

Journal of Stem Cell Research & Therapy

Research Article

Migration of Human Fetal Bone Marrow-derived Mesenchymal Stem Cells: Possible Involvement of GPCR and MMPs

Jennifer P. Newman¹, Toh Xin Yi¹, Jerry K. Y. Chan^{2,3,5}, Berwini Endaya¹ and Paula Lam^{1,4,5*}

¹Laboratory of Cancer Gene Therapy, Division of Cellular and Molecular Research National Cancer Centre, Singapore 169610 ²Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ³Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899 ⁴Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,

Abstract

Previously, we have demonstrated that not all adult human bone marrow-derived mesenchymal stem cells can migrate efficiently towards tumor cells. In the current study, we attempt to address whether different samples of human fetal bone marrow-derived mesenchymal stem cells (hfMSC) also exhibit different migratory capacities toward tumors as was found to be the case with adult human MSC. Further, we are keen to explore the underlying mechanism of how hfMSC home to tumor cells. Using modified Boyden chamber assay, we demonstrated that hfMSC migrate at an efficiency comparable or better than the highly migratory adult MSC. Unlike the adult MSC, the extent of migration was not correlated to the expression and activity of MMP1. Rather, it appeared to be dependent in part on the PAR1 expression which may in turn be modulated by GPCR signal pathways. Additional evaluation will need to be done to further confirm the exact migratory mechanism. Nevertheless, hfMSC may potentially serve as equally efficient carriers of therapeutic genes to tumors.

Introduction

The field of stem cell biology is rapidly integrating as new clinical trials in the treatment of a variety of pathologies ranging from regenerative medicine such as the repair of spinal cord injury to attempts of employing stem cells as tumor-tracking missiles for cancer treatment is moving into the clinics. It has been speculated that within the next ten years, stem cell therapeutics will revolutionize the treatment of human diseases. In the context of mesenchymal stem cells (MSC), this can be attributed to their ability to differentiate into mesodermal phenotypes of adipocytes, osteoblasts, chondrocytes, myocytes and those of extra-mesodermal cell types including neural, pancreatic, and hepatocyte phenotypes [1,2]. Furthermore, MSC possesses inherent immunomodulatory properties allowing their use as allogeneic cell sources without the risk of rejection [3] and the ability to migrate to sites of injury or inflammation [4-6]. More importantly, the tropism of MSC for tumors have made them uniquely suited to function as cellular delivery vehicles for potential cancer gene therapy. They can be genetically engineered to carry different therapeutic agents including interferon- β [7,8] tumor necrosis factor-related apoptosisinducing ligand (TRAIL) [9]; cytosine deaminase [10] and oncolytic viruses [11]. Despite the potential therapeutic potential, there remained unanswered questions regarding how MSC achieve homing and interstitial migration, which has been frequently associated to resemble how leukocytes are recruited to the sites of inflammation.

Stem cell trafficking can be defined as orientated and directed movement of cells toward a specific stimuli. The mobilization of stem cells from the site of origin to peripheral tissues via the circulation requires fundamental molecular pathways involving niche-specific deadhesion of the progenitor cells, chemoattraction to guide progenitor cell homing, integrin activation followed by a directional cue given by immobilized chemokines to navigate through into the extravascular tissues [12,13]. Advancing the understanding of these receptors on MSC may enable enhanced recruitment and migration towards the target tissue of interest. We have previously demonstrated that not all adult human mesenchymal derived-MSC can migrate efficiently towards gliomas [14]. Through careful analysis of those highly migratory

MSC versus minimally migratory MSC, we have shown that matrix metalloproteinase-1 (MMP1) and its receptor play an important role in the homing process of MSC toward tumors in vitro and in vivo. It is perhaps not surprising since MSC will require the action of proteolytic enzymes for the degradation of extracellular matrix during migration and the subsequent extravasation event [15-17]. Apart from MMP1, MMP2, MT1-MMP1 (membrane-type matrix metalloproteinase-1), and TIMP-2 have also been shown to be essential for the invasive capacity of human MSC [17,18]. As mentioned earlier, MSC migration has been postulated to be similar to those found in leukocytes and their progenitor cell line, the haematopoietic stem cells (HSC). Among the various factors that are found to play a role in the migration of leukocytes and HSC, the interaction of stromal derived factor (SDF-1) with its receptor, the seven-transmembrane GPCR (CXCR4) has been implicated as the primary axis governing haematopoietic stem cell homing and engraftment in the bone marrow post transplantation. However, only a small subpopulation of human MSC has been shown to express functional cell surface CXCR4 receptors [19,20].

The signaling mechanism by which CXCR4 promotes cell migration is not fully understood. It is known that CXCR4 is coupled to heterotrimeric G proteins of the Gi family. When the

*Corresponding author: Paula Y.P. Lam, Laboratory of Cancer Gene Therapy, Division of Cellular and Molecular Research , Humprey Oei Institute of Cancer Research, National Cancer Centre 11, Hospital Drive, Singapore 169610, Tel: 65-64368357; Fax: 65-62265694; E-mail: cmrlyp@nccs.com.sg

Received October 07, 2011; Accepted December 12, 2011; Published December 14, 2011

Citation: Newman JP, Yi TX, Chan JKY, Endaya B, Lam P (2011) Migration of Human Fetal Bone Marrow-derived Mesenchymal Stem Cells: Possible Involvement of GPCR and MMPs. J Stem Cell Res Ther S2:007. doi:10.4172/2157-7633.S2-007

Copyright: © 2011 Newman JP, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ligand is bound, the heterotrimeric Gi complex dissociates into its α and $\beta\gamma$ subunits. The released Gai subunit inhibits adenylyl cyclase and the Gy dimer activates two major signaling enzymes, the phosphatidylinositol 3-kinase (PI3K) [21] and phospholipase Cβ [22]. This subsequently initiates the activation of downstream events such as calcium mobilization, actin polymerization and chemotaxis. Using a combination of dominant negative and RNA interference approaches, Tan and colleagues have demonstrated that the Ga13 protein mediates the activation of Rho by CXCR4 and that the functional activity of both Ga13 and Rho is required for directional cell migration in response to SDF-1 [23]. Ga13 also appeared to be a critical transducer for GPCR such as PAR1 which in turn associates with the DIX domain of Dishevelled (DVL) which could lead to β-catenin stabilization [24]. During the process of cell migration, each member of the Rho GTPase family (e.g RhoA, Rac, Cdc42) plays a distinct role [25]. The GTP-bound Ga13 can then activate RhoA through the regulator of G-protein signaling (RGS) -containing Rho GEFs, p115 Rho GEF, PDZ-Rho-GEF or LARG [26].

In the current study, we attempt to address whether different samples of bone marrow derived-human fetal MSC (hfMSC) exhibit different migratory capacities towards tumors as was found to be the case with adult human MSC [14]. Further, we are keen to explore the underlying mechanism of how hfMSC home to tumor cells. hfMSC are primitive MSC which can be derived from the bone marrow, liver, blood and other tissues [27,28].They can be readily isolated and expanded. In additional to their abilities to differentiate into different lineages, they also express pluripotency markers with longer telomeres and are highly proliferative [29]. Thus, given enough understanding of the tumor tropism of these cells, they may potentially serve as better carriers of therapeutic genes to tumors than adult MSC.

Materials and Methods

Ethics

Fetal tissue collection was approved by the Domain Specific Review Board of National University Hospital, Singapore in compliance with international guidelines regarding the use of fetal tissue for research [30]. Pregnant women gave separate written consent for the clinical procedure and for the use of fetal tissue for research purposes. Fetal tissues were collected after clinically-indicated termination of pregnancy, and gestational age was determined by crown-rump length measurement. In this study, four different samples was utilized

Cell culture

Isolation and characterization of human adult MSC, MSC-1 and MSC-8 were performed as previously described [31]. They were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12 with 10% fetal bovine serum (FBS, Invitrogen) and ascorbic acid (Sigma-Aldrich). Bone marrow derived-human fetal MSC (hfMSC), S8, S27, S33 and S64 were isolated from the fetal femur collected after clinically indicated termination of Pregnancy as previously described [32]. Human fetal MSC are cultured in DMEM supplemented with 10% fetal bovine serum (FBS; Invitrogen Life technologies), penicillin (100U/ml; Invitrogen, Grand Island, NY, USA), streptomycin (100µg/ml; Invitrogen), and 2mM L-glutamine (Sigma-Aldrich, MO, USA). HuH-7 was obtained from Japanese Collection of Research Bioresources (JCRB cell bank, Osaka, Japan) and grown under standard tissue culture condition in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (HyClone Laboratories, Logan, UT), 2 mM L-glutamine, and penicillin/streptomycin (100 U/ml).

Collection of conditioned medium

To collect the conditioned medium from human hepatocellular carcinoma cells (HCC) HuH-7, $1x10^6$ of HuH-7 cells were seeded in complete medium in a T75 flask and incubated at 37° C with 5% CO₂. An empty T75 flask containing the complete medium was treated in a similar manner. Medium were harvested after 72 h and centrifugated at 3000 rpm at 4°C to remove cellular debris. Supernatant were then collected and stored at -80°C.

In vitro migration assay

For determining the effect of exogenous anti-PAR1 blocking antibody on the in vitro migration of hfMSC, a Modified Boyden chamber assay was done as previously described [14]. In brief, $1x10^4$ human adult and fetal MSC cells were cultured in 24-well tissue culture inserts with an 8 µm pore size membrane (BD Biosciences) and allowed to migrate for 8 h. Anti-PAR1 (20µg/mL, Santa Cruz Biotechnology Inc., Santa Cruz, CA) and Mouse IgG₁ (20µg/mL, DakoCytomation, Denmark) antibodies were added to the cells prior to and during the migration assay. Migration of MSC across the membrane was determined by counting the number of propidium iodide - stained nuclei on the underside of the membrane at x200 magnification with Nikon Eclipse 90i upright microscope using image acquisition software (NIS-elements AR 3.00).

MMP1 and MMP2 ELISA

Quantitation of MMP1 protein expression was performed using Quantikine human pro-MMP1 ELISA kit (R&D Systems), quantitation of MMP1 activity was performed using the MMP1 Biotrak activity assay system (GE Healthcare UK Limited, Little Chalfont, Buckinghamshire, UK) and quantitation of MMP2 protein expression were performed using Quantikine human MMP2 ELISA kit (R&D Systems Inc., Minneapolis, http://www.rndsystems.com) according to manufacturer's suggestions.

Immunoblotting

Equal amounts of proteins extracted from frozen cell lysates were resolved by SDS-PAGE and electroblotted onto polyvinylidine difluoride membrane (Trans-Blot Transfer medium; Bio-Rad Laboratories). Membranes were blotted against mouse anti-PAR1 (1:100) and rabbit anti-MMP2 (1:750) for 2 h RT, rabbit anti-Ga12 (1:600) and rabbit anti-Ga13 (1:400) from Santa Cruz Biotechnology (Santa Cruz, CA), and mouse anti-RhoA (1:1000), rabbit anti-cdc42 (1:1000), rabbit anti-p115RhoGEF (1:1000), rabbit anti-Rac (1:1000) from Cell Signaling Technology (Danvers, MA), and mouse pan actin clone Ab5 (1:50 000) from Neomarker (Fremont, CA) at 4°C O/N. Following washing and incubation with either goat anti-rabbit or goat anti-mouse horseradish peroxidase conjugated secondary antibodies (1:20000) (DakoCytomation, Denmark), protein of interest were visualized with an enhanced chemiluminescence using Western Lightning chemiluminescent kit (Perkin-Elmer, MA).

Statistical analysis

Statistical analysis was performed using Microsoft Excel (Microsoft). Non-paired parametric data were compared with two tailed Student's t-test. P-value of <0.05 was considered statistically significant. In addition, linear regression test was performed using Microsoft Excel.

Citation: Newman JP, Yi TX, Chan JKY, Endaya B, Lam P (2011) Migration of Human Fetal Bone Marrow-derived Mesenchymal Stem Cells: Possible Involvement of GPCR and MMPs. J Stem Cell Res Ther S2:007. doi:10.4172/2157-7633.S2-007

Results

In the present study, we ask whether human fetal mesenchymal stem cells may also be non-migratory as observed in our earlier studies with the adult MSC. Human fetal mesenchymal stem cells were characterized by their fibroblast-like spindle morphology, ability to adhere to plastic and their immunophenotypic characteristics. They are CD45-, CD34-, CD14-, and CD31-negative and are positive for SH2-; SH3-, and SH4. Under permission conditions, they can differentiate to osteogenic and adipogenic lineages [27,29]. Using a modified Boyden chamber assay, we showed that the representative hfMSC isolates, namely S8, S27, S33 and S64 exhibited greater migratory activities towards conditioned medium derived from human hepatocellular carcinoma (HCC) when compared to the representative low migratory adult MSC isolate, MSC-8 (Figure 1). In particular, S8 migrated even better than MSC-1, which represents one of the highest migratory adult MSC isolates. We have characterized the migratory activities of another six hfMSC isolates, all of these cells are migrating better than the non-migratory adult MSC (i.e. higher than 50% when normalized to MSC-1) under similar experimental conditions (Table 1). Unlike the adult MSC, we did not observe any hfMSC that migrated poorly towards conditioned medium derived from tumor cells, suggesting that hfMSC highly migratory towards tumor cells.

Next, the total and activities of MMP1 protein expression was quantified using an ELISA assay. All migratory activities were

	Source	Migration	Percentage of cell migration normalized to MSC-1
MSC-19	Adult	High	151
MSC-13	Adult	High	119
MSC-1	Adult	High	100
MSC-7	Adult	High	73
MSC-15	Adult	High	79
MSC-18	Adult	High	79
MSC-3	Adult	High	67
MSC-16	Adult	High	67
MSC-17	Adult	High	57
MSC-5	Adult	High	56
MSC-10	Adult	High	55
MSC-2	Adult	Low	11
MSC-22	Adult	Low	14
MSC-6	Adult	Low	15
MSC-11	Adult	Low	39
MSC-23	Adult	Low	45
MSC-20	Adult	Low	49
MSC-21	Adult	Low	49
MSC-8	Adult	Low	24
MSC-9	Adult	Low	46
S-28	Fetal	High	156
S-8	Fetal	High	144
S-27	Fetal	High	140
S-38	Fetal	High	114
S-9	Fetal	High	113
S-43	Fetal	High	90
S-34	Fetal	High	88
S-64	Fetal	High	83
S-33	Fetal	High	82
S-36	Fetal	High	63

Table 1: Migratory activity of various MSC isolates.

normalized to MSC-1 as shown in Figs 2A and 2B. However, we did not observe a correlation in the expression and activities of MMP1 when compared to the migratory activities of hfMSC presented in Figure 1. The correlation coefficient is 0.6 for S8; 0.5 for S27; 0.8 for S33 and 0.5 for S64. Taken together, our results showed that hfMSC migration may be independent of MMP1. Previously, we have demonstrated that the extent of MSC migration in adult MSC is dependent on the level of MMP1 and its interaction with its cognate receptor, PAR1 [14]. To further elucidate the possible role of MMP1 in hfMSC migration, we examined whether the inhibition of PAR1 proteolysis may affect the ability of MSC to migrate towards HCC conditioned medium. The PAR1 proteins were first determined by western blot analysis. All of the representative fetal MSC isolates expressed similar levels of PAR1 proteins, including the representative highly migratory adult MSC-1 (Figure 3A). We then determined the effect of inhibiting PAR1 activation with anti-PAR1 monoclonal antibody (ATAP2), which specifically binds to the cleavage domain of PAR1, thus preventing the proteolysis of PAR1 by MMP1. The highly migratory MSC-1 was included as positive control. As shown in Figure 3Bi and Bii, anti-PAR1 treatment cause a significant reduction in the number of MSC (MSC-1, S8, S33) migrating to the conditioned medium derived from HCC in comparison to naïve cells and control IgG,-treated cells. With the exception of S8, similar treatment with control IgG, did not cause a significant reduction in the number of migrating MSC. Taken together, the data suggested that there may be other cell factors that can bind and activate PAR1 receptor, which subsequently modulate the migration of hfMSC.

In a recent article, MMP2 has been shown to mediate the tropism of human umbilical cord blood-derived stem cells in a human medulloblastoma tumor model [33]. Thus, we proceed to determine the endogenous expression of MMP2 by western blot analysis in the various isolates. The expression of total MMP2 was relatively similar in all hfMSC (Figure 4A). To further confirm the possible role of MMP2, an ELISA assay for MMP2 was performed with the conditioned media derived from MSC-1 and human fetal MSC isolates (Figure 4B). We observed a high level of secreted MMP2 from S27 although the migration activity was the lowest among the four hfMSC isolates. In contrast, S33 which exhibited similar migration activity to S27 has the lowest MMP2 level, suggesting that MMP2 does not play a key role in the tumor tropism of hfMSC.

The activation of Rho proteins is mediated by specific guaninenucleotide exchange factors, one of which is identified as p115RhoGEF [34]. However, p115RhoGEF can also activate as well as inhibit Rho signaling after stimulation of PAR1 [35,36]. From our earlier study, we showed that PAR1 may be activated independent of the expression and activity of MMP1. Here, we ask if Ga12/13 heteromeric proteins and the downstream signaling cascade may be involved in transducing the signals from PAR1 to promote hfMSC migration. It has been shown that Ga13 can stimulate RhoGEF activity of p115RhoGEF and directly couple to RhoA activation [37]. Ga12 does not activate Rho through p115 [38]. In the hfMSC that exhibit the highest migratory potential, Ga13, p115RhoGEF, RhoA, Rac and cdc42 proteins were significantly enhanced when compared to S27, i.e. the hfMSC that migrate the least among the four representative isolates (Figure 5). The protein profiles of the Ga13/p115RhoGEF/RhoA pathway in S8 resembled those observed in the highly migratory adult MSC-1 whereas the S33 and S64 shared similar protein expression levels to S27 in many of the signaling mediators. The G12/G13 a subunits were consistently higher in S33 compared to S27 or S64. The enhanced expression of Ga13/

Figure 1: Human fetal MSC (hfMSC) migrate to Hepatocellular carcinoma (HCC). Migration of hfMSC toward conditioned media from HuH-7 cell line was analyzed using a modified Boyden chamber assay. Briefly, 1x104 MSC were seeded in 8 µm 24-Transwells (BD Biosciences) and analyzed after 8 h. Number of migrating cells was determined by counting the number of propidium iodidestained cells on the underside of the membrane under x200 magnification. Data shown are averages of quadruplicate wells. Bar graph represents percentage of migrated cells normalized to human adult MSC-1 ± SEM.

Figure 2: Migration of Human fetal MSC is independent of MMP1. (A) Expression of Pro-MMP1 in 100 µg of conditioned medium harvested from various MSC Data shown is the average of duplicate wells from representative experiments. (B) MMP1 activity was quantitated in conditioned medium harvested from various MSC. Bar graph represents active MMP1 normalized to MSC-1. Data shown are averages of duplicate wells from representative experiments.

PAR1 receptor. (A) Western blot analysis was performed on 35µg of protein extracts from human adult MSC-1 and passage matched human fetal MSC S8, S27, S33 and S64 using anti-PAR1 antibody. Normalization was performed using antibody against pan actin. (B) Effect of anti-PAR1 blocking antibody on the in vitro migration of MSC-1, S8 and S33 toward HuH-7 conditioned medium was examined using a modified Boyden chamber assay. (i) Bar graph represents percentage of migrated cells normalized to S8 Naïve cells. Data shown are averages of triplicates ± SEM from representative experiments. (ii) Representative photomicrographs of migrated human adult MSC (MSC-1) or human fetal MSC (S8 and S33) in the absence and presence anti-PAR1 or anti-IgG₁. Original magnification x200.

p115RhoGEF/RhoA proteins in highly migratory S8 suggests that this pathway could be involved in MSC migration although further analysis is required.

Discussion

In this study, we demonstrated that different isolates of hfMSC exhibited a more uniform and consistent tumor tropism when compared with adult human MSC isolates. In particular, we did not observe any hfMSC that failed to migrate towards conditioned medium

Page 4 of 7

derived from tumor cells. Our results showed that the migration of hfMSC did not correlate to the expression and activity of MMP1 and MMP2. Rather, it appeared to be dependent, in part, on PAR1 expression, which may be modulated by GPCR signal pathways. Additional functional studies are required to confirm the precise underlying migratory mechanism.

Unlike the adult MSC, we did not observe a tight correlation between MMP1 and fetal MSC migration (Figure 1 and Figure 2). Likewise, significant levels of total and secreted MMP2 proteins could be detected using western blot and ELISA analysis in S27 when it migrate the least among the four representative hfMSC (Figure 4). However, when the MMP1 cognate receptor (PAR1) was blocked in the presence of anti-

Figure 4: MMP2 does not play a key role in the tumor tropism of Human fetal MSC. (A) Western blot analysis was performed on 35µg of protein extracts from human adult MSC-1 and passage matched human fetal MSC S8, S27, S33 and S64 using anti-MMP2 antibody. Pan Actin was used as a loading control. Levels of total MMP2 were normalized to pan actin. (B) Expression of total secreted MMP2 in 100 µg of conditioned medium harvested from MSC-1, S8, S27, S33 and S64. Bar graph represents total MMP2 expression level normalized to MSC-1. Data shown are averages of triplicate wells from representative experiments.

Figure 5: Migration of Human fetal MSC may involve G α 12/13 signaling pathway. (a) Western blot analysis on 35µg of protein extracts from human adult MSC-1 and passage matched human fetal MSC S8, S27, S33 and S64. Proteins were semi-quantified and normalized to loading control Pan Actin. Ga13 protein level were 0.01 (MSC-1), 0.03 (S8), 0.01 (S27), 0.22 (S33) and 0.01 (S64). p115RhoGEF protein levels were 0.02 (MSC-1), 0.09 (S8), 0.02 (S27), 0.33 (S8), 0.22 (S27), 0.13 (S33), 0.09 (S64). Total Rho A protein levels were 0.45 (MSC-1), 0.33 (S8), 0.22 (S27), 0.14 (S27), 0.1 (S33), 0.05 (S64). Total Rac protein levels were 0.07 (MSC-1), 0.19 (S8), 0.14 (S27), 0.1 (S33), 0.05 (S64). Total Rac protein levels were 0.04 (MSC-1), 0.05 (S8), 0.03 (S27), 0.03 (S33) and 0.01 (S64).

PAR1 antibodies (Figure 3Bi and ii), there was a significant reduction in the number of hfMSC migrated towards tumor-derived conditioned medium, suggesting that additional cellular factors other than MMPs may interact with PAR1 to modulate MSC migration. A likely candidate may be thrombin which is known to bind and subsequently cleaves the N-terminal domain of PAR1 which then acts as a tethered ligand to initiate intracellular signaling [39]. The activation of PAR1 resulted in the up-regulation of gene products involved in adhesion ($\alpha_{IIb}\beta$ 3, $\alpha\nu\beta$ 5, $\alpha\nu\beta$ 3 integrins) [40,41] invasion (MMP-2) [42], proinflammatory molecules (IL-6, macrophage inflammatory protein-1 α) [43,44] and angiogenesis (IL-8; VEGF; bFGF; PDGF) [45-47]. In the adult MSC, thrombin can enhance MSC migration [45] although its role in the migratory activities of fetal MSC is currently unknown.

The Rho family of GTPases is key regulators of actin cytoskeletal dynamics and has been included in our studies to provide better understanding in regard to migration of hfMSC. Most RhoGTPases switch between an active GTP-bound form and an inactive GDPbound form, which is modulated by three sets of proteins, namely the guanine nucleotide-exchange factors (GEFs), the GTPase-activating proteins (GAPs) and the guanine nucleotide-dissociation inhibitors (GDIs) [48,49]. In the context of Ga12/13 proteins, there are four RhoGEFs that are known to regulate the G proteins, namely the p115-RhoGEF, PSD-95/Disc-large/ZO-1 homology (PDZ)-RhoGEF, leukemia-associated RhoGEF (LARG) and the lymphoid blast crisis (Lbc)-RhoGEF. The binding of the RhoGEFs to Ga12/13 will stimulate its GEF activity [50,51]. Oligomerization of RhoGEF negatively regulates its activity, which in turn prevent interaction with RhoA [52,53]. RhoA which is involved in the formation of actin stress fibers and focal contact sites [54] is further regulated by GDIs [55]. Other Rho family members such as Rac1 and Cdc42 which are also involved in cell migration are known to promote the formation of lamellipodia and filopodia respectively [56]. In our studies, S8 expressed slightly more Ga12/13 proteins in comparison to S27. The p115RhoGEF seemed to be expressed in an inverse correlation to RhoA. Further, the Ga13/ p115RhoGEF/RhoA pathway is activated in S8 when compared to the other hfMSC. The protein profiles of the Ga13/p115RhoGEF/RhoA pathway in S8 resembled those observed in the highly migratory adult MSC-1. Coincidentally, S8 is derived from a more mature gestational age of 16 weeks when compared to S27 (week 13), S33 (week 10) and S64 (week 13). The possible role of Rho proteins in MSC migration has been inconsistent. The inhibition of Rho resulted in actin cytoskeleton rearrangement in MSC and rendered the cells susceptible to induction of migration by physiological stimuli [57]. By contrast, neither Rho nor Rho-effector is required for 3D migration of MSC [58]. In hematopoietic cells, Rho GTPases Rac1 and Rac2 certainly play distinct roles in actin organization and migration of hematopoietic progenitor cells, in addition to cell survival and proliferation [59]. In mouse myoblast C2C12 cells, bone-morphogenic protein-2 (BMP-2) -mediated cell migration has recently been shown to require both the activation of small GTPase Cdc42/PI3K and p38 pathways [60]. Taken together, our results showed that Ga13/p115RhoGEF/RhoA pathway may be involved in hfMSC although this requires further validation in vitro and in vivo.

Apart from G α 12/13 that could signal through Rho family member, other GPCR such as CXCR4 and its ligand SDF-1 also play an important role in regulating stem cell homing [61-63]. Although the endogenous status of SDF-1 and CXCR4 are not determined in this study, the SDF1/CXCR4 axis is well studied in human umbilical cord derived MSC (hUCB-MSC). In the latter cells, CXCR4 transcript Citation: Newman JP, Yi TX, Chan JKY, Endaya B, Lam P (2011) Migration of Human Fetal Bone Marrow-derived Mesenchymal Stem Cells: Possible Involvement of GPCR and MMPs. J Stem Cell Res Ther S2:007. doi:10.4172/2157-7633.S2-007

is reported as strongly expressed and functional in response to an SDF-1 gradient although the surface expression was low. In a recent study, SDF-1 was found to induce the migration of hUCB-MSC in a dose-dependent manner. The induced migration was subsequently inhibited by CXCR4-specific peptide antagonist (AMD-3100) and other inhibitors against PI3K, ERK and p38MAPK, suggesting that these signal transduction pathways may also be involved in SDF-1-mediated migration of hUCB-MSC [64]. Thus, the functional importance of CXCR4 may be in a dynamic cycles to and from the cell surface via endocytosis.

Taken together, unlike adult MSC, our results showed that the tumor tropism exhibited by hfMSC is not strictly correlated to the expression of MMPs levels. However, blocking the cognate receptor PAR1 resulted in significant reduction in MSC migration, suggesting that other additional factors may interact with PAR1 to modulate MSC migration. Alternately, other GPCR may also be involved in modulating the migratory activities of hfMSC. Nevertheless, our studies demonstrated that hfMSC exhibited uniformly high migratory activities to conditioned media derived from tumor cells, and could serve as good cellular vehicles for treatment of human cancers.

Acknowledgement

We would like to thank Dr. Alex Lyakhovich (Duke-NUS) for his valuable advice given to the Ga12/13 protein studies, Dr. IAW Ho (National Cancer Centre, Singapore) for her technical advice on the PAR1 inhibition study. We have used the same MSC-1 and MSC-8 as controls, which were mentioned from an earlier publication and would like to extend our appreciation once again to Dr. Guo Chang Ming (Singapore General Hospital) for providing the adult bone marrow. This research is supported by grants from the Singapore Stem Cells Consortium (A*STAR) and the National Medical Research Council Singapore. Dr. J Chan received salary support from the National Medical Research Council (NMRC/CSA/012/2009).

References

- Brooke G, Cook M, Blair C, Han R, Heazlewood C, et al. (2007) Therapeutic applications of mesenchymal stromal cells. Semin Cell Dev Biol 18: 846-858.
- Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12: 126-131.
- Patel SA, Sherman L, Munoz J, Rameshwar P (2008) Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp (Warsz) 56: 1-8.
- Chapel A, Bertho JM, Bensidhoum M, Fouillard L, Young RG, et al. (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5: 1028-1038.
- Satake K, Lou J, Lenke LG (2004) Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine (Phila Pa 1976) 29: 1971-1979.
- Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, et al. (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180: 2581-2587.
- Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, et al. (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96: 1593-1603.
- Nakamizo A, Marini F, Amano T, Khan A, Studeny M, et al. (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65: 3307-3318.
- Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, et al. (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106: 4822-4827.

Page 6 of 7

- Chang DY, Yoo SW, Hong Y, Kim S, Kim SJ, et al. (2010) The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int J Cancer 127: 1975-1983.
- Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, et al. (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res 69: 8932-8940.
- Hess DA, Allan AL (2011) Migratory strategies of normal and malignant stem cells. Methods Mol Biol 750: 25-44.
- Chamberlain G, Smith H, Rainger GE, Middleton J (2011) Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear. PLoS One 6: e25663.
- Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, et al. (2009) Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27: 1366-1375.
- Son KN, Hwang J, Kwon BS, Kim J (2006) Human CC chemokine CCL23 enhances expression of matrix metalloproteinase-2 and invasion of vascular endothelial cells. Biochem Biophys Res Commun 340: 498-504.
- Ruster B, Gottig S, Ludwig RJ, Bistrian R, Muller S, et al. (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108: 3938-3944.
- Ries C, Egea V, Karow M, Kolb H, Jochum M, et al. (2007) MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109: 4055-4063.
- Veeravalli KK, Dasari VR, Tsung AJ, Dinh DH, Gujrati M, et al. (2009) Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiol Dis 36: 200-212.
- Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, et al. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104: 2643-2645.
- Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, et al. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106: 419-427.
- Curnock AP, Ward SG (2003) Development and characterisation of tetracyclineregulated phosphoinositide 3-kinase mutants: assessing the role of multiple phosphoinositide 3-kinases in chemokine signaling. J Immunol Methods 273: 29-41.
- Chan JS, Lee JW, Ho MK, Wong YH (2000) Preactivation permits subsequent stimulation of phospholipase C by G(i)-coupled receptors. Mol Pharmacol 57: 700-708.
- Tan W, Martin D, Gutkind JS (2006) The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 281: 39542-39549.
- Turm H, Maoz M, Katz V, Yin YJ, Offermanns S, et al. (2010) Proteaseactivated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels. J Biol Chem 285: 15137-15148.
- Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16: 522-529.
- Bhattacharya M, Babwah AV, Ferguson SS (2004) Small GTP-binding proteincoupled receptors. Biochem Soc Trans 32: 1040-1044.
- Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human firsttrimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25: 646-654.
- Chan J, Kumar S, Fisk NM (2008) First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod 23: 2427-2437.
- Chan J, O'Donoghue K, de la Fuente J, Roberts IA, Kumar S, et al. (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23: 93-102.

Citation: Newman JP, Yi TX, Chan JKY, Endaya B, Lam P (2011) Migration of Human Fetal Bone Marrow-derived Mesenchymal Stem Cells: Possible Involvement of GPCR and MMPs. J Stem Cell Res Ther S2:007. doi:10.4172/2157-7633.S2-007

- Polkinghorne J (1989) Review of the Guidance on the Research Use of Fetuses and Fetal Material.CM 762 London: HMSO.
- Ho IA, Chan KY, Miao L, Shim WS, Guo CM, et al. (2008) HSV-1 amplicon viral vector-mediated gene transfer to human bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 15: 553-562.
- 32. Zhang ZY, Teoh SH, Chong MS, Lee ES, Tan LG, et al. (2010) Neovascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 31: 608-620.
- Bhoopathi P, Chetty C, Gogineni VR, Gujrati M, Dinh DH, et al. (2011) MMP-2 mediates mesenchymal stem cell tropism towards medulloblastoma tumors. Gene Ther 18: 692-701.
- 34. Wells CD, Liu MY, Jackson M, Gutowski S, Sternweis PM, et al. (2002) Mechanisms for reversible regulation between G13 and Rho exchange factors. J Biol Chem 277: 1174-1181.
- Holinstat M, Mehta D, Kozasa T, Minshall RD, Malik AB (2003) Protein kinase Calpha-induced p115RhoGEF phosphorylation signals endothelial cytoskeletal rearrangement. J Biol Chem 278: 28793-28798.
- Kozasa T (2001) Regulation of G protein-mediated signal transduction by RGS proteins. Life Sci 68: 2309-2317.
- Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, et al. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280: 2112-2114.
- Suzuki N, Nakamura S, Mano H, Kozasa T (2003) Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci U S A 100: 733-738.
- Nanevicz T, Ishii M, Wang L, Chen M, Chen J, et al. (1995) Mechanisms of thrombin receptor agonist specificity. Chimeric receptors and complementary mutations identify an agonist recognition site. J Biol Chem 270: 21619-21625.
- 40. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, et al. (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149: 293-305.
- 41. Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, et al. (2001) Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 276: 10952-10962.
- 42. Zucker S, Conner C, DiMassmo BI, Ende H, Drews M, et al. (1995) Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem 270: 23730-23738.
- 43. Fan Y, Zhang W, Mulholland M (2005) Thrombin and PAR-1-AP increase proinflammatory cytokine expression in C6 cells. J Surg Res 129: 196-201.
- 44. Mercer PF, Deng X, Chambers RC (2007) Signaling pathways involved in proteinase-activated receptor1-induced proinflammatory and profibrotic mediator release following lung injury. Ann N Y Acad Sci 1096: 86-88.
- 45. Ueno A, Murakami K, Yamanouchi K, Watanabe M, Kondo T (1996) Thrombin stimulates production of interleukin-8 in human umbilical vein endothelial cells. Immunology 88: 76-81.
- 46. Huang Y, Xie C (2001) [Values of TNF, IL-8, sICAM-1 and CD11b/CD18 in benign and malignant pleural effusions]. Zhonghua Jie He He Hu Xi Za Zhi 24: 35-39.
- Cucina A, Borrelli V, Di Carlo A, Pagliei S, Corvino V, et al. (1999) Thrombin induces production of growth factors from aortic smooth muscle cells. J Surg Res 82: 61-66.
- Schmidt A, Hall A (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16: 1587-1609.
- Siehler S (2009) Regulation of RhoGEF proteins by G12/13-coupled receptors. Br J Pharmacol 158: 41-49.

This article was originally published in a special issue, **Stem Cell Based Therapy** handled by Editor(s). Dr. Aline M. Betancourt, Tulane University Medical Center, USA Fukuhara S, Chikumi H, Gutkind JS (2001) RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 20: 1661-1668.

Page 7 of 7

- Dutt P, Nguyen N, Toksoz D (2004) Role of Lbc RhoGEF in Galpha12/13induced signals to Rho GTPase. Cell Signal 16: 201-209.
- 52. Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, et al. (2004) Homoand hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 23: 233-240.
- Baisamy L, Jurisch N, Diviani D (2005) Leucine zipper-mediated homooligomerization regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem 280: 15405-15412.
- Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-399.
- 55. Kasper B, Tidow N, Grothues D, Welte K (2000) Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia. Blood 95: 2947-2953.
- Wennerberg K, Der CJ (2004) Rho-family GTPases: it's not only Rac and Rho (and I like it). J Cell Sci 117: 1301-1312.
- Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, et al. (2007) Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25: 1966-1974.
- Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ (2008) Contact guidance mediated three-dimensional cell migration is regulated by Rho/ ROCK-dependent matrix reorganization. Biophys J 95: 5374-5384.
- 59. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, et al. (2003) Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302: 445-449.
- Gamell C, Susperregui AG, Bernard O, Rosa JL, Ventura F (2011) The p38/ MK2/Hsp25 pathway is required for BMP-2-induced cell migration. PLoS One 6: e16477.
- 61. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185: 111-120.
- Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, et al. (2005) Atypical PKCzeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 115: 168-176.
- 63. Shi M, Li J, Liao L, Chen B, Li B, et al. (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92: 897-904.
- 64. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, et al. (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-cmet axes and involves matrix metalloproteinases. Stem Cells 24: 1254-1264.