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Abstract

Micrometastasis is a health burden affecting a large population worldwide, where early stage circulating tumor
cells are clinically below the detection limit of the currently used techniques in diagnosis. These cells are considered
one of the sources related to the disease spread, usually associated with poor prognosis and resistant to
conventional therapies. With the recent advances in technology, various molecular and biological techniques
including cytological examination, RT-PCR immunocytochemistry, immuno-magnetic separation and cell-enrichment
techniques have emerged to improve the early detection of circulating tumor cells in different carcinomas. However,
the sensitivity and specificity of these techniques along with their prognostic influence are still contested. This review
aims to discuss the role of key player molecules including cell adhesion molecules, integrins and proteases in
promoting micrometastasis and the current techniques used for an early detection of these malignant cells.
Understanding mechanisms underlying this invasive process, will pave the way for designing new tools to unravel
difficulties associated with early detection of CTCs and will improve therapies.

Keywords: Cancer cells; Micrometastasis; Cell-adhesion molecules;
Integrins; Proteases

Introduction
Cancer is defined as a class of diseases characterized by an

uncontrolled cell growth with major hallmarks including resistance to
apoptosis, alteration of growth factors (GFs), uncontrolled cell-cycle
promoting limitless replications, metastasis and angiogenesis [1].
Extensively altered cells do not respond to regulatory stimulus and
tend to form lumps leading to malignant tumors, which can either be
confined to the related organ or start spreading by invading of the
basement membrane and/or formation of new blood vessels. Cancer is
very heterogeneous and variability might be seen among different
ethnicities and races, although individuals from different regions
might also harbor the same tumor [1]. The process of spread from the
primary site of the tumor to proximate or distant sites is considered
one of the most threatening aspects of cancer [2]. It is the primary
cause of treatment failure and cancer-related death. Cancer cells tend
to invade secondary sites (i.e., bone, liver, lung, brain) and exfoliate
into body cavities, especially the pleural space where they grow in
suspension within effusions [3]. Metastatic cells circulate in the
bloodstream even after trials to eradicate the primary tumor and
remain often undetectable at diagnosis. These circulating tumor cells,
suspected to be the origin of metastatic disease, can be easily found in
the peripheral blood and bone marrow of cancer patients.

Despite the tremendous efforts and advances in the treatment of
cancer, recurrence continues to be intriguing and pose serious
challenges to clinical managements. The establishment of this complex
process depends essentially on the ability of cancer cells to acquire not
only a migratory phenotype but also the capacity to create a secondary

niche in a distance. To accomplish this, cancer cells undergo
substantial changes through a multistep process, initiated by the
dissociation of the malignant cell from the primary site to enter the
bloodstream (intravasation) and develop a survival mechanism to the
hostile environment before settling on the target tissue or organ
(extravasation) and propagate. It is believed that cells engaged in such
processes after acquiring an aggressive phenotype, tend to become
invasive by migrating through the basement membrane. To promote
invasiveness, a complex molecular process involving components such
as cell adhesion molecules (CAMs), secreted proteases
(metalloproteinases; MMPs), integrins and other specific genes (e.g.,
Snail, YB-1) act conjointly to allow the loss of cell adhesion and
facilitate cell migration [4].

The outcome of such phenotype is the establishment of
micrometastasis, a situation where tumor cells remain clinically not
easy to detect by conventional methods and develop resistance to
therapy. These circulating tumor cells claimed to be the source of the
metastatic disease associated with poor prognosis. However, not all
affected patients develop metastasis since a fraction of these cells may
either die or adopt a dormant state until conditions are favourable to
turn active again with an invasive potential. This underlies the
biological complexity, not yet fully understood of the metastasis
phenomena. Several studies have aimed to characterize the phenotype
of these circulating tumor cells and revealed that developing an
aggressive phenotype resistant to therapy is likely due to the absence
and/or down regulation of key genes such as the proliferation
associated antigen Ki67 and the adhesion molecules E-cadherin [4].

This review will shed some light on mechanisms ruling metastasis
by focusing on the key molecules involved and the techniques (Table
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1) that can be used for an early detection to improve survival rates in
an attempt to eradicate cancer.

Techniques used for CTCs Detection Targeted Material

Cytology Epithelial cells in blood samples

RT-PCR immunocytochemistry RNA extracted from epithelial cells

immunomagnetic cell capture Epithelial cells in blood samples

RT-PCR RNA extracted from epithelial cells

Quantitative RT-PCR RNA extracted from epithelial cells

Table 1: Techniques used for CTCs detection.

Role of Cell Adhesion Molecules, Integrin and
Proteases

Cell adhesion molecules (CAMs)
Recently, gene expression profiling using microarrays revealed the

expression pattern of different genes involved in the cascade of events
leading to cancer [5]. Among these, epithelial cell adhesion molecules
(Ep-CAM) and E-cadherin were found to be the vital players involved
in the complex process of invasion and metastasis [6]. Cadherins are
proteins highly dependent on Ca2+ ions for their cell-cell adhesion
activity and are characterized by five repeated cadherin-specific motifs
in their extracellular domain [7]. E-cadherin, a member of the large
cadherin superfamily is a trans-membrane glycoprotein that mediates
calcium-dependent intercellular adhesion, particularly the epithelial
cell-cell adhesion [8,9]. The gene coding for E-cadherin is located on
chromosome 16q22.1 and plays a regulatory role in morphogenesis
[10]. Moreover, E-cadherin is reported to have a role in carcinogenesis
mainly during invasiveness where its expression has been reported to
be systematically down regulated [11-13]. E-cadherin loss was
reported to be directly associated with invasiveness acquisition and
higher tumor stages in prostate [14,15], gastric [16], colorectal [17]
and breast [18,19] cancers. Thus, E-cadherin was qualified as a tumor
suppressor gene playing a key role in the transition from premalignant
lesions to invasive metastatic cancer [20]. Moreover, there is compiling
evidence that interaction of E-cadherin with β-catenin plays a crucial
role in Wnt signaling pathway involved in carcinogenesis and
aggressive phenotype development [21,22].

Contrastively, E-Cadherin is overexpressed in certain cancer cases
and not systematically associated with a gradual loss of expression
correlating with an increase in stage. Recent studies reported a higher
frequency of E-cadherin expression in primary sites of breast cancer as
well as in gastric cancer [23,24].

The status of E-Cadherin protein in the determination of the CTC
has not been clarified yet. However, in bladder cancer, elevated
circulating E-cadherin levels correlated with the disease progression
but failed to reach statistical significance, suggesting that soluble E-
cadherin levels are not able to predict patients' prognosis. Thus,
molecular markers predicting disease progression to discriminate
high-risk patients and improve decisions about treatment are still
needed [25]. Although the mechanism of promoting cancer
progression by the loss of E-cadherin function is not yet well explored,
efforts have been deployed to clarify its potential to regulate β-catenin
and block the mitogenic signaling through growth factor receptors

underlining the complexity of E-cadherin tumor suppressor function
[26].

Another subgroup of cadherin superfamily, FAT proteins, a cell
adhesion-component of Hippo signaling pathway involved in
controlling organ size consists of more than 80 members in mammals,
seems to play a crucial role in cancer spread and metastasis [27-29].
Recently, a study involving next-generation sequencing (NGS) in
murine oral squamous cell carcinoma identified conservation of
human driver pathway alterations in Trp53, MAPK, PI3K, NOTCH,
JAK/STAT and FatI-4 [30].

In Drosophila, mutations/deletions causing loss of function of the
Fat gene generate hyperplasia of the pupal imaginal disks [31]
suggesting that Fat has a suppression effect on tumors. Moreover, loss-
of-function of the Fat gene is directly linked to an excessive cell
proliferation with normal epithelial organization and differentiation
potential [32]. Moreover, Fat4 expression was found to be lost in a
large fraction of human breast tumor cell lines and primary tumors. In
breast cancer for instance, the loss of Fat4 expression was found to be
induced by the promoter methylation[33]. These findings strongly
suggest that Fat4 is a potential candidate for a breast tumor suppressor
gene [33].

Role of integrins in metastasis
Integrins belong to the family of adhesion receptors and are also

involved in extracellular matrix adhesion. In mammals, integrin genes
18a and 8b encode polypeptides that form 24 a,b heterodimer
receptors by combination [34,35]. The combined extra-cellular
domains consist of large extracellular matrix and cell surface ligands,
while the cytoplasmic domains engage actin cytoskeleton via a series of
linker proteins [34,35].

Integrins adopt known endocytic pathways, paving the path for the
receptors to promote cell migration in either two dimensions due to
loss of focal adhesion [36-38] or three dimensions by direct
interactions between avb6 integrin and HAX-1 control receptor
endocytosis [39]. Following endocytosis, integrins, are arranged in
early endosomes to be degraded through a slow process as compared
to endocytic inhibition, suggesting its crucial role in the regulation of
integrins to be present at the plasma membrane [40-44]. Several
studies have shown inhibition of integrins to be involved in adhesion
complex formation and migration in 2D [41-43]. Furthermore,
trafficking of integrins have been suggested to be involved in
regulating invasive migration in 3D [45,46].
Integrins, avb3 and a5b1 tend to bind to similar ligands, however;
while both integrins promote migration, they can simultaneously
suppress each other by stimulating variant signaling responses [47]. In
the absence of fibronectin, phosphorylation of rabaptin-5 by PKD
promotes Rab4-dependent avb3 inhibition, thus promoting migration
in 2D and invasion into 3D extracellular matrix (ECM) [48,49]. On the
other hand, in the presence of fibronectin, invasion is inhibited. This
antagonist activity is due to the inhibition and pro-invasive activity of
a5b1 which couples with Rab-coupling protein (RECP). Rab is an
effector to recruit receptor tyrosine kinases and control their
trafficking and signaling to promote invasion into fibronectin-rich
ECM [48-52], a condition generally observed in ovarian cancer [53].

Glycans and glycoproteins composing the cellular glycocalyx are
also described to be associated to malignancy. In a recent report,
glycocalyx was found to aid in the grouping of integrins by channeling
active ingredients into adhesions. Clinical experiments from patients
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with advanced stages of cancer showed significant expressions of bulky
glycoproteins on CTCs, representing the prominent characteristic of
tumor cells that can promote metastasis by mechanically altering cell-
surface receptor function [54].

In a study conducted in breast cancer patients, bone marrow
micrometastasis showed upregulation of ICAM-1 and αvβ2 integrins,
suggesting the pro-angiogenic nature of micrometastatic cells and the
possibility to design therapeutic strategies [55]. In lung cancer, it has
been shown that interactions between the tumor and surrounding
ECM is initiated by the formation of thin, actin-rich protrusions which
hold integrin β-1 with other proteins to allow cellular-matrix
adhesion. These interactions are the result of the formed protrusions
that allow cells to trigger signaling cascades such as the FAK pathway
involved in adhesion. This leads in turn to ERK phosphorylation and
activation allowing proliferation of cancer cells [56].

Although CTCs detection are technically very challenging,
requiring very specific and sensitive methods, they remain however an
invaluable source of tumor cells and promising biomarkers. Therefore,
novel and sophisticated strategies were developed for detecting viable
and tissue-specific CTCs using a tropism-enhanced and conditionally
replicating reporter adenovirus (CTC-RV). Viral tropism was
expanded through capsid-displayed integrin targeting peptides,
suggesting the indirect role of integrin to detect viable CTCs with cell
specificity and high sensitivity [57].

Role of proteases in metastasis
Proteases are enzymes that specifically degrade and destroy the

ECM and basement membrane along with remodeling of the tissue
leading to invasion and metastasis [58]. This section will discuss the
various classes of proteases involved in tumor invasion and metastasis
including relevant candidates such as cysteine, aspartate, threonine,
serine and matrix metalloprotesases [59].

Cysteine proteases are mainly found in the lysomes (e.g., cathepsins
B, L, H and S) or in the cytosol such as calpains, involved in the
breakdown of both, intra and extracellular matrix proteins [60]. This
digestion property promotes the ability to invade the surrounding
tissues, blood and lymph nodes and metastasize to distant tissues [61].
Cathepsins have been used as markers for diagnosis in breast [62],
colon [63], tongue [64]and pancreatic cancers [65]. Furthermore,
cathepsins play an important role in angiogenesis regulation and
therefore, actively involved in tumor progression [60]. Cathepsin B
was the first identified lysosomal protease to be linked to breast
carcinoma [66]. It has the capability to degrade and remodel the
connective tissue as well as the basement membrane by secreting
lysosomes. This is considered as an important step in invasion and
metastasis [67]. Interestingly, upregulated levels of cathepsins H, L and
D have also been reported in various cancers. For instance, cathepsin
L2 (CTSL2) was shown to be upregulated in breast, lung, endometrial
[68], gastric, colon, head and neck, skin cancer and gliomas [69].

The aspartate protease (cathepsin-D) is localized in the lysosome
and is highly expressed and secreted in large amounts by human
epithelial breast cancer cells and has been developed as a marker of
poor prognosis in breast cancer [70].

Proteasomes or threonine proteases are involved in
polyubiquitinization, a complex process through which they degrade
and eliminate cellular proteins. Mutated proteasome-dependent
proteolysis has found to be linked with the onset of certain
malignancies [59].

On the other hand serine proteases are associated with cell growth
and differentiation. Urokinase-type plasminogen activators are shown
to be involved with invasion and metastasis, while a type II
transmembrane protease, matriptase is associated with the regulation
of angiogenesis, ECM degradation and tumor progression [71,72].
One of the known serine proteases, trypsin was reported to have a role
in colorectal cancer and promotes cellular proliferation, invasion and
metastasis [73]. Although, trypsin overexpression in colorectal cancer
is associated with poor prognosis and poor survival, the underlying
mechanism ruling trypsin involvement in tumor progression is still
unclear. Trypsin and protease-activated receptor-2 (PAR-2) conjointly
promote cellular growth, invasion and metastasis [74]. Furthermore, it
has been shown that trypsin act along with matrix
metalloproteinases-2,-7 and -9 (discussed below) to cause invasion and
metastasis [75].

Matrix metalloproteinases (MMPs) are members of the proteases
family that play a crucial role in the cleavage of cell surface receptors,
and the regulation of ligands such as FAS and chemokine/cytokine
inactivation affecting cell growth, migration, angiogenesis and
apoptosis [59]. MMPs have the potential to degrade the ECM and are
responsible for the conversion of adenomas to carcinomas in addition
to the initiation of invasion and metastasis [76]. While
MMPs-1,-2,-3,-7,-9,-12 and -13 are involved with tumor progression,
MMPs-2 and-9, known as gelatinases are associated with tumor
invasion and metastasis in several tumors. Interestingly, the NF-κB
upregulation was shown to be associated with the over-expression of
MMP-9, resulting in ECM and cell adhesion degradation, promoting
invasion and micrometastasize [77]. Interestingly, the MMP-2
expression profile closely correlated with micrometastasis and
invasiveness, and therefore emerged as a potential progression marker
[78].

Another class of proteinases, ADAMTS, belongs to the family of
secreted, matrix-associated enzymes that have a variety of functions in
regulating tissue organization and vascular homeostasis. At least 19 of
them have been found to play a role in tumor promoting or inhibiting
in humans. While, a study identified an elevated ADAMTS expression
associated with worst clinical outcome in mammary carcinoma [79], a
recent study in breast cancer patients, discovered elevated levels of
ADAMTS to be associated with better outcomes, indicating a
controversial role. However, it has been noted that various members of
the ADAMTS family inhibit cancer, as they are generally silenced or
corrupted in tumor cells. A study conducted, using both wild-type and
MMP-deficient mutant ADAMTS-15 on breast cancer cell lines,
revealed no effect on cellular proliferation and cell death.
Furthermore, the study described that the wild-type hampers
angiogenesis. Interestingly, forms, affected metastasis and the effect
being subjected to the tissue environment of the target organ [80].

Moreover, other relevant markers contributing to cancer spread
were also identified. Among these, E-selectin ligands expressed by
circulating tumor cells [81] showed convincing evidence in promoting
metastasis in several cancers including head and neck and breast
cancer [82-85]. Selectin ligand E, L and P were found to be expressed
on colon cancer cells, while E-selectin ligand was found on prostate
and breast cancer cells [81,86,87]. Though the understanding of these
markers is growing, it is therefore important to consider their
biochemical and biophysical utility to track CTCs in transit.
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“Anoikis” an Alternative form of Programmed Cell
Death

In order to obstruct the way for any metastasis progress, following
cell-cell contact and extracellular matrix loss, cells enter another form
of cell programmed death called “anoikis” [88]. The latency time of
recurrence recorded in some patients between the initial attempted
therapy to eradicate the primary tumor and relapse is attributed to this
anoikis phase. It is a process involved in homeostasis regulation, and
plays a crucial role in wound healing and tissue remodeling during
development [89,90]. Resistance to anoikis occurs through a complex
process including the activation of oncogenes such as PI3K and Akt
and/or the loss of key tumor suppressor genes [91-94]. Therefore, in
order to survive while circulating after detachment from the primary
tumor and prior to metastasis, cells develop sophisticated mechanisms
to resist anoikis. Such resistance has been observed in several cancers
and is thought to significantly contribute to the aggressive phenotype
as well as the survival of the invading cells and metastasis [91,95].
Thus, understanding mechanisms underlying the resistance to anoikis
would provide a standard way to investigate micrometastasis
regulation and help tailoring novel therapies to eradicate cancer.

Emergent tools for micrometastasis detection
Interest in circulating micrometastic cancer cells had already started

to develop in the 19th century (1869) when it was noticed that cells
resembling primary-tumor-cells were found in the blood of some
patients after death [96]. Thereafter, different new techniques emerged
to improve the detection of circulating tumor cells in various types of
carcinomas using different cytological methods [97,98]. With the
advent of immunocytochemistry, cytological examination of blood
samples became a routine procedure to detect circulating tumor cells
in blood with much higher sensitivity when compared to conventional
techniques [99-101]. Indeed, these assays were able to identify spiked
tumor cells in 6 to 15 ml of blood samples containing between 10,000
to 100,000 mononuclear cells[102], suggesting that techniques such as
immunocytochemistry provide an additional value in terms of
prognostics [103,104]. However, due to several factors including loss
of antigen expression in poorly differentiated tumors, this technique
was not used as a routine procedure in cancer staging protocols
[105-107].

The polymerase chain reaction (PCR), a highly sensitive nucleic
acid-based technique, emerged to revolutionize the conventional
detection methodology used to identify circulating tumor cells in
different cancers such as leukaemias, lymphoma, and other solid
tumors [108-110]. The advent of PCR technique made an enormous
impact upon nucleic acid analysis, allowing the amplification of
specific DNA fragments flanked by designed oligonucleotides, using
repeated cycles including denaturation, annealing and elongation steps
[111]. PCR was revealed to be a very sensitive tool allowing the
detection of one malignant cell among more than 100 normal cells
[112-115]. Tumors with characterized molecular abnormalities such as
leukemia were among the target for PCR while for solid tumors, other
strategies including targeting tumor markers were developed
[116,117]. These included the amplification of immunoglobulin heavy
chain gene t(14;18)(q32;q21)] or specific oncogene mutations that can
be used to identify malignant cells [116,118]. Interestingly, the
combination of PCR with other techniques such as reverse
transcriptase and immunocytochemistry improved the sensitivity and
specificity allowing the identification and the enrichment of malignant
circulating tumor cells [113,115,119]. The choice of the amplified

target determined by specific characteristics of the malignant cells
seems to be the limiting factor to identify circulating tumor cells using
both mRNA and genomic DNA materials. Therefore, specific
aberrations (mutations, amplifications) present within genomic DNA
of malignant cells are potential targets to specifically discriminate and
isolate circulating cancer cells. The big challenge this process poses
consists of identifying cancer cells circulating amongst millions of
leukocytes and erythrocytes and discriminating them from epithelial
noncancerous cells in a given volume of blood. Due to certain PCR
limitations such as contaminations, other approaches emerged for
better detection and characterization of circulating tumor cells at the
molecular level. Crossing over region found on certain chromosomes
[i.e., Philadelphia chromosome, t(9;22)(q34;q11 and bcl2] and
Immuno-magnetic separation technology, a technique where the
specimen is incubated with magnetic beads coated with antibodies
directed against specific antigens exclusively expressed by cancer cells
were used as a mean to improve selection and enrichment [120-123].
For instance, the anti-epithelial antibody Ber-EP4 directed against
carcinomas was used to enrich cancer cells disseminated in blood
stream, while the anti-leukocyte antibody CD45 was used for depletion
of mononuclear cells using a magnet [124]. Moreover, several bladder
biomarkers have been investigated for their screening potential and
higher sensitivity to detect urothelial malignant growth [125,126].

The enriched cells can be analyzed using Immunocytochemistry
providing access to more information concerning the assessment of
tumor specific proliferation and progression markers, as well as
quantification of tumor cells which is a great help to monitor the
impact of targeted therapy. This would improve the stratification of
patients with solid tumors and better elucidate the dynamic process of
metastases.

Quantification of CTCs may be used as a potential prognostic
marker that could guide treatment decisions and/or monitor the
response to treatment. In a phase-II randomized trial of advanced
breast cancer, the detection of CTCs predicted an early metastatic
relapse following neoadjuvant therapy [127,128]. In prostate cancer, a
concordance between circulating prostate cancer cells in the blood and
the dissemination of cancer cells to distant organs (e.g., bone) was
observed for all Gleason scores. For bone marrow biopsies however,
this concordance was observed only for high grade tumors up to
Gleason score 9 [129].

Since the introduction of RT-PCR technique, mRNA is increasingly
used as a target for the detection of tumor cells, allowing the detection
of translocations and other rearrangements which occur within
introns [119]. To be more specific and have less background related to
unspecific priming, magnetic beads can also be coated with oligo (dT)
to specifically isolate mRNA from the total RNA extracted from the
enriched population of cells. In breast cancer for instance, mRNA
from both EGF-R and cytokeratin 19 displayed a profile of highly
specific and sensitive biomarkers with the potential to discriminate
and detect metastasizing breast cancer cells among normal peripheral
blood mononuclear cells [130]. To selectively amplify cDNA produced
from mRNA, it is capital to avoid genomic DNA contamination,
which can be a drawback in few cases even after RNAse-free DNAse
treatment. Therefore, primers design should span an intron resulting
in the amplification of different products with genomic DNA
contaminate samples that generate bigger size products when
compared to spliced mRNA [119].

Undetected micrometastastic circulating cells lead inevitably to
relapse and therefore, the identification of patients with an early-stage
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cancer may have a substantial impact not only on prognosis but also
on the choice for the therapy used [131]. Thus, the necessity to
improve the detection and identification of CTCs in blood to optimize
management of cancer patients is important. Methods such as
cytology and RT-PCR enable to enrich micrometastatic circulating
cells from blood [132], and may aid in the early detection of cancer
when tumors are still confined and there is still more hope to complete
cure [133].

In breast cancer, the use of antibodies directed against breast cancer
epithelium was able to detect CTCs in 95% and 32% of breast cancer
patients before and after surgery respectively [134]. These promising
results was the primary motivation to design studies to detect
circulating cancer cells using sensitive and specific molecular
techniques such as immunomagnetic cell capture coupled with
quantitative RT-PCR (qRT-PCR) [135].These methods have been
proven to be extremely sensitive, being able to detect only four cells
per 10 ml of blood [136]. It has been shown that circulating breast
cancer cells are released into the blood at an early stage of the disease
and a substantial number of patients at the time of diagnosis have
already circulating micrometastatic cells [134].

Cell enrichment technique along with novel emerging molecular
technologies provide the right tools to isolate and characterize
circulating tumor cells and potentially provide important diagnostic
and prognostic tests [132,137,138]. In a prospective study on a large
cohort of metastatic breast cancer patients, the significance of
prognosis associated with circulating tumor cell levels showed that
patients with higher circulating tumor cells ( 5 cells per 10 ml of
blood) had a shorter progression-free survival and shorter overall
survival (P<0.001) [139]. Although current research to improve
circulating tumor cells capture is often satisfactory, it remains however
ambiguous for some challenges such as sensitivity, specificity and
interpretation [140]. Therefore, second generation technology
essentially based on advanced technology allowing for counting,
capturing, and characterizing tumor cells found in a patient's blood, is
now available in reputed research institutes. Preliminary results are
encouraging with the potential to personalize these applications to
cancer therapy and the possibility to change treatment regimen if the
number of circulating tumor cells are not reduced after the first
treatment [140]. Yet, more effort should be deployed to improve
specificity and reproducibility of circulating tumor cells assays.

Clinical Applications of Circulating Tumor Cells
Molecular characterizations of CTCs have the potential to play

polyvalent roles in the pathogenesis process including being used as
biomarkers surrogate for overall survival prognosis, staging,
biomarker discovery and personalizing treatment by serving as ‘liquid-
biopsies’ [141]. In breast cancer for instance, CTC has been explored
successfully as a surrogate for HER2 expression/amplification [142]
and alterations in CTC count may aid in indicating sensitivity or
resistance to various cancer treatments [141]. In prostate cancer,
prostate-specific antigen (PSA) levels, weakly associated with better
survival is not sufficient to guide treatment in the first trimester [143];
in few cases of highly advanced and androgen receptor driven (AR-
driven) stages, PSA fails to be reliable. Hence, bone scans are required
every 6 weeks to avoid any relapse in response to the treatment. To
overcome these limitations, Veridcex Cell Search System, an FDA-
cleared assay for the enumeration of CTCs [141,144], was approved
based upon several studies carried out on breast [145], prostate [146]
and colorectal cancers [147, 148]. This system is based on the principle

of automated immunomagnetic selection of EpCAM and creatinine
kinase positive cells accompanied by anti-CD45 antibodies to
eliminate leukocytes and nuclear staining (DAPI) [141]. DAPI stains
positive for cytokeratinins and negative for CD45 [149]. The first
study using this technique on survival was carried out in 2008.
Recently, phase III studies in men with metastatic castration resistant
prostate cancer (mCRPC) undergoing treatment with either docetaxel
[150], or docetaxel and prednisone with or without lenalidomide were
carried out. Interestingly, the prognostic value of CTCs using Cell-
Search-Assay [151] was confirmed with a better prognostic value and
over-survival rate when change from >5CTCs to <5CTCs counted cells
[150,151].

To further elaborate the use of CTC enumeration for better
prognosis and management of patients, phase III studies in breast
cancer were carried out [142] and evaluated the role of CTCs in guided
hormonal therapy. In metastatic patients, CTC count tends to change
during treatment with anti-HER2 based on CTC detection. The data
outcome revealed that CTC testing improved the prognostic and the
overall survival rate of patients with metastatic breast cancer [142].

While, the major challenge for CTC enumeration is the tumor
heterogeneity of the CTC enriched cells, algorithms for wholly
performing automated counting of CTCs were optimized [152].
Furthermore, several innovative platforms, marker-independent and
qualified to optimize the isolation of CTCs is also under active
investigation [153-155] to provide better prognosis services and
improve the overall survival rates.

Conclusion
The complete understanding of how cancer cells transit the border

line from primary stage to disseminated tumor cells and how these
cells can release mutated DNA to the interstitial area remains unclear.
During the multistep process toward the establishment of new
metastatic niche, circulating cells undergo the influence of a plethora
of biochemical and biophysical stresses conducting cells towards an
aggressive phenotype. The consequences of metastasis are thought to
be the main cause of cancer related mortality rather than primary
tumors. Recurrence that usually follows first treatment is thought to
stem from circulating tumor cells already existing at the time of the
operation [156,157]. Thus, the detection procedure of circulating
tumor cells in peripheral blood becomes very popular in predicting
relapse and metastasis and can also contribute to better diagnosis.
Several studies have reported the detection of circulating cancer cells
using the available molecular biology tools such as magnet bead cell-
capture and RT-PCR [158-160].

On the other hand, detection of mutated circulating free DNA is an
emerging promising technique to not only be a surrogate for tumor
tissue DNA but also a tool for metastasis prediction and diagnosis
[161-163]. The outcome of these research efforts is to develop these
noninvasive markers in order to achieve effective and better-tailored
anticancer treatments and improve life expectancy for affected
individuals.
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