of Ca2+ and other divalent cations, which thereby consume the 
∆Ψ, causing medium pH to stay lower, since H+ was not driven back 
into matrix. Ca2+
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Abstract
This is a review of the mitochondrial calcium uniporter (MCU), beginning with the early studies where I was involved. 

I found it at the end of a visit in the academic year 1958-59 to Professor Britton Chance in Philadelphia, and continued 
the studies back home in Helsinki, and had my dissertation on it in 1963. The uptake of calcium cations was associated 
with a drop in pH of the medium. The mechanism of that was not clear, could have been due to an exchange. However, 
after Peter Mitchell discovered the chemiosmotic hypothesis, it became evident that Ca2+ uptake was driven by the 
membrane potential formed by electron transport in the respiratory chain. Normally the protons would be taken back to 
the matrix by that membrane potential, but since that was consumed by the Ca2+ uptake, the H+ cycling was prevented. 
After an uptake of Ca2+ over a certain level, a permeability transition pore is opened in the inner membrane and the 
mitochondria underwent a swelling. The composition of the MCU is still not fully established; it has several components, 
and binds many other polypeptides and substances.

 Ca2+ also was active at low concentrations (0.5-1 μM) to activate ATP synthesis and hydrolysis, and respiration 
rates, while 5 μM could be inhibitory, Also matrix dehydrogenases could be activated by Ca2+. High [Ca2+] also is 
important in cell death, apoptosis.
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Many inhibitors of MCU are known most used are ruthenium compounds, ruthenium red and Ru360, and 
lanthanides, those most close in size to Ca2+ being most potent. Many other bivalent cations are also transported by the 
MCU, such as Sr2+, Ba2+, Mn2+, Cd2+, Zn2+ and even Pb2+.

Mechanisms of Ca2+ uptake

 uptake thus is not by an antiport but by an uniport 

question was studied later when it was first reported that mitochondria 
[12,13] bound Ca2+ in a metabolism-independent way to both high 
and low affinity sites. It was however shown [14] that the apparent 
high-affinity sites were due to not completely eliminated, energy 
dependent uptake of Ca2+. One binding site was cytochrome oxidase 
in the respiratory chain, causing a conformational change and having 
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mechanism, which is why the transporter is called the mitochondrial 
calcium uniporter (MCU used as an abbreviation by many). Early it 
was also found, that in the presence of ADP, ATP and Pi, large amounts 
of Ca2+ were accumulated in RLM together with ATP and Pi, also Sr2+ 
but not Mn2+. The uptake of Ca2+ under these extreme conditions could 
have been as a complex with ATP [28]. Ca2+ formed precipitate with 
Pi, stabilized with ATP and ADP. An increased Ca2+ uptake may also 
result from inhibition of Ca2+ efflux. Thus Sr2+ was found to inhibit Ca2+ 
efflux by the Ca2+-Na+ exchange in heart mitochondria and also the 
Ca2+ efflux pathway in RLM, thereby keeping the set point at a lower 
external level [29]. Sr2+ does not readily undergo efflux after being taken 
up by MCU [30].

Ca2+ uptake by the Mitochondrial Uniporter Inhibitors

Uptake of other Cations by MCU
Already in [2] it was found that also Sr2+, Ba2+ and Mn2+ were 

transported by MCU. This has been verified in [48,49,22]. Thus, a 
competitive inhibition of Ca2+ uptake could be expected. This was 
found for Sr2+ [50,51]. The effect of Sr2+ when added before Ca2+ was 
opposite, the release of was stimulated [51]. Heavy metal cations also 
may be accumulated via MCU. Thus Cd2+ was found to be accumulated 
by renal [52,53] and liver mitochondria [53]. Its uptake was sensitive 
to ruthenium red [52]. In vitro Cd2+ inhibited Ca2+ uptake, but not in 
vivo, probably it was then bound to SH-groups and did not interfere 
with Ca2+ handling [52]. Interaction between Cd2+ and cells is reviewed 
in [54]. When Pb2+ is administrated in vivo, mitochondria seem to be a 
target [55]. Pb2+ and Zn2+ also inhibit Ca2+ uptake [56]. The transport of 
Zn2+ by MCU was confirmed, it being inhibited by ruthenium red, but 
stimulated by Ca2+ [57], just like Ca2+ uptake [58,59].

More Recent Studies

Another variation of [Ca2+] could be stimulation or inhibition of 
influx/efflux rates. Thus RLM respiring on succinate were found to 
be able to temporarily lower the steady state of external [Ca2+] after 
addition of an external pulse of Ca2+ [64]. The rate of efflux was not 
changed by inhibition of the MCU by ruthenium red, or by following 
the efflux rate after preloading the mitochondrial Ca2+ with 45Ca. Nor 
was it changed by cyclosporine A or diltiazem to inhibit Ca2+ efflux 
through the permeability transition pore or Ca2+ exchange on the Ca2+/
nNa+ antiporter by which accumulated Ca2+ may be returned to the 
cytosol [65]. The efflux rate was found to be inhibited by certain organic 
molecules, thus the free radical scavenger butylhydroxytoluene and a 
related substance without such activity did both inhibit the opening 
of that pore [66]. The pore has both an internal and external Me2+ 
binding site, when the internal site is occupied by Ca2+, the opening 
is promoted, while it is decreased when Ca2+ is bound to the external 
site [67]. Binding of Sr2+, Mn2+ to the inner site have an inhibitory 
effect on the opening, while binding of Ca2+ to it is decreased also by 
phospholipase A2 inhibitors nupercaine and trifluorperazine that are 
competitive to Ca2+ binding to the inner binding site [67]. However, 
in certain cells under special conditions with accumulation of large 
amounts of Ca2+ in mitochondria, and inhibition of its release by the 
Ca2+/nNa+ antiporter, Ca2+ may be released through the MCU [68]. 
Of interest is also the kinetics of the MCU described in a mathematical 
model in [69]. It is thermodynamically balanced and is an improvement 
of earlier models.

In mitochondrial DNA polymorphism there are certain 
combinations that increase the vulnerability to certain diseases such 
as Alzheimer’s and Parkinson’s [70], other combinations may promote 
longevity [71]. Inhibition of MCU by Ru360 may have a protective 
effect against irreversible injury in postischemic rat heart [72]. Human 
genes for MCU was found and called MICU1 [73]. Genomics has been 
characterized both for DNA and RNA, and a point mutation found 
that confers resistance of MCU against Ru360 [74].

Purification of the MCU

The interest in mitochondrial Ca2+ uptake declined but was 
revived in the nineties, when cell death through apoptosis, in which 
Ca2+ handling by mitochondria was found to play a role. Cell death in 
inflammation-associated necrosis was common, but regulation of cell 
numbers in tissues was little known, factors affecting cell proliferation 
were rather well known, but not the regulation of cell death. An 
early review discussing this is [42], and a recent one [43]. The former 
mentions mitochondrial Ca2+ handling as one of the important factors, 
the other describes the important apoptosis-inducing factor (AIF). An 
important factor in cell death is the Ca2+ induced increased formation 
of reactive oxygen species (ROS) in mitochondria, leading to opening 
of the permeability transition pore, cytochrome c release and apoptosis 
[44-47].

Lanthanides inhibit the MCU [30] by binding with high affinity 
to its Ca2+-binding site, those being most effective whose ionic radii 
were closest to that of Ca2+ [31,32]. Ruthenium red, a hexavalent 
polysaccharide stain is binding noncompetitive with a Ki near 30 nM 
[33-35]. Another related inhibitor is Ru360 [36]. Mitochondrial Ca2+ 
transport in sucrose medium shows hyperbolic kinetics (rate/[Ca2+]) 
in sucrose medium, but in the presence of the competitive inhibitors of 
Ca2+ binding, Mg2+ and K+, the kinetics become sigmoidal [37,38]. That 
means that at low [Ca2+] a few μM, the uptake rate is low, and increases 
then, being half-maximal at 55-70 μM [38]. This is the case in RLM, 
in tissues like muscles, neurons and glands, where Ca2+ activates the 
cells, and may be stored in sarcoplasmic or enteroplastic reticulum, the 
[Ca2+] may be much higher, when it is released to the cytoplasm. Ca2+ 
retention is enhanced and its release prevented by agents that stabilize 
the mitochondrial inner membrane, like Mg2+ [2] and oligoamines like 
spermine [39-41].

The increasing number of publication is due to found influences 
of cellular and mitochondrial Ca2+ on a number of functions. One is 
the activity ATP synthase/mitochondrial ATPase. Thus it was found 
that addition of 0.5 μM Ca2+ resulted in maximal rates of synthesis and 
hydrolysis of ATP in RLM inner membrane, while decrease of [Ca2+] to 
0.1 μM or its increase to 5 μM inhibited these [60]. This correlated with 
the phosphorylation level of a 3.5 kD peptide in the inner membrane, 
which was found to be subunit c of F0F1ATPase [61,62]. In brain and 
heart mitochondria, but not in RLM, an example of effects of [Ca2+] 
on dehydrogenase activities and thereby on ATP synthase activities via 
effects on mitochondrial α-ketoglutarate concentration [63].

The group of Galina Mironova at the Institute of Biological Physics, 
Academy of Sciences, Pushchino, Moscow Region, has been active in 
isolation and characterization of the MCU, and I have for many years 
cooperated with the group. A glycoprotein of 40 kDa glycoprotein and 
a 2 kDa component were isolated from beef heart homogenate and 
mitochondria and found to increase substantially the Ca2+ conductance, 
which was inhibited by ruthenium red, indicating that it was MCU [75]. 
I made an antibody against the glycoprotein and found it to inhibit the 
MCU [76], I also found in an Ouchterlony test (diffusion in agarose 
gel of antigen and antibody applied in different places) formation of 
one single line of precipitate) that there was only one specific protein 
antigen. The purified component was reconstituted into planar lipid 
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Yeast MCU
Yeast species also have mitochondria that also seem to have a MCU 

driven by the ΔΨ [80], but it differs from the animal system in not being 
inhibited by ruthenium red, but stimulated [81].

Palmitate/Ca2+ Channels
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