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Abstract
Microbial enzymes have significant biotechnological application in industries. The purpose of this study was to 

isolate and identify microorganisms associated with millet cobs, determine the enzyme activity (lipase, protease, 
pectinase, cellulase and amylase) of the millet cob samples, screen the isolated microorganisms for enzyme 
production and determine the physicochemical parameters of the degrading medium. A total of seven bacteria and 
twelve fungi consisting of yeasts and moulds were isolated during the study. Day 20 of the degradation period has 
the highest enzyme activity for all the enzymes in the degraded millet cobs; lipase has the highest enzyme activity 
with a value of 0.496 mg/mL/min while protease has the lowest with a value of 0.003 mg/mL/min. All of the isolated 
microorganisms exhibited enzymatic activity except Zygosaccharomyces rouxii in which Bacillus spp were screened 
positive for all the enzymes assayed for. The temperature (ºC), pH and titratable acidity (%) ranged from 24.03-
28.47, 3.81-6.50 and 2.31-4.21 respectively. This study contributes to catalogue of microorganisms that has been 
identified as enzyme producers and provides additional information to support future research about the industrial 
potential of these microorganisms that may produce enzymes and other metabolites of industrial importance.
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Introduction
Many microorganisms such as bacteria, mould, and yeast produce a 

collection of multipurpose enzymes with extensive diversity of structures 
and industrial applications. Many microbial enzymes, such as amylases, 
cellulases, lipases, pectinases and proteases extracellularly produced. 
Amylases, starch-degrading enzymes, have numerous biotechnogical 
applications. These enzymes are used in textile and garments, paper 
industries, starch liquefaction, food, adhesive and sugar production and 
pharmaceuticals [1]. Cellulases, sugar degrading enzymes are used in 
textile industry for bio-polishing of fabrics and producing stonewashed 
look of denims, as well as in household laundry detergents for improving 
fabric softness and brightness [2]. Besides, they are used in animal feeds 
for improving the nutritional quality and digestibility, in processing 
of fruit juice and in baking, while de-inking of paper is yet another 
emerging application [3]. Lipases, lipid degrading enzyme are versatile 
tool for biotechnology. It is applicable in multiple industries such as 
agrochemical, pharmaceutical, cosmetic and perfume, taste and flavor 
industries, textile, food and dairy, detergent and surfactant industries, 
fat and oil, leather and paper production, chemical and waste water 
treatment [4]. Especially lipases are applied for biodiesel production 
[5]. Pectinases a group of enzymes that contribute to the degradation of 
pectin by various mechanisms. Acidic pectic enzymes are widely used 
in the production and clarification of fruit juices and wines [6]. They 
are also very important in maceration and solubilization of fruit pulps. 
Alkaline pectic enzymes have been used in several areas, including 
retting and degumming of fiber crops, textile processing, coffee and 
tea fermentations, paper and pulp industry, and oil extraction [7]. 
Proteases, enzyme which catabolizes protein by hydrolysis of peptide 
bonds are generally used in detergents, food industries meat processing, 
cheese making, silver recovery from photographic film, production of 
digestive and certain medical treatments of inflammation and virulent 
wounds [8-10]. They also have medical pharmaceutical applications [9]. 
The increase in world enzyme demand has led to sourcing for alternative 
substrate for the production of microbial enzyme; hence, agricultural 
wastes are readily accessible around the world as residual wastes for the 
production of these enzymes. In Nigeria, the most abundant renewable 
biomass resources include crop residues, such as corn straw, millet cobs, 
cassava peels, yam peels and rice husks. 

Millets are a group of highly variable small seeded grasses, widely 
grown around the world as cereal crops or grains for fodder and human 
food. They do not form a taxonomic group, but rather a functional or 
agronomic one. Millets are important crops in the semi-arid tropics of 
Asia and Africa (especially in India and Nigeria), with 97% of millet 
production in developing countries and according to FAO statistics, the 
world production of millets was 26.7 million metric tonnes. The crop is 
favoured due to its productivity and short growing season under dry, 
high-temperature conditions [11,12]. Millet cobs are a great source of 
lignocellulosic biomass which is renewable, chiefly unexploited and 
inexpensive. Millets are a group of highly variable small seeded grasses, 
widely grown around the world as cereal crops or grains for fodder 
and human food. They do not form a taxonomic group, but rather a 
functional or agronomic one. Therefore, the present research work 
undertaken is to determine the suitability of millet cobs for microbial 
enzymes production.

Materials
Collection of sample

Pearl millet (Pennisetum glaucum, Linn) was obtained from a 
farmland in Gusau, Zamfara State, Nigeria. The millet cobs were kept 
in a sterile air tight polythene bags and transported to the Microbiology 
Postgraduate Laboratory, Federal University of Technology, Akure for 
further analysis.

Preparation of millet cobs

The millet cobs were sun-dried for 3 weeks and grinded into powder 
using an electric blender (Binatone Blender). The grinded millet cobs 
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Results
Microbial isolation and identification

The total bacterial counts (106 cfu/ml), fungal mean counts (104 

sfu/ml) is shown in Figure 1 and 2. The total bacterial count in the 
undegraded sample was 7.33, while that of fungi was 8.67. The total 
bacterial counts for the degraded sample ranged from 28.00 to 34.33, 
while the range for fungi was 7.00-36.00. The conventional identification 
of microorganisms isolated from the millet cobs samples is shown in 
Tables 1-3. The frequency of occurrence of isolated microorganisms is 
shown in Tables 4 and 5. Molecular identification for Bacillus cereus, 
Bacillus subtilis, Bacillus licheniformis, Corynebacterium fasciens, 
Lactobacillus lactis, Lactococcus lactis and Flavobacterium columnare 
respectively which were later identified using 16S rDNA analysis to 
be Bacillus licheniformis strain ZULMMI012, Bacillus subtilis strain 
b17a, Macrococcus carouselicus strain H8B16, Bacillus cereus strain 
pBCO_5, Lactobacillus brevis strain 14.8.28, Lactococcus lactis subsp. 
lactis strain Mast_19 and Flavobacterium ferrugineum while that of 
yeasts: Saccharomyces cerevisae, Candida albicans, Candida krusei, 
Geotrichum albidium and Zygosaccharomyces rouxii respectively which 
were also identified using 16S rDNA analysis to be Candida albicans 
strain h70b, Saccharomyces cerevisiae strain K289-3A, Rhodotorula 
mucilaginosa strain G20, Saccharomyces cerevisiae strain BY4742 and 
Kluyveromyces marxianus strain GX-15 respectively (Figure 3a and 3b).

were divided into two portions; A and B. Portion A was left undegraded, 
while Portion B was degraded for 20 days.

Liquid substrate degradation

In the submerged substrate degradation, 10.0 g of the portion B of 
the substrate was naturally degraded by soaking in 100.0 mL of sterile 
distilled water. Liquid substrate degradation was carried out during 
which analyses such as: microbial analysis; pH, temperature and 
titratable acidity determination and enzyme activity were carried out 
at 4 days interval during millet cobs degradation.

Isolation and identification of microorganisms

Nutrient agar (NA), nutrient broth (NB), De Man Rogosa and 
Sharpe Agar (MRSA), De Man Rogosa and Sharpe broth (MRSB), 
Potato dextrose agar (PDA), Potato dextrose broth (PDB) were 
prepared according to manufacturer’s specification for the isolation 
of bacteria and fungi. Serial dilution was carried out according to 
the standard method of Fawole and Oso for the isolation of bacteria 
(×106 cfu/mL) and fungi (×104 sfu/mL) [13]. Conventional methods 
were used in identification of the isolated bacteria and fungi using the 
standard methods of Fawole and Oso [13]. Molecular identification 
of isolated bacteria and yeasts were carried out using the standard 
methods of Tamura, (2011) [14].

Determination of pH 

The electrode of the meter was aseptically inserted into the media 
after standardization with the appropriate buffer (4 and 7 solutions). 
The electrode was then left in the media for 3 minutes to stabilize after 
which the pH was read at the same time on the meter scale. 

Determination of temperature

Determination of temperature was done using a thermometer. The 
thermometer was inserted into the substrate 4 day interval to monitor 
the temperature.

Determination of total titrable acidity (TTA)

The total titratable acidity of the fermenting extrudates was 
determined every four day interval as described by AOAC (2012) 
[15]. Two grams (2 g) of the sample was weighed into 20 ml of sterile 
distilled water and filtered. 10 mL of the filtrate was measured and few 
drops of phenolphthalein indicator added. This was titrated with 0.1 
M sodium hydroxide (NaOH) solution and the titre values in milliliter 
were added from the burette.

Enzyme activity

The enzyme activity of both the undegraded and degraded millet 
cobs sample was determined using the techniques for cellulase, 
protease, lipase, pectinase and amylase respectively [16-20].

Microbial screening for enzyme production

Culture media specific to each enzyme were used for primary 
screening of enzymes production by following the methods for 
cellulase, protease, lipase, pectinase and amylase respectively [21-25]. 

Statistical analyses
The experimental design was done in triplicate using complete 

randomization. The data obtained were subjected to analysis of 
variance (ANOVA) and the means were separated using Duncan’s 
New Multiple Range Test.

Figure 1: Bacterial counts isolated from millet cobs during degradation.

Figure 2: Fungal counts isolated from millet cobs during degradation.

https://www.ncbi.nlm.nih.gov/nuccore/KY271337.1
https://www.ncbi.nlm.nih.gov/nuccore/KY271337.1
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Laboratory Ref. No B1 B2 B3 B4 B5 B6 B7
Colony/Morphology

Colour Creamy Creamy Creamy Yellow Creamy Creamy Yellow
Surface Opaque Opaque Opaque Opaque Opaque Opaque Translucent

Cell Characteristics (microscopy) Straight Rods Opaque Straight Rods Single, straight 
and short rods

Straight single rod 
on short chain Cocci in pairs Singly cocci

Biochemical Test
Gram’s reaction +ve +ve +ve +ve +ve +ve -ve
Catalase Test +ve +ve +ve +ve -ve -ve -ve

Motility +ve +ve +ve -ve -ve -ve -ve
Spore +ve central +ve central +ve central -ve -ve -ve -ve

Indole Production +ve -ve -ve -ve -ve +ve -ve
Starch hydrolysis +ve +ve +ve -ve -ve -ve +ve
Citrate utilization +ve +ve +ve -ve -ve -ve -ve

Methyl red -ve -ve -ve -ve -ve -ve -ve
Sugar Fermentation

Glucose A- A- A- AG A- A- AG
Fructose A- A- A- -- AG A- A-
Maltose A- A- A- AG AG A- AG
Lactose -- -- -- AG AG A- A-
Sucrose A- A- -- AG AG A- AG
Mannitol A- A- -- -- -- -- A-

Probable Bacterium Bacillus 
licheniformis Bacillus subtilis Bacillus cereus Corynebacterium 

fascians
Lactobacillus 

lactis Lactococcus lactis Flavobacterium 
columnare

Key: +ve = Positive, -ve = Negative, AG = Acid and Gas, A- = Gas, -- = Acid and gas absent

Table 1: Morphological and Biochemical Characteristics of Bacterial Isolates from millet cobs.

Isolates Cultural characteristics Spores/conidia arrangement under the microscope Identity of isolates

F1 Colonies  are blue-green with a suede-like surface consisting 
of a dense felt of conidiophores

Uniserate and columnar conidial heads with the phalides limited 
to the upper two third of the vessicle  and curving to the roughly  

parallel to each other
Aspergillus fumigatus

F2 Spores are granular, flat, often with radial grooves, yellow at 
first but quickly becomes bright to yellow-green with age

Conidia are globose to subglobose, pale green and 
conspicuously echinulate Aspergillus flavus

F3 Spores are white at initial stage and turn grey with maturity Hyphae is typically branching and form septate Aspergillus candidus

F4 Conidia vary in colour from white to grey Chains of single-celled conidia produced in basipetal succession 
from a specialized conidiogenous cell

Scorpulariopsis 
brevicaulis

F5 Conidia  grows rapidly, resemble cotton candy and darken 
with age

Mycelia are marked by numerous stolons connecting groups of 
long sporangiophores Rhizopus stolonifer

F6 Conidia appears orange Microconidia are absent, chlamydospores are intercalary, 
exceptionally terminal, spherical to ovoidal Fusarium poae

Table 2: Morphological Characteristics of Mould isolates from biodegraded millet cobs.
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Y1 Oval + Oval + + - FA FA FA -A FA - Sacharomyces cerevisae
Y2 Cylindrical + Oval + + - FA FA FA - FA + Candida albicans
Y3 Cylindrical + Ovoid + + - FA FA FA FA FA - Candida krusei

Y4 Cylindrical + Short 
Cylindrical + - + FA FA -A -A FA + Geotrichum albidium

Y5 Spherical + Spherical + + - FA FA FA -A FA - Zygosaccharomyces rouxii

Key: + = Present, - = Absent, FA= Fermentation and Assimilation, -A= Assimilation only

Table 3: Morphological and Biochemical Characteristics of Yeasts isolated from millet cobs samples.
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B
ac

te
ria

l i
so

la
te

s Degradation Period (day) Occurrence (%)

Undegraded sample 4 8 12 16 20

Bacillus cereus + + + - - - 17.79

Bacillus licheniformis + + - - - - 14.65

Bacillus subtilis + + + - - - 16.76

Corynebacterium fasciens - - - + + + 12.77
Flavobacterium ferrugineum - + + + + - 9.79

Lactobacillus lactis - + + + + + 16.10
Lactococcus lactis - + + + + + 12.14

M
ou

ld
 

is
ol

at
es Degradation Period (day) Occurrence (%)

Undegraded sample 4 8 12 16 20

Aspergillus flavus + + + - - - 16.41

Aspergillus fumigatus + + - - - - 16.37
Aspergillus candidus - + + + + - 20.39

Fusarium poae - - - + + + 17.03
Rhizopus stolonifer + + + + - - 17.07

Scopulariopsis brevicaulis - - - + + + 12.73

Y
ea

st
 is

ol
at

es Degradation Period (day) Occurrence (%)

Undegraded sample 4 8 12 16 20

Candida albicans + + - - + + 25.76
Candida krusei + + - - - - 19.18

Geotrichum albidum - - + + + 20.83
Saccharomyces cerevisiae - - + + + + 23.90
Zygosaccharomyces rouxii - + - - - - 10.33

Table 4: Frequency of occurrence of microbial isolates from millet cobs during degradation.

Conventional identification of isolates Sequence with best
match Accession no

Sequence based with
Similar strain Base Pair Similarity (%)

Bacillus cereus MH411110.1 Bacillus licheniformis strain ZULMMI012 1260 100
Bacillus subtilis SPP54602 Bacillus subtilis strain b17a 1453 95

Bacillus licheniformis NR_044927.1 Macrococcus carouselicus strain H8B16 1549 85
Corynebacterium fasciens CP009965.1 Bacillus cereus strain pBCO_5 4983 100

Lactobacillus lactis KX301062.1 Lactobacillus brevis strain 14.8.28 826 94
Lactococcus lactis JQ953678.1 Lactococcus lactis subsp. lactis strain Mast_19 678 99

Flavobacteriun columnare AF335328.1 Flavobacteriun ferrugineum 589 100
Saccharomyces cerevisiae KP674770.1 Candida albicans strain h70b 510 80

Candida albicans AF058447.1 Saccharomyces cerevisiae strain K289-3A 1227 97
Candida krusei KY296083.1 Rhodotorula mucilaginosa strain G20  613 97

Geotrichum albidium NM_001181492.1 Saccharomyces cerevisiae  strain S288C 1227 99

Zygosaccharomyces rouxii FJ896138.1 Kluyveromyces marxianus strain GX-15 556 99

Table 5: Conventional and Molecular Identification of microorganism isolated from Millet Cobs during degradation.

Temperature and pH variation of the millet cob samples

Figures 4 and 5 shows the temperature (oC) and pH variation of both 
the undegraded and degraded millet cob samples respectively. The highest 
temperature value was recorded on day 16 with value 28.47 ± 0.03 while 
the lowest temperature was recorded on day 4 with a value of 24.03. The 
control sample has the highest pH with a pH of 6.50 while the lowest pH 
was recorded on day 20 of the biodegradation period with a pH of 3.81.

Titratable acidity of the millet cob samples

Figure 6 show that the undegraded sample (2.31) has the lowest 
titratable acidity (%), while the highest was on day 8 (4.21). There 
were no significant difference (P˃0.05) between the values of days; 12 
(4.00), 16 (4.05) and 20 (4.07), however, there was significant difference 
(P<0.05) between these days of degradation and day 8.

https://www.ncbi.nlm.nih.gov/nucleotide/JQ953678?report=genbank&log$=nuclalign&blast_rank=2&RID=EK30GNNP015
https://www.ncbi.nlm.nih.gov/nuccore/KY271337.1
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Figure 3a: Phylogenic tree of bacteria isolated from millet cobs during 
degradation. 

Figure 3b: Phylogenic tree of yeasts isolated from millet cobs during 
degradation. 

 

Figure 4: Temperature of the millet cobs during degradation.

 
Figure 5: pH of the Millet cobs during degradation.

 
Figure 6: Titratable Acidity of the millet cobs during degradation.

Enzyme activity and microbial screening for enzyme 
production

The enzyme activities of the millet cob a sample is shown in 
Figure 7. Lipase has the highest enzyme activity which was recorded 
on day 20 of the degradation period. The enzyme activities for all the 
enzymes assayed for were low in the control sample. All the isolated 
microorganisms exhibited enzymatic activity except Z. rouxii (Table 6). 

Discussion
Variation observed in names given using conventional and 

molecular methods of identification of microorganisms agrees with 
the findings of Frickmann [26]. They reported differences in names 

Bacteria Pectinase Lipase Cellulase Amylase Protease
B. cereus + + + + +

B. licheniformis + + + + +
B. subtilis + + + + +

Corynebacterium 
fascians - + + + +

Flavobacterium 
ferrugunieum - - - - +

Lactobacillus lactis - + + + +
Lactococcus lactis - + + + +

Fungi Pectinase Lipase Cellulase Amylase Protease
Saccharomyces 

cerevisae + + + + +

Geotrichum albidum + - - - -
Aspergillus fumigatus + - + + +

Aspergillus flavus + - + + +
Candida krusei + - + - +

Aspergillus candidus + - + + -
Scorpulariopsis 

brevicaulis + - + - -

Rhizopus stonifer + - + + +
Candida albicans + + - + +
Fusarium poae + - - - +

Zygosaccharomyces 
rouxii - - - - -

Table 6: Microbial screening for enzyme production.



Citation: Arogunjo AO, Arotupin DJ (2018) Millet Cobs: A Source of Microbial Enzymes. J Microb Biochem Technol 10: 124-133. doi: 10.4172/1948-
5948.1000405

Volume 10(4): 124-133 (2018) - 129
J Microb Biochem Technol, an open access journal 
ISSN: 1948-5948

allotted using conventional and molecular methods of identification. 
However, the results of this study demonstrated clearly the interest 
and feasibility to introduce the 16SrRNA gene sequencing method 
in identification of bacteria and yeasts. Combination of conventional 
techniques and molecular approach will improve microbiological study 
and verification, allowing for exclusive and effective identification 
of microorganisms as against using only conventional method of 
identification.

The lignocellulosic structure of millet cobs maybe a factor 
responsible for the low microbial population present particularly in the 
undegraded sample [27-29]. The presence of bacteria such as B. cereus, 
B. licheniformis and B. subtilis in the undegraded sample agrees with 
the findings of Kunchala when sorghum and pearl millet from semi-
arid tropics were characterized for potential probiotic bacteria [30]. 
The presence moulds such as A. fumigatus, A. flavus and R. stolonifer, 
in the undegraded sample could be a result of them being millet cobs 
microflora which agrees with the finding of Badau when A. nidulans, A. 
niger, R. arrhizus were isolated from unmalted millet grains. Bamigboye 
also isolated A. flavus, A. niger, Rhizopus oryzae from corn cobs [31,32]. 
Slightly acidic environment of the millet cobs may be responsible for 
their adaptation [33,34]. The dominant population of A. fumigatus, 
A. flavus particularly in the undegraded sample maybe due to the 
presence of nutrients available within the millet cobs for utilization. 
Nasrin attested to this when combination of molasses and jackfruit 
were used as a substrate for mutant strain of A. niger for citric acid 
production [34]. The high counts of bacteria, mould and yeast in the 
millet cobs during degradation may be due to the high concentration 
of nutrients which agrees with the findings of Arotupin that arrays of 
microorganisms could increase in population due to the nutrient rich 
nature of the substrate, thus, supporting the growth and proliferation 
of microorganisms [35]. Low pH could be responsible for the increased 
fungal population [36]. 

Lactobacillus lactis and Lactococcus lactis are vital organisms for 
fermentation process which may be responsible for their presence from 
during degradation. Kalui documented in a review that these bacteria 
are essential in spontaneously fermenting cereal based food and that 
these microorganisms produce lactic acid as an important product 
from the energy yielding fermentation of sugars [37]. Ogbonnaya 
and Chukwu also attested to this; that majority of lactic acid bacteria 
isolated from ‘Akamu’ which is made from maize, a cereal belonged 

to the Genera: Lactobacillus [38]. Hence, these microorganisms may 
be implicated as partly responsible for initiating acidification during 
degradation of millet cobs. Saccharomyces cerevisae and Aspergillus spp 
may as well be responsible for lactic acid production which concurs 
with the documentation of Kalui that some yeasts (Saccharomyces) and 
moulds (Penicillium, Aspergillus and Botrytis) too produce lactic acid [37].

Lactococcus spp also produce ammonia from arginine [37]. All 
these potential bye-product of L. lactis may be responsible for the 
reduction of other bacterial population which was obtained in the 
undegraded sample. These conditions created by Lactobacillus lactis 
and Lactococcus lactis could favour the growth of fungi particularly 
on day 4 and beyond, thus, Fungi, Lactobacillus and Lactococcus 
metabolise sugars within the millet cobs which is converted to organic 
acids. 

The growth and population of other microorganisms maybe due 
to the creation of enabling environment which favour their survival, 
growth and development of these set of microorganisms. Lactobacilli 
lactis and Lactococcus latis and mould had the highest population counts 
towards the end of the degradation period. These conform to the report 
of Ogbonnaya and Chukwu [38]. Saccharomyces spp, a cabtree positive 
yeast could utilize the sugars present within the millet cobs for the 
facilitation of the fermentation process in order to accumulate ethanol 
in the presence of oxygen particularly during early days of degradation 
period [39-41]. Candida albicans disappearing on day 8 may be due to 
the decrease in the available sugars within the millet cobs which might 
have facilitated their survival, growth, development and proliferation, 
however, S. cerevisiae becoming dominant on day 12 may be due to 
the environmental conditions that facilitate their survival, growth, 
development and proliferation. Candida spp, a cabtree negative yeast 
catabolizes sugars into carbon dioxide in the presence of oxygen may 
create an enabling environmental condition which may have facilitated 
the occurrence of S. cerevisae during degradation [42]. However, the 
reduction in the numbers of S. cerevisiae on days 16 and 20 maybe due 
to their preference for sugars [42]. Increase in the number of Candida 
spp over Saccharomyces spp on day 16 and 20 maybe due to their 
utilization of sugars. The reduction in yeast population of days 16 and 
20 as compared to day 4 may be due to reduced oxygen [39-41].

The increased population of A. flavus, A. fumigatus and R. stolonifer 
in day 4 may be as a result of the reduced lignocellulosic component of 
the millet cobs [27-29]. The increased moisture content of the degraded 
millet cob as the degradation progressed could be responsible for the 
reduction in the fungal population [43]. The growth of A. Candidus 
and F. poae on days 8 and 12 respectively succeeding A. fumigatus 
maybe a result of factors that may not favour its growth such as low 
relative humidity [44]. The availability of light may be responsible for 
the growth of A. fumigatus and A. flavus particularly in the undegraded 
sample, degraded sample of day 4 which also agrees with the findings 
of Shehu and Bello while studying the effect of environmental factors 
on the growth of Aspergillus spp associated with stored millet grains 
[44]. The growth of A. flavus, though in small population on day 8 
shows that A. flavus has a higher tolerance level than A. fumigatus 
in darkness. The presence of A. candidus from day 8 to day 20 with a 
relative progressive rise in population could be as a result of increase 
in the dark condition as the degradation process progresses [44]. The 
occurrence of R. stolonifer on day 8 to day 12 could be as a result of 
these factors (ability to grow under low relative humidity and in the 
dark). Scopulariopsis brevicaulis occurred on day 12 and day 20 in 
which it was the only mould that grew on day 20 of the degraded millet 
cobs. Hence, S. brevicaulis have the highest survival rate of growing 
in the dark and in low relative humidity. Also, as the biodegradation 

Figure 7: Enzyme activity of millet cobs during degradation.
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period increases, relative humidity and light intensity decreases. Thus, 
these factors could be applicable to bacteria and yeast that grew on the 
degraded millet cobs.

Millet cobs could serve as a fermentation media for the production 
of enzymes. Adeleke documented that the production of enzymes by 
microorganisms in the fermentation media depend on the availability 
of suitable and utilizable substrate [45]. Rashid concurred that major 
and minor elements contained within a substrate can be degraded 
or synthesized by microorganisms using various enzymes [43]. Also, 
the capacity of microorganisms to produce extracellular enzymes is 
influenced by environmental conditions such as temperature, pH, 
aeration, inoculums age and the presence of inducer or repressor 
substrates [46,47].

The low amount of enzyme activity of all the enzymes assayed for 
particularly in the undegraded sample may be due to complex structure 
such as cellulose, hemicellulose and lignin which is important for its 
utilization and digestibility [33,48-50]. Solid state fermentation for 
the production of enzymes offers advantages over the conventional 
method of submerged fermentation [51]. Submerged method of 
fermentation used may also be attributed to the low enzyme activities 
[52]. The progressive increase in enzyme activities may be due to the 
hydrolytic (water) effect on the millet cobs which may increase the 
surface area and remove hemicellulose. This is in agreement with the 
findings of Rodolfo that water treatments at elevated temperatures 
(200-230ºC) and pressures can increase the biomass surface area and 
remove hemicellulose [53]. The enzyme activity of the millet cobs may 
have increased if it temperature and pressure were raised.

The presence of cellulase in millet cobs agrees with the separate 
reports of Sethi and Philip which states that enormous amounts 
of agricultural, industrial and municipal cellulose wastes contains 
cellulose [54,55]. The increased cellulase activity on day 4 may be 
due to the low amount of sugars recorded particularly glucose which 
may inhibit the production of cellulase while the low cellulase activity 
on day 12 and the undegraded sample may be due to the increased 
glucose composition inherent within the millet cobs. It could also be 
due to the reduced amount of disaccharide cellobiose which could 
be present within fermented millet cobs which seems to be a more 
potent inhibitor of cellulase [56]. Payne et al. documented that a large 
number of compounds such as glucose, mannose, galactose, xylose, 
ethanol and various ions can act as possible inhibitor for cellulose 
[57]. The undegraded sample offered reduced accessibility to cellulose 
and hemicellulose and degradability for enzymatic or chemical action 
which agrees with the findings of Barakat and Gao [56,58]. 

The presence of Bacillus spp may contribute to the production of 
cellulase in the degrading millet cobs which were shown by the zone of 
hydrolysis in their screening for cellulase production. Separate findings 
of Akhtar and Saowapar agrees with this finding when different species 
of Bacillus produced cellulose [21,29]. Shilpa and Pethe also isolated 
different cellulolytic bacteria from the soil in which B. thurigenesis 
showed the highest zone of hydrolysis when these bacteria were 
optimized at different condition [59]. The pH may also be a limiting 
factor to the low production of cellulase within the millet cobs during 
degradation. Shilpa and Pethe documented that Bacillus subsp subtilis 
A-54 has optimum pH of 6.5 and stable in pH range of 6.5-8.0 [59]. 
Sadhu and Maiti stated that the optimum temperature for Bacillus sp 
to produce cellulase in high quantity is between 37ºC to 55ºC [60]. 
Aspergillus fumigatus, A. flavus and A. candidus that were positively 
screened for cellulase production agrees with the separate findings of 
Jabasingh, Liu, Amorea and Faracoa that A. acculeatus, A. fumigatus, 

A. niger were confirmed to be producers of cellulose [61-63]. Yeasts 
such as S. cerevisae and Candida spp have shown capacity to produce 
cellulase [64].

Lactococcus lactis and Lactobacillus lactis being protease producers 
agrees with the finding of Hnin that proteolytic activity is an important 
characteristic of lactic acid bacteria [65]. Bacillus spp production of 
protease agrees with the findings of Hamza and Woldesenbet when 
Bacillus sp. Cab44 was observed to hydrolyse casein [65]. Alemu 
reported that B. licheniformis, B. firmus, B. alcalo B. subtilis and B. 
thuringiensis were producers of protease [66]. All the Aspergillus spp 
being producer of protease agrees with the report of Alemu that A. 
flavus, A. miller, A. niger and P. griseofulvinare were protease producers 
[66]. Oyeleke documented that A. flavus and A. fumigatus were able 
to produce extracellular protease [67]. Oyeleke observed that when A. 
flavus and A. fumigatus were subjected to the same temperature of 30ºC, 
A. flavus was able to produce the highest amount of protease. Rhizopus 
stolonifer, a fungus also screened positive for protease production 
agrees with the findings of Devi that moulds of genera Aspergillus, 
Penicillium and Rhizopus are useful for producing proteases, as several 
species of these genera are generally regarded as safe [68]. Sharp 
decrease of protease activity from day 12 to day 16 could be due to 
the ability of microorganisms to utilize sugar faster than protein. 
Dash et al. reported that Bacillus sp isolated from soil has maximum 
protease activity at optimum pH of 9.0. Bacillus amyloliquefaciens, B. 
subtilis, B. licheniformis and B. stearothermophilus were reported to 
produce protease at 37-60°C [68]. Optimum temperature for protease 
production in Bacillus spp has also been reported at 35-80°C [69]. 
Oyeleke documented that the optimum temperature for proteases 
production for both A. flavus and A. fumigatus was 30°C [67]. Oyeleke 
documented that optimum pH for A. flavus is 8.0 while A. fumigatus 
is 5.0. Devi reported optimum pH of 8.5 for protease production by 
A. niger, although, this is at variance with Siala et al. that reported 
optimum temperature of 60 and 90°C and optimum pH of 3.0 and 
9.0 for proteases produced by A. niger [70,71]. These factors could be 
responsible for protease showing low activity.

The various Bacillus spp isolated from the millet cob samples are 
the best producer of lipase based on the zone of hydrolysis. Bacillus 
licheniformis strains, B. licheniformis -Ht7 have been identified to be 
good producer of lipase [72]. Lactic acid bacteria isolated from the 
millet cobs during degradation exhibiting lipase activity concurred with 
the documentation that Lactobacillus sp is a producer of lipase which 
is used for meat degradation [73]. Candida albicans and A. flavus, 
screened positive for lipase production agrees with the documentation 
of Singh that C. Antarctica, C. lipolytica and A. flavus are producers of 
lipase [74]. Singh et al. also observed that different lipase producing 
bacteria and fungi produced maximum lipase between pH 5.0 and 
10.0 [74]. Padmapriya et al. observed lipase production increased with 
increase in temperature from 30 to 40°C and maximum production 
of lipase was obtained at 40°C and production declined at 50°C with 
different Bacillus spp and Lactobacillus spp [73]. Microorganisms were 
not subjected to these conditions, yet, lipase activity was highest among 
the enzymes evaluated.

Fungi are better producers of pectinase when compared to bacteria 
based on the findings of this research. Only Bacillus spp isolated where 
indicated to be a producer of pectinase. This agrees with different 
documentations of Bayoumi et al., Geetha et al., Mukesh et al., Darah et 
al., Raju and Divakar, Roosdiana et al., Kavuthodi et al. and Reddy et al. 
that most of the Bacterial isolates (mostly Bacillus spp and Pseudomonas 
spp) such as; Pseudomonas fluorescence and B. subtilis, Bacillus sp. 
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MFW7, B. cereus, B. licheniformis, B. cereus, Bacillus sp. MBRL576, 
B. firmus I-4071, Enterobacter aerogenes NBO2, Pseudoalteromonas 
haloplanktis strain ANT/505, Paenibacillus xylanolyticus, B. firmus, 
B. firmus (P1), B. coagulans (P13), B. endophyticus (P57) and B. 
vietnamensis (P58), B. subtilis BKDS1, Enterobacter sp. PSTB-1 and 
Staphylococcus aureus were reported as good pectinase producers [75-
82]. Bacillus subtilis being a producer of pectinase agrees with the report 
of Mariam and Aruna that B. subtilis strain arium 1115 produced the 
highest quantity of extracellular pectinase out of the arrays of Bacillus 
spp assayed for [83]. Many strains of Bacillus have been previously 
reported to produce extracellular pectinases, such as B. subtilis Strain 
NVFO 19 (El-sayed, 2015), marine B. subtilis, B. subtilis BKDS1, B. 
sphaericus MTCC 7542, B. sp. MBRL576, B. licheniformis KIBGEIB21, 
B. cereus, B. subtilis, B. stearothermophilus, B. firmus and B. cereus [80-
89]. pH could also be a factor for low pectinase production in which 
acidic pH values were observed during the degradation of the millet 
cobs. According to the finding of Mariam and Aruna, B. subtilis strain 
arium 1115 produced the highest amount of pectinase at pH 9 (21.44 
U/mL) as against pH 3 (0.61 U/mL) [83]. This could be a limiting factor 
for pectinase production especially for Bacillus spp isolated from the 
millet cobs sample but some species like Bacillus sp. MBRL576 and 
B. circulans have optimum pH at 4.0 and 7.0 respectively [81,88]. 
Temperature is another factor to consider for pectinase production. 
Bacillus species have demonstrated slightly higher temperature for 
pectinase production such as marine B. subtilis and B. circulans at 40°C 
[86,81]. However, findings show B. cereus, B. firmus I-10104, B. cereus 
and B. endophyticus and B. coagulans exhibited maximum pectinase 
production at 37°C [90-92]. Simran and Vijay attested that Bacillus 
subtilis isolated from different agro-industrial wastes were able to 
produce pectinase at a temperature of 35ºC and at pH 7.0 [93]. The 
temperature range of millet cobs during degradation fall short of these 
values. 

All the fungal isolates that were screened positive for the production 
of pectinase may be responsible for the progressive increase in pectinase 
activity. Arotupin et al. revealed that A. repens is capable of hydrolyzing 
pectin. The hydrolysis of pectin by A. flavus, A. versicolor and A. niger 
have been reported [94,95]. Arotupin et al. revealed that temperature 
at 30ºC is optimum for the production of pectinase by A. repens [94]. 

Amylase activity in the millet cobs during degradation may be 
as a result of the presence of high concentration of hemicellulose 
carbohydrate particular starch within the millet cobs. This agrees 
with the findings of Singh et al. when amylase and xylanase content 
of rice bran, corn cob, wheat bran, wheat straw, and sugarcane 
bagasse were described in relation with the composition of starch and 
hemicellulose [95]. The progressive increase in amylase activity in 
the fermented millet cobs from day 4 to day 20 could be due to the 
availability of microorganisms such as B. cereus, B. licheniformis, B. 
subtilis, Lactobacillus lactis, Lactococcus lactis, A. flavus, A. fumigatus, 
A. candidus, Fusarium poae, Scorpulariopsis brevicaulis, C. albicans, 
and S. cerevisae in the degrading substrate. This consortium of 
microorganisms may contribute to the high amylase production. 
Akpomie et al. reported that Bacillus spp and Lactobacillus sp have 
ability to produce amylase [25]. Prakash and Jaiswal reported that B. 
subtilis, B. stearothermophilus, B. lecheniformis and B. amyloliquefaciens 
are known to be the good producers of thermostable α- amylase [96]. 
Sundarapandiyan and Jayalakshmi isolated, characterized and screened 
Bacillus subtilis SJ33 from marine environment for amylase production 
[97]. It is also to be known Prakash and Jaiswal stated in one of their 
findings that thermophilic bacterium B. stearothermophilus offers an 

alternative for commercial production of thermostable α-amylases [96]. 
Hence, Bacillus spp are known to be commercial producer of amylase. 
Filamentous fungi, such as A. oryzae and A. niger produce considerable 
quantities of enzymes that are used extensively in the industry [98]. 
Progressive increase in temperature could also be another factor that 
led to the progressive increase in amylase production which may be a 
satisfactory condition that made the microorganisms to produce more 
amylase. Akpomie et al. attested to this fact that gradual increase in 
amylase activity was observed from 26 to 45ºC and beyond this range it 
declined [25]. Thus, temperature contributes to the factor responsible 
for the secretion of amylase. Cavalheiro et al. documented that high 
enzymatic activity for amylase production by Gongronella butleri was 
between pH ranges of 4.0-5.5 [99]. Nwagu and Okolo reported that 
amylase produced by A. fumigatus maintained 94% of its activity at 
pH 4.5-6.5 for 24 hours [99]. de-Souza and Magalhães reported that A. 
niger has important hydrolytic capacities in amylase production and 
its tolerance of acidity (pH<3) could be a factor in the production of 
amylase by different Aspergillus spp isolated [100]. Sujeeta et al. reported 
that amylase activity of yeast isolates may increase at a temperature of 
30ºC. The temperatures obtained during the degradation of the millet 
cobs were below this [101].

Conclusion
A Millet cob shows amylase, cellulytic, pectinolytic, lipolytic, 

proteolytic and amylytic activities when degraded by inherent 
microorganisms. Further studies on the millet cobs particularly on 
improving the microbial enzymatic activities in order to explore their 
potent value in commercial application should be carried out.
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