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Following the initial studies by Hunter and Haworth on the “Ca2+-
induced membrane transition” [1-3], a plethora of studies addressing 
the pharmacology, bioenergetics and structure of the Mitochondrial 
Permeability Transition (MPT) pore have allowed us to slowly decipher 
the pathophysiological relevance of this mitochondrial entity [4-6]. 
Although most of the MPT pore regulatory aspects were envisaged 
a few years after its discovery, it has taken decades and different 
approaches to reveal some of its structural aspects (see below).

Pharmacological inhibition of the MPT pore with Adenine 
Nucleotide Translocator (ANT) and Cyclophilin D (CypD) ligands led 
to the long lasting and widespread notion that the MPT pore was formed 
by the ANT acting as a channel component and CypD as a regulatory 
factor. In this model, ADP, ATP and the ANT ligand bonkrekate 
would inhibit pore opening by directly binding to ANT whereas CypD 
inhibition with Cyclosporin A would inhibit a conformational change 
mediated by CypD on a proline due to its peptidyl-prolylcis-trans 
isomerase activity. Although this hypothesis was widely accepted and 
a plethora of evidence indeed pointed towards a central role of this 
mitochondrial translocator as a MPT pore constituent [5], experiments 
with mouse lacking the two major isoforms of ANT demonstrated its 
dispensability for MPT to ensue [7]. It is important to mention that the 
pore detected in these knockout animals was insensitive to ANT ligands 
and threefold more resistant to Ca2+, whereas CsA further inhibited its 
opening. On the other hand, mitochondria from CypD knockout mice 
were also resistant to Ca2+ (twofold), oxidative stress and desensitized 
to CsA [8-10]. Overall, these results strongly suggested that ANT and 
CypD were MPT pore regulatory factors.

In a recent set of studies, two different groups addressed the 
possibility that ATP-synthase may play an important role on the 
MPT pore, possibly being the pore itself [11,12]. This finding per se 
would put an end to a long-lasting search and consequently redirect 
research efforts to elucidate pore formation mechanisms and potential 
molecular-selective therapies aiming to dissipate MPT-pore dependent 
cell pathology while bypassing ATP synthase normal functioning. A 
note of caution should be stated as more studies in this direction are 
warranted before precipitous conclusions can be drawn (see above). 
Although both studies strongly suggest the MPT pore may be composed 
of ATP synthase subunit(s), the main question still to be addressed is: 
What is the MPT pore?

In the work by Bonora et al. [11] ATP-synthase subunit c, located 
in the membrane (F0) sector of the enzyme was shown to be necessary 
for MPT to ensue. In this study, the authors decreased the expression 
levels of subunit c and showed a concomitant resistance to Ca2+ and 
H2O2- induced MPT pore opening. Antithetical overexpression of 
subunit c rendered the cells susceptible to MPT pore dependent 
depolarization and cell death. While these experiments are indeed 
promising, it is important to mention that ATP-synthase oligomers 
are thought to confer the particular cristae architecture of the inner 
mitochondrial membrane and depletion of this oligomers results in 
mitochondria with onion-like multiple inner membranes [13]. It is thus 

possible to speculate that genetic manipulation of the c subunit would 
consequently alter the overall mitochondrial architecture potentially 
affecting MPT onset indirectly.

In the work by Giorgio et al. [12], the authors used a more 
direct approach and detected a Multiple Conductance Channel-like 
activity when purified dimers of ATP synthase were reconstituted for 
electrophysiological measurements. In these experiments, channel 
opening was achieved by adding an excess of Ca2+ and was preventable 
with Mg2+, ADP and AMP-PNP but not with CsA or bongkrekate 
consistent with preparations lacking both CypD and ANT. It is 
noteworthy to mention that the potent MPT pore inducer phenylarsine 
oxide did not activate this channel. Furthermore, modulation by other 
effectors such as diamide or ubiquinone analogues was not tested 
[14]. In this work, CypD was shown to selectively bind to oligomycin 
sensitivity conferral protein (OSCP) and consequently modulate the 
(still undefined) MPT pore through the lateral stalk of ATP synthase. 
Knockdown of the alleged CypD target (i.e. OSCP) sensitized 
mitochondria to pore opening. This result requires more attention as 
OSCP depletion results in the assembly failure of stalk subunits such as 
a, b and c [15,16] and the consequent ATP synthase dimer disruption. 
As noted above, this condition considerably impacts mitochondrial 
ultrastructure potentially affecting the Ca2+threshold of the pore. One 
interesting finding however was that ATP synthase working as an 
ATPase increases twofold the Ca2+ threshold of the pore. This finding 
suggests a direct and physiological relationship between ATP synthase 
and the MPT pore. Finally, the authors did not solve what is the MPT 
pore and just mentioned that it could be formed at the interface between 
dimers potentially in the membrane. Although this could explain the 
sometimes-unruly nature of the pore and its sensitivity to molecules 
affecting membrane fluidity such as local anesthetics or fatty acids, it 
could well mean that a still unidentified channel closely interacts with 
ATP synthase but is not ATP synthase per se.

Hopefully these studies will pave the beginning of a renewed search 
for answers to an old question. The suggestion that the MPT pore may 
be formed by discrete subunits of ATP synthase or at least closely 
interacting with this enzymeis indeed appealing. Nevertheless, more 
studies are still warranted to truly address what is the MPT pore.
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