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Introduction
Species of genus Leishmania, the causative agents of leishmaniasis, 

are digenetic parasites transmitted by female sand flies that reside in 
cells of monocytic-phagocytic system of mammals as intracellular 
amastigotes. Parasites of genus Leishmania are classified into two 
subgenera: subgenus Leishmania (Leishmania) and subgenus 
Leishmania (Viannia). This subdivision is based on the localization 
of the promastigotes in the digestive tract of the sand fly. Around 20 
species of the parasite are pathogenic to human and more than 30 
species of sand flies are vectors of the disease. The disease has two 
patterns of transmission: anthroponotic and zoonotic. In the zoonotic 
leismaniasis, several mammalian species (wild or domestic) have been 
implicated as reservoir hosts of parasite.

The leishmaniases are responsible for two main clinical 
manifestations of the disease: tegumentary or visceral leishmaniasis 
(VL). In the visceral form, the parasite migrates to internal organs as 
the liver, spleen and bone narrow and may be lethal if not treated [1]. 
The tegumentary form may occur as ulcerative skin lesions developing 
at the site of the sand fly bite (localised cutaneous leishmaniasis [LCL]), 
multiple non-ulcerative nodules (diffuse cutaneous leishmaniasis 
[DCL]) or destructive mucosal inflammation (mucosal leishmaniasis 
[ML]) [2]. The clinical manifestation of each form of the disease depends 
on the species of infecting parasite and the host immunoinflamatory 
response. The disease occurs in tropical and subtropical regions of the 
world, particularly in Africa, Asia, America and in southern of Europe 
affecting about 12 million people worldwide with approximately 0.2 to 
0.4 million VL cases and 0.7 to 1.2 million CL cases per year [3].

The chemotherapy for leishmaniasis is restricted in efficacy and 
in number of available drugs. Pentavalent antimonials are still the 
standard drug in some endemic areas despite its adverse reactions and 
progressive decreasing efficacy [4]. In the district of Bihar in India for 
example, dosages of the drug have been increased in the last decades, 
reaching the maximum acceptable toxicity [5]. Moreover, in this 
endemic region, reports show that up to 65% of patients do not respond 
to the treatment with pentavalent antimonials, indicating the emergence 
of drug resistant parasites [6-8]. An alternative to antimonials is 
amphotericin B. The liposomal formulation of amphotericin is widely 
used in Europe for example [9]. The cure rate can reach up to 95% 
of efficacy in patients with VL in just a single dose of the drug [10]. 
Despite its high toxicity, pentamidine is another alternative used in 

some endemic areas where antimonials are not more effective. Similar 
to the antimonials, pentamidine has significantly decreased its efficacy 
in more than 50% in the last decades. The drug is still used in some 
countries in South America against CL due to L. guyanensis [11,12]. The 
aminoglycoside paromomycin has recently approved for the treatment 
of VL in India [13]. Due to its low absorption in the gut, paromomycin 
requires parenteral administration, as it is also required for the other 
drugs mentioned before.

Miltefosine (MF) is the first and still the only oral drug used 
in the chemotherapy of leishmaniasis [14]. The drug is an analog of 
alkyl-lysophospholipid, initially developed against cancer. The anti-
leishmanial activity was described in vitro and in vivo [15,16] and some 
years later registered for the use in India against VL. The half-life of MF 
is between 150 and 200 hours leading to a sub-optimal concentration in 
the plasma, which can lead to the emergence of resistant parasites [17]. 
The main side effects of MF are transient gastrointestinal discomfort, 
vomiting, diarrhoea and increase of liver enzymes and serum creatinine 
[18]. MF is also teratogenic and therefore is strictly contraindicated in 
pregnant women.

Currently, the drug was already demonstrated as effective against 
VL and CL in South America [19,20]. MF has a rate cure of up to 95% 
against VL, with 100-150 mg/day (or 2.5 mg/kg body weight) for 28 
days [14,21,22]. On the other hand, cure rates for CL in South America 
vary between 53% and 91% in infections caused by different species of 
the parasite [23-26].

Mechanism of action of Miltefosine

The mechanism of action of MF is not completely understood 
and it is proposed that the drug has more than one target in the 
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parasite. The drug acts in cell membranes inhibiting phospholipid 
metabolism and the parasite’s membrane composition by decreasing 
phosphatidylcholine and increasing phosphotidylethanolamine due 
to reduction of intracellular choline [27]. Additionally, changes in the 
length and level of unsaturation of fatty acids, as well as a reduction in 
ergosterol levels in promastigotes resistant to MF was found [28]. In the 
mitochondria, promastigotes treated with MF presented a significant 
reduction in the mitochondrial membrane potential and the enzyme 
cytochrome-c oxidase is inhibited in a dose dependent manner [29,30]. 
The drug binds to the outer leaflet of the plasma membrane and can be 
internalized by two possible mechanisms: (a) by endocytic pathway: the 
drug is internalized as member of an endocytic vesicle or (b) by flippase 
activity through the activity of an ATP-dependent mechanism mediated 
by the miltefosine transporter (MT) and its subunit Ros3 [31]. MT is an 
inward-directed lipid translocase that belongs to the P4 subfamily of 
P-type ATPases and Ros3 is a non-catalytic subunit of this transporter, 
which both play an important role in phosphocoline accumulation and 
in maintaining the phospholipid asymmetry of the parasite membrane 
[32-35]. Once accumulated, the drug can be eliminated by exocytosis 
or by floppase activity. Some members of ABC transporters subfamilies 
(ABCB and ABCG) can mediate this transport from the inner to the 
outer leaflet of the plasma membrane [36-38].

Miltefosine susceptibility in Leishmania

Molecular and biochemical differences among Leishmania spp. 
explain the differences in MF susceptibility. It is important to state that 
MF susceptibilities in promastigotes and intracellular amastigotes are 
correlated, what leads the choice of the promastigote form, that is easier 
to cultivate, for determination MF sensitivity in clinical isolates in most 
of the studies. An intrinsic difference in MF susceptibility is observed for 
different species and clinical isolates of parasite in vitro [35,39-42]. For 
example, among Leishmania spp. pathogenic to man, L. (L.) donovani 
is considered one of the most sensitive in both stages of the parasite, 
while L. (V.) braziliensis is the less sensitive [40,42,43]. A large variation 
in MF susceptibility is also observed in clinical isolates for several 
Leishmania species [35,41,42]. In L. (L.) amazonensis for example, in 
vitro tests against promastigotes and intracellular amastigotes showed 
that a clinical isolate was less susceptible to MF than a type strain of 
this species. The intrinsic tolerance to MF in this clinical isolate was not 
due to polymorphisms in the MT and Ros3 genes [35]. Moreover, this 
differential susceptibility in vitro did not either affect the clinical efficacy 
of infected mice with these two lines treated with MF [35]. Similarly, 
no correlation between the treatment outcome and MF susceptibility 
was observed in clinical isolates of L. (L.) donovani that presented 
large variation in drug sensibility [44]. Treatment with pentavalent 
antimonials has also demonstrated an ambiguous correlation between 
in vitro susceptibility of the parasite and treatment outcome in L. (L.) 
donovani and L. (V.) braziliensis infected patients [45,46].

For drug activity against Leishmania spp., it is essential the 
internalization of MF and a clear correlation between drug uptake 
and susceptibility is observed [32,47,48]. As mentioned before, the 
accumulation of MF is mediated by the MT and its subunit Ros3 [31]. 
Interestingly, the activity and substrate specificity of this machinery 
vary between Leishmania species and may be correlated with the 
differential susceptibility of these species to the MF [48]. According 
to these authors, the reduced expression of the complex MT and its 
subunit Ros3 is responsible for the low sensitivity of L. (V.) braziliensis 
to MF [48].

The variation in MF susceptibility could also be explained by 
differences in rate of division of the parasites, exposure to the drug, 

biochemical targets and drug metabolism and biochemical content 
of the plasma membrane [31]. MF susceptibility is a trait that can be 
summarized therefore as drug tolerance that is an innate feature due 
to intrinsic biochemical and molecular properties of the parasite. 
Differently from drug tolerance, drug resistance is a feature that 
emerges and spreads after parasite being exposed to the drug.

Miltefosine resistance in Leishmania

Parasites resistant to MF can be obtained as promastigotes in vitro by 
increasing drug concentration (stepwise selection) [32,35,41,49] or by 
chemical mutagenesis followed by selection of MF [32, 50]. In general, 
the mechanism of resistance is related to a defect in drug internalization 
due to mutations in the MT gene [32,35,49,51,52]. This defect in drug 
accumulation can be restored after functional expression of the MT 
gene in the resistant line [32,49]. Additionally, single mutations in 
Ros3 gene alleles were also observed in a MF resistant line leading to a 
high resistance level as observed in selected resistant lines containing 
mutations in MT alleles [33]. These data indicate that both proteins 
are selected during the drug pressure, although a higher recurrence of 
mutations in MT gene has been observed in resistant parasites [35,51-
53]. Besides, once the MT gene is inactivated, the resistance phenotype 
persists in amastigotes in vitro and in vivo in animal models of VL and 
CL [35,54], indicating that this machinery is functional throughout 
the life cycle of the parasite. These findings showed that MT activity 
is essential for MF effectiveness and inactivation of this transporter 
becomes parasites completely refractory to MF.

Interestingly, when an alternative method using intracellular 
amastigotes in vitro to select MF resistant parasites, no change in 
MF susceptibility was found in amastigotes, although parasites were 
resistant when transformed back to promastigote [55,56]. The reason 
for this differential pattern of susceptibility in both stages of the parasite 
after MF selection in intracellular amastigotes is still unknown.

Miltefosine resistance can also be associated with an increase in 
efflux pumps through the overexpression of an ABC transporter. Some 
members of this family were already reported as able to mediated 
drug resistance: ABCB1 from the subfamily ABCB [38] and two 
members of the subfamily ABCG, ABCG4 and ABCG6 members 
[36,37] are implicated in phospholipid trafficking and reduction in MF 
accumulation.

Recently, whole genome sequencing of two resistant lines of L. 
(L.) major revealed that inactivating mutations at conserved residues 
were able to confer MF resistance [53]. Mutations were also observed 
in the gene encoding previously pyridoxal kinase. Pyridoxal kinase 
plays a vital role in the formation of pyridoxal-5′-phosphate but the 
mechanism involved in MF resistance is still unknown [53]. Whole 
genome sequencing of L. major mutants resistant to MF also revealed 
a homozygous mutation in the α-adaptin like protein gene in L. (L.) 
major and in two independent mutants of L. (L.) infantum [53]. This 
gene codes for the α subunit of Adaptor Protein 2 (AP2) complex 
involved in endocytosis of plasma membrane [57], suggesting a role 
in MF resistance in Leishmania. A role of this complex was already 
associated with suramin action and resistance in Trypanosoma 
brucei [58]. As mentioned before, MF may also enter in the parasite 
through the endocytic pathway, although this route is only important 
in a scenario in which the amount of drug bound to the membrane is 
extraordinarily high [31]. Overexpression of a functional copy of this 
gene in the resistant mutant and in wild-type parasites did not alter MF 
susceptibility [53]. Attempts to generate a double knockout of this gene 
were unsuccessful and no significant change in MF susceptibility was 
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observed in single knockout parasites of L. (L.) donovani (unpublished 
observations). These findings indicate that these mutations may be 
related to fitness compensatory mutations, differently from mutations 
in the MT gene that are directly involved in the primary resistance 
mechanism of the drug.

A global genomic expression by RNA microarray also revealed 
several differentially expressed genes in a MF resistant line of L. (L.) 
donovani, involved in DNA replication/repair mechanism, reduced 
protein synthesis and degradation, increased drug efflux, altered energy 
utilization and increased antioxidant defence mechanisms [51]. A point 
mutation was also found in the MT gene of this resistant line [51]. 
Two clinically derived L. (L.) donovani strains with different inherent 
antimonial sensitivities were also selected in vitro as promastigotes 
and changes in the number of copies of chromosomes, single-base 
mutations and deletions of MT gene were observed in these resistant 
lines [52]. Changes in the content of phosphatidylcholines and 
lysophosphatidylcholines were also associated with MF resistance in 
these two clinical lines [52].

As described above, most of knowledge about Leishmania MF 
resistance was performed in resistant parasites induced in vitro. 
Therefore, the molecular mechanisms and markers identified cannot 
be necessarily correlated with drug resistant parasites that emerge in 
endemic regions [59]. It might also be considered that anthroponotic 
disease in treated patients has a higher drug pressure on parasite 
population than the tegumentary disease in South America for 
example, that is zoonotic. All these aspects must be considered when 
clinical isolates from treated patients are studied. For example, a clinical 
decrease in the susceptibility of parasites to MF in vivo, a precursor of 
the emergence of drug resistance, has not yet been formally described, 
although several relapse cases after successful MF treatment have been 
reported for CL, DCL and VL [26, 60-65]. There is just one study that 
reports the selection of a L. (L.) infantum resistant line after treatment 
with MF in a HIV-coinfected patient [66]. The mechanism involved was 
associated with the occurrence of a mutation in the MT gene [66]. On 
the other hand, in patients infected with L. (L.) donovani, VL relapse 
cases were found up to 20% of patients after 6-12 months, but none of 
clinical isolates from these patients were resistant to MF in vitro [63]. 
Similarly, isolates of L. (L.) donovani from cured and failed patients 
showed a similar susceptibility to MF [43]. Otherwise, in clinical 
isolates of L. (V.) panamensis rescued before and after the treatment, 
an increase in MF susceptibility was found, indicating that resistant 
parasites were selected during the therapy with MF [41]. Finally, these 
studies indicated that the acquired resistance in leishmaniasis may or 
not be related with treatment failure using MF.

Miltefosine treatment failure in the field

As mentioned previously, the cure rate of MF in VL due to L. (L.) 
donovani is higher than 90%, but in the last years, an increase in the 
number of relapses after the end of treatment has been reported [63, 67]. 
In these studies, treatment failure was not due to intrinsic or acquired 
resistance and others factors recently reported in the literature have 
correlated relapse cases and treatment failure using MF, as for example: 
a lower exposure of the parasites to the drug (pharmacokinetics) [68], 
higher infectivity of the clinical isolates from these patients [69] and/or 
host-related factors (i.e. immunological factors) [70].

In South America, clinical studies for CL, show large efficacy 
variation between endemic regions and in infections caused by L. (V.) 
braziliensis, L. (V.) guyanensis and L. (V.) panamensis [23-26]. Despite 
this variation in efficacy, recent clinical trials have shown that the 

therapy using MF is more efficacious than the standard therapy with 
meglumine antimoniate [23-25]. In DCL patients infected with either 
L. (L.) amazonensis or L. (L.) mexicana, a high clinical efficacy at the 
end of the treatment is observed, followed by relapses [60,65]. Similar 
findings with L. (L.) amazonensis were observed in mice infected and 
treated with MF [35]. Mice relapsed some months after treatment and 
no change in drug susceptibility was observed in parasites recovered 
from lesions, indicating that parasites did not acquire resistance to 
MF (unpublished observations). In tegumentary leishmaniasis, other 
factors unrelated to drug susceptibility and resistance may also be 
correlated to MF treatment failure, as for example: localization of the 
parasites in tissues less accessible to drugs, quiescence and presence of 
Leishmania RNA virus-1 (LRV1 virus) in the parasites of the Viannia 
subgenus [70,71]. Recent studies have correlated the prevalence of 
LRV1 virus in Leishmania (Viannia) species and treatment failure due 
to the subversion of the host immune response [71,72].

Concluding Remarks
Studies based on drug susceptibility and resistance have been useful 

to decipher the molecular basis involved in the mechanisms of action 
of drugs in Leishmania. MF is the only oral effective drug available 
for leishmaniasis. The drug has a long half-life (150-200 h) and the 
treatment is long (28 days) what can induce the emergence of resistant 
parasites in case of inadequate use. Understanding MF resistance is 
also a prerequisite to monitor drug resistant parasites in the field and 
preserve the drug efficacy. Currently, the main goal is to correlate the 
recent knowledge obtained in vitro and MF unresponsiveness in the 
field. MT and Ros3 might be considered as the main molecular markers 
in case of clinical isolates that show low MF sensitivity, since this 
machinery is essential for MF activity and efficacy. In the last years, 
an increase in the number of treatment failure cases has been reported 
for all the clinical forms of the disease and it is urgent to understand 
this increase in the number of cases. Recent reports have not directly 
correlated clinical inefficacy with intrinsic or acquired differences of 
drug susceptibility what indicates that other aspects are involved in MF 
inefficacy in the field.
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