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Introduction
Birth defects are a serious public health problem. Every year, 

nearly 270,000 newborns die and 3.3 million children suffer from 
congenital anomalies worldwide [1]. In the United States of America, 
where perinatal care is widely available, about 120,000 babies are 
born with structural abnormalities [2]. The causes of developmental 
malformations include genetic and non-genetic factors. Maternal 
diseases (e.g., diabetes mellitus), clinical drugs (e.g., valproic acid), and 
environmental factors (e.g., alcohol, pollutants) are among the non-
genetic factors ascribed for rapid increases of birth defects [3,4]. Efforts 
to prevent birth defects have been made at the population level, for 
example, dietary vitamin supplementation. Individualized and defect 
type-focused practices require detection and diagnosis of embryonic 
malformations during early pregnancy. 

Embryonic malformations

Structural defects are most commonly seen in the central nervous 
and cardiovascular systems (CNS and CVS). In the CNS, anomalies are 
present in the brain (e.g., exencephaly) and spinal cord (e.g., spina bifida) 
[5]. These abnormalities are formed due to failure in neural tube closure 
during the early embryogenesis, thus, referred to as neural tube defects 
(NTDs) [5]. The process of neural tube formation, namely neurulation, 
occurs between 18-26 days of post-conception in humans [6]. In the CVS, 
most common anomalies are associated with abnormal cardiac septation 
to produce septal defects [7]. These defects are also formed during the 
early cardiogenesis [7]. Therefore, any measures to prevent birth defects 
should be implemented before or during the so-called susceptible period 
of organogenesis, which is the early first trimester. 

Diagnosis of embryonic/fetal anomalies

Detection of embryonic/fetal anomalies in pregnancies largely 
relies on ultrasonography [8]. With recent technological developments, 
imaging resolution and processing have been considerably improved 
[9]. Color Doppler sonography can measure fetal cardiac functions 
[10,11]. However, ultrasonography has limitations in detecting 
structural abnormalities in young embryos. Most abnormalities are 
only diagnosed in fetuses older than 12 weeks of gestation [9,12]. Very 

few anomalies can be recognized as young as 10 weeks of gestation [13]. 
By then, the damages in the fetuses are already irreversible. 

Biomarkers for diagnosis of fetal anomalies 

Searching for molecular biomarkers in maternal blood and 
amniotic fluid has been undertaken for decades. Because of the limited 
accessibility of the amniotic fluid, maternal blood is the major source 
of biomarkers. 

One class of biomarkers, reflecting maternal physiological 
conditions, for example, oxidative stress markers (endogenous 
antioxidants and lipoperoxidation products), have been used to 
evaluate the risk of developing fetal abnormalities [14,15]. 

Protein biomarkers, including α-fetoprotein, human chorionic 
gonadotropin, maternal serum unconjugated estriol, and Inhibin-A, 
have also been characterized and used in diagnosis of fetal anomalies 
in pregnancies [16-19]. However, these biomarkers can only be used as 
supplementary indicators to ultrasound examinations because of their 
low sensitivity and reliability. 

MicroRNAs as biomarkers for detection of embryonic 
malformations

Recently, nucleic acids (DNA and RNA), especially non-coding 
RNAs, have been found in human blood and urine [20-23]. Among 
them, microRNAs (miRNAs) have drawn much attention as potential 
biomarkers for diseases [22,24,25]. MI RNAs are 22 not single-stranded 
RNAs, present intracellularly and extracellularly [26-28]. Mi RNAs are 

*Corresponding author: Zhiyong Zhao, Department of Obstetrics, Gynecology
and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, 
MD 21201, USA, Tel: (410) 706-8401; E-mail: zzhao@fpi.umaryland.edu 

Received July 31, 2014; Accepted October 07, 2014; Published October 14, 2014

Citation: Li X and Zhao Z (2014) MicroRNA Biomarkers for Early Detection 
of Embryonic Malformations in Pregnancy. J Biomol Res Ther 3: 119. doi: 
10.4172/2167-7956.1000119

Copyright: © 2014 Li X, et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
Congenital birth defects, manifested in newborn infants, are formed during early embryogenesis. Targeted 

and individualized interventions to prevent birth defects require early detection of risk and signs of developmental 
abnormalities. Current diagnosis of structural anomalies largely relies on ultrasonography, which can only detect 
abnormities after their formation in fetuses. Biomolecules, mainly proteins, in maternal blood have been used 
as indicators of fetal anomalies; however, they lack adequate sensitivity for detecting embryonic malformations. 
Recently, cell-free microRNAs (miRNAs) have been found in blood and evaluated as biomarkers for diseases. 
Expression of certain miRNAs in maternal plasma has been shown to be correlated with birth defects in infants. 
Although their reliability and sensitivity remain to be validated, miRNAs, which can be amplified and sequenced, are 
potentially sensitive and specific biomarkers for early embryonic dysmorphogenesis.
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initially synthesized as long primary miRNA (pri-miRNA) molecules 
by RNA polymerase II or III. Pri-miRNAs are processed by nuclear 
endoribo nuclease Drosha into ~70 nt hairpin structures, known as 
pre-miRNA. The pre-miRNAs are transported out of the nucleus by 
Exportin 5. In the cytoplasm, the pre-miRNAs are further processed  
by another RNase, Dicer, to become 22 not single-stranded miRNAs 
[29-31]. Within the cell, miRNAs, facilitated by a protein complex, 
known as RNA-induced silencing complex (RISC) containing argonaute 
(Ago) proteins, bind to messenger RNAs (mRNAs) via the Waltson-
Crick complementary base-pairing to block translation or induce 
mRNA degradation [32-34]. 

MiRNAs are expressed in the developing embryo and have been 
demonstrated to play an important role in embryogenesis [35-37]. 
Dysregulation of miRNAs has been shown to be associated with 
human birth defects, e.g., Tetralogy of Fallot in the heart and Di 
George syndrome [38,39]. Spatial and temporal expression patterns of  
miRNAs in the developing primitive organs of the embryo, such as the 
neural fold and heart tube, imply that they are involved in malformations 
of the structures during the period of organogenesis susceptible to 
environmental insults [36,40-42]. Animal studies have shown that 
deficiency in miRNA biogenesis and processing results in abnormal 
embryogenesis. For example, embryos lacking the dicer1 or ago2 genes, or 
certain species of miRNA (knockouts) fail to develop beyond gastrulation 
or develop abnormalities in many organ systems, including NTDs and 
heart defects [43-47], resembling birth defects in humans. 

The mechanisms by which miRNAs regulate development remain 
to be fully delineated. Available data have suggested that miRNAs 
target genes that regulate neurulation and cardiogenesis, including 
transcription factors and genes in growth factor signaling (e.g., the 
TGFβ and Wnt families) [36,40,48,49]. 

MiRNAs, are present in the amniotic fluid and potentially used 
to predict outcome of pregnancy [50,51]. However, invasive methods 
to collect amniotic fluid during gestation are not practical. MiRNAs 
are excreted from cells and transported into blood stream (Figure 
1), and can be obtained from maternal blood samples collected 
during prenatal care [22,24]. MiRNAs are promising biomarkers for 
early detection of embryonic malformations in pregnancies, for the 
following reasons. First, miRNAs are very stable in body fluids [23]. 
Their initial appearance in the blood can indicate the early stages or 
even before the onset of diseases. Changes in their levels can reliably 
reflect the progression of diseases. Second, embryonic miRNAs 
can pass through the maternal-embryonic interface to be present  
in the maternal system [52,53]. Third, due to the characteristic of  
base-sequence, certain species of miRNA can provide unique signatures 
of embryonic conditions. Fourth, technologies to amplify and sequence 
miRNAs can detect tiny amounts of miRNAs for early diagnosis and 
provide sequence-specific information [54,55]. 

Pregnancy-related miRNAs have been isolated from maternal 
plasma [56-58]. Microarray, sequencing, and quantitative reverse 
transcription-coupled polymerase chain reaction assays revealed 
that the expression profiles of miRNAs are correlated with fetal 
malformations in the CNS and CVS [56,57]. These studies demonstrate 
the potential application of this approach to diagnosis of fetal anomalies. 

More research is needed to validate the reliability and sensitivity 
of miRNA markers in detecting embryonic malformations [59]. 
For example, maternal blood samples are usually collected during 
the secondary and third trimesters [56,57]. However, embryonic 
malformations occur during the early first trimester [4,60]. MiRNAs 
expressed during early embryogenesis, the so-called susceptible period 

of organogenesis, may more reliably reflect the developmental conditions 
in dysmorphogenesis. Secondly, it is important to distinguish embryonic 
miRNAs from maternal miRNAs, as they represent different biological 
processes and may possess different sensitivity. With the recent 
technologies to amplify and sequence small RNAs, miRNAs can serve 
as biomarkers to detect risks and early aberrant developmental events 
in pregnancy, making early diagnosis and individualized birth defect 
prevention a reality.
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Figure 1: Diagrammatic illustration of embryonic miRNA biogenesis and 
secretion to maternal circulation. Transcription of miRNA genes generates 
pre-miRNAs in the nucleus of embryonic cell. pri-miRNAs are processed 
into pre-miRNAs and transported to the cytoplasm. Pre-miRNAs are cleaved  
into double-stranded small RNA, and further separated into single-stranded  
miRNAs. Mi RNAs are either involved in post-transcriptional regulation of mRNAs 
or secreted into extracellular space and transported into maternal circulation.
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