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Editorial
Initially, non-coding RNAs were thought to be “junk RNAs”.

MicroRNAs (miRNAs), a group of small non-coding RNA molecules,
were discovered in 1993 [1,2]. However, their functions have been
found to be associated with diverse biological procedures, including
development, metabolism, immunity, hematopoietic differentiation,
etc. [3]. It is estimated that miRNAs regulate the activity of
approximately 60% of human protein-coding genes [4]. Abnormal
miRNA expression may lead to a number of diseases, such as
neoplasms [5,6], age-related diseases [7], and neurological disorders
[8]. Advances in miRNA research have suggested that miRNAs not
only help to understand molecular mechanisms of human CNS
diseases, but also have potential to serve as biomarkers for early
detection of neurological and/or neurodegenerative alterations.

miRNAs in the Central Nervous System (CNS)
Around 70% of the identified miRNAs are found in the brain [9].

Some miRNAs are specifically expressed and enriched in brain [10],
suggesting their specific roles in regulating brain functions.
Specifically, miRNAs are implicated in brain development: they
regulate embryonic neural induction, development, differentiation,
neuronal subtype specification, migration and integration,
synaptogenesis and synaptic plasticity [11]. Any interference of
miRNA regulations may be associated with aberrant neural
development and neurological disorders.

The strikingly regulatory effects of miRNAs on the brain during
development vary depending on developmental stages and/or the
specific brain regions [10,12-14], contributing to the balance between
neural stem cell proliferation and differentiation, therefore directing
neural cell fates and brain morphogenesis. In general, miR-124,
miR-125b, miR-137, miR-7 are contributing to neuronal
differentiation, whereas miR-134, miR-184 are effective in maintaining
neural stem cells at the undifferentiated status [15,16]. Indeed,
miR-124 has been demonstrated to be the most abundantly expressed
in adult brain [17] and is upregulated during neural progenitor cell
differentiation and neuronal maturation [18]. miR-137 is found to
increase neural stem cell proliferation and decrease differentiation
during early development [19,20]. On the other hand, when neurons
are differentiated, miR-137 promotes neuronal maturation by
facilitating dendritic and axonal morphogenesis, synaptogenesis and
spine development [21].

miRNAs have been indicated as important regulators in a number
of neurological disorders, ranging from brain and nervous system
neoplasms to neurodegenerative diseases such as Alzheimer's disease
and Parkinson's disease [22-24]. Potential relationship between

miRNAs and schizophrenia has also been identified in some patients
[24]. For example, altered miRNA profiles in prefrontal cortex of
schizophrenia patients has been detected from postmortem
examination [23]. miRNAs bind to the target mRNAs to repress
protein translation or increase mRNA degradation. Further
identification of miRNA-targeting genes will help us better understand
the mechanisms of neurological diseases, achieving our ultimate goal
to develop miRNA-based diagnostic methods and effective therapies
for clinical practice.

miRNAs as a Potential Biomarker for Early Detection
of Neurological Disorders

miRNAs were first known to be inside of cells only, serving as
regulators/mediators of cellular events. In 2008, they were found in
plasma as well [25]. To date, miRNAs have been detected in most bio-
fluids, such as plasma/serum, urine, cerebrospinal fluid (CSF), saliva
[26-29]. In contrast to mRNA, extracellular miRNAs are stable and
consistent within subjects of the same species [30]. Therefore, it has
been proposed that extracellular miRNAs from bio-fluids may be able
to serve as biomarkers for various disorders, including neurological
diseases. Moreover, extracellular miRNAs alterations could indicate
altered biological processes and possible therapies to target the
pathological conditions.

Recently, application of miRNAs in easily accessible bio-fluids like
plasma/serum as biomarkers for diseases has been widespread.
However, current screening techniques used for miRNA biomarker
identification are not sufficiently effective and sensitive. A generally
used method to identify miRNAs as biomarkers is to compare miRNA
profile from patients’ bio-fluids with that from control group using
miRNA array or next generation sequencing [31]. Although a great
number of miRNAs can be analyzed simultaneously, it has been found
that the sensitivity is much lower compared with traditional RT-PCR
for individual miRNA examination due to the fact that the
concentrations of most miRNAs in bio-fluids are very low. To improve
the sensitivity, a two-step comparison is performed. Initially, a primary
analysis of miRNAs from cells, tissues or organs that are obtained in
pathological and normal conditions is performed. In the next step, the
differentially expressed miRNAs is to be analyzed and verified [31].
Although there are reports that alteration of miRNAs in bio-fluids are
not always consistent with those identified in cells, tissues or organs,
this two-step approach has increased the sensitivity and reproducibility
in some situations [31].

Similarly, the low concentrations of brain-enriched miRNAs in
plasma/serum have resulted in a low detection rate of miRNAs, using
current available techniques for identification of biomarkers of
neurological diseases. Compared with plasma/serum, identification of
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miRNA biomarkers from the CSF for neurological diseases can be
advantageous: CSF is exclusively generated and circulating within the
brain; the blood-brain barrier effectively prevents miRNAs generated
from other sources entering CSF [31]. After miRNAs were first found
in CSF [28], several more studies have demonstrated the presence of
miRNAs in CSF and their potentials as biomarkers for neurological
disease [32-35]. Further, a study comparing miRNA expression profile
from serum and CSF has revealed that miRNA expression pattern is
quite consistent among different subjects when miRNAs are from the
same type of bio-fluid (serum or CSF). In contrast, the miRNA profile
is less similar even the miRNAs are from the same subjects, but in
different type of bio-fluids (serum or CSF) [36]. The difference
suggests that changes in miRNAs relevant to neurological dysfunctions
from plasma/serum could be masked by systemic miRNA changes that
are not related to nervous system [36], and alteration of miRNA levels
in CSF can be more relevant and sensitive for the early detection of
neurological diseases.

Evaluation of miRNA in Neural Stem Cells to Study
Neurotoxicity

It has been a fast progressing field of research to apply miRNAs as
indicators to evaluate the severity of damage/injury for chemical/drug-
induced toxicity. Research experimentation on neurotoxicity, especially
developmental neurotoxicity is expensive and time-consuming.
Establishing cost-effective and time-efficient experimental models and
searching sensitive biomarkers for assessment of developmental
neurotoxicity is therefore becoming increasingly necessary. As
proposed by the National Research Council in 2007 (National
Research Council, 2007), the future developmental neurotoxicity tests
will depend mostly on in vitro models. Under such premise, utilization
of human-derived neural stem cells may be the most relevant and
effective model for understanding the roles of miRNA in mediating
neurotoxic effects in human. In fact, the involvement of miRNAs in
developmental neurotoxicity has been already observed in studies
using human neural stem cell models [37-40]. The obtained results
reveal that changes in miRNA expression may be a practical tool for
assessing developmental neurotoxicity, understanding the underlined
mechanisms, and developing strategies for therapeutic approaches.

Conclusion
The advances of miRNAs research have enriched our understanding

of the CNS development and neurological disorders. Their diverse
functions, multiple targets and complicated interacting network imply
their profound involvement in the CNS development and functions.
When generally the effects of a single miRNA are focused, interaction
of multiple miRNAs may cause synergistic or even antagonistic effects.
In the CNS, new roles of miRNAs in brain development and
neurotoxicity have been just discovered. Although it is still difficult to
clarify a cause/effect role of changes in miRNAs for the pathological
conditions, application of miRNAs as biomarkers for neurological
disorders and neurotoxic testing is promising [41,42].

Disclaimer
The information in these materials is not a formal dissemination of
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