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DESCRIPTION
Electronic chips (microchips) have solved many problems from 
1958 to the present (Figure 1a), and microchip products have 
been widely used in almost all products. The microchip has 
rigorous theory and technology. It has good durability, low cost, 
easy use, high reliability, low power consumption, and almost no 
need for peripheral equipment. The microfluidic chip is similar 
to the electronic chip, but the application range is far less than 
that of the microchip. Because all chemistry and life processes 
are based on fluids, life sciences and chemistry require 
microfluidic technology. For example, it is significant to use 
body-on-a-chip technology to simulate life systems [1]. 
The electron flow is easy to control because the electrons 
flow around the solid atomic lattice (solid) (Figure 1a). The 
micro flow of atoms or molecules is difficult to control 
because the atoms or molecules can only flow in the hollow 
(Figure 1b).

Before being widely used in life sciences and human health, 
the microfluidic chip still needs to solve many problems, 
especially the problem concerning micro pumps [2] (Figure 
1b). For example, gravity [3] vacuum pumps [4,5] lose 
precise flow control, and diaphragm pumps [6,7] rely 
on deformable materials with poor biocompatibility. 
Cost, portability, simplicity, and ease of use also limit 
the application of microfluidic technology. Complex 
interfaces and designs bring reliability and life issues. 
Thurgood et al., tried to use simple balloons to drive instant 
diagnostic equipment [8]. Behrens et al., used 3D printing to 
manufacture microfluidic chips [9]. In addition, micro pump 
technology faces the problem of niche biology [10]. For 
example, cell-cell interactions and the molecular signals in the 
niche determine the fate of stem cells [11]. The hematopoietic 
stem cell niche promotes metastasis [12], and the stem cells 
niche accelerates tumor progression [13]. Cells form a 
microenvironment in traditional Petri dishes, and we 
must continue to use them. However, we do not have proper 

microfluidic technology to control the microenvironments in 
the Petri dishes, and we are reluctant to use a syringe [10] to 
transform the Petri dishes into  microfluidic devices [14]. We 
hope to simplify the micro pumps and combine the pumps with 
Petri dish technology.

Molecules need microfluidics to transport to construct chemical 
microenvironment for cells. If we can put the micro pump in the 
Petri dish, we can build a complete microfluidic system. This 
kind of microfluidic Petri dish can be produced through 
injection molding and demolding processes. This solves the cost 
problem as well as the problem of operation obstacles. If a 
technology that allows for the precise control of cell 
microenvironments is developed, the microfluidic technology 
can be widely used.

The simplest localized motion is a one-dimensional vibrator with 
a stable flow field and with a flow rate that is proportional to the 
frequency (SMath pump) (Figure 1c) [15]. Following this theory, 
we designed the scanning magnetic field to control the 1mm 
magnetic beads and lead them to roll back and forth and drive 
the fluid (O-pump) (Figure 1d) [15]. The O-pump can be put 
directly into the Petri dish (Figure 1e) and becomes highly 
reliable. Thus, the micro pump has ultra-low power consumption 
and an ultra-long life span in the Petri dish. The microstructure 
forms a microfluidic system (Figure 1e). The microfluidic Petri 
dish can be operated as a traditional Petri dish, and the micro 
flow can be programmed by editing and playing a playlist on the 
mobile phone (Figure 1f) [16]. We designed a stem cell nest in 
the center of this microfluidic Petri dish—with ultra-
slow microcirculation (<40 microns/s) and controllable 
exchange rate of molecules and nanoparticles. Embryonic 
stem cells, pluripotent induced stem cells, and 
mesenchymal stem cells can all proliferate in programmed 
microfluidic systems [16]. In the future, this microfluidic 
Petri dish can be further developed into a lab-on-a-chip that 
can be used as a mobile phone accessory for a wide 
range of applications in live simulations, human health, 
and organ reconstruction (Figure 1b).
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Figure 1: Technologies used in microfluidic petri dishes and 
their future application prospects.

CONCLUSION
Given a microfluidic Petri dish employs a technology that puts 
the most simplified micro pump into the Petri dish and 
establishes a microfluidic system. This technology is similar to 
the lithography technology mentioned in the history of 
integrated electronic circuit development. It solves many 
problems that hinder the widespread application of microfluidic 
technology in life sciences.
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