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Abstract
Microdialysis (MD) techniques were first applied in the early 1960s. The fields of their application comprised 

probe implantation into the central nervous system (CNS) at the beginning, and then expanded to almost every 
organ summarized in this article. After its early experimental applications MD became an important tool in the human 
pharmacokinetic/pharmacodynamic (PK/PD) studies as well. This monitoring technique is capable for investigation of 
local unbound concentrations of both endogenous and exogenous compounds in the interstitial fluid. The review shows 
examples for the role of MD in pharmacodynamic studies and for its use in tissue distribution and drug-transporter 
interaction studies. 

Determination of test substances in the dialysate samples needs sensitive bioanalytical methods. The main 
analytical techniques coupled with MD are summarized under the subtitle “Target molecules”.

New trend in the application of MD is the determination of large molecular entities in the extracellular fluid of target 
tissues. This approach greatly helps in the discovery of new pathophysiological pathways and identification of new 
therapeutic intervention strategies for several disorders.

Finally, the article gives an overview on the complementary techniques (positron emission tomography, magnetic 
resonance spectroscopy and open flow microperfusion), and presents their advantages and limitations versus to in 
vivo MD.   

In summary, MD techniques have a wide variety of the fields of application. There are several new approaches 
using this methodology. The relatively low price and the importance of the information gained on the pharmacologically 
active form of the test articles at the site of interest guarantees a significant position of this technique in the preclinical 
and clinical research. 
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The Beginnings of the Application and Principle of 
Microdialysis Techniques

The microdialysis principle was first employed in the early 1960s, 
when push-pull cannulas [1] and dialysis sacs [2] were implanted 
into animal tissues, especially into rodent brains, to directly study the 
tissues’ biochemistry [3]. While these techniques had a number of 
experimental drawbacks, such as the number of samples per animal 
or no/limited time resolution, the invention of continuously perfused 
dialytrodes in 1972 helped to overcome some of these limitations 
[4]. Further improvement of the dialytrode concept resulted in the 
invention of the “hollow fiber”, a tubular semi-permeable membrane 
with a diameter of ~200-300 μm, in 1974 [5].  Today’s most prevalent 
shape, the needle probe, consists of a shaft with a hollow fiber at its tip 
and can be inserted by means of an introducer and split tubing or a 
guide cannula into the brain or other tissues.

Microdialysis technique is usable for continuous monitoring 
of the biochemical milieu surrounding the probe-membrane in the 
extracellular fluid of the target organ. A physiological perfusion fluid 
(artificial cerebrospinal fluid or artificial peripheral perfusion fluid) 
is perfused through the inner tube of the microdialysis probe with 
concentric design. At the tip of the probe the test substances located in 
the interstitial fluid of the target tissue can diffuse trough the pores of 
the semipermeable membrane into the direction of the concentration 
gradient. The cut off value of the probe membrane is usually 20 kDa, 
but lower and higher cut off membranes are also available in the market 
(6 kDa – 100 kDa). The molecules that are able to cross the membrane 
reach the perfusion fluid and flow away in the outer tube of the probe. 
At the outlet of the probe there are connecting plastic tubings leading 
the dialysate of the extracellular fluid into the collection vials. The 

principle of microdialysis sampling is presented in Figure 1.

Investigation of PK/PD profile of test compounds can be performed 
both in anesthetized and awake animals by microdialysis. The changes 
in the neurotransmitter levels in specific brain regions or alterations in 
biomarker concentrations in health or disease conditions suggested to 
be studied preferentially in freely moving animals.  The constructions of 
microdialysis setup for anesthetized and awake animals are presented 
in Figures 2 and 3.

Main Fields of Application of Microdialysis Techniques
Target organs

MD techniques are widely employed for sampling the extracellular 
fluid (ECF) in living organs. The first target for application of MD was 
the central nervous system (CNS) of experimental animals. The main 
goal of these studies was to investigate brain function and changes 
in levels of endogenous compounds such as neurotransmitters or 
metabolites [6] . Nevertheless, in CNS studies, reverse MD (retrodialysis) 
has also been used extensively to investigate the effects of diverse 
pharmacological and toxicological agents, such as antidepressants, 
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antipsychotics, antiparkinson molecules, hallucinogens, drugs of 
abuse, and experimental drugs, on local effects on neurotransmission at 
various central nuclei. Thus, the MD approach has contributed largely 
not only to clarification of the physiological role of the serotonergic, 
dopaminergic, glutamatergic etc. neuronal systems, but also to the 
development of therapeutic strategies for the treatment of a number of 
neuropsychiatric disorders.

Since MD was established for measuring concentrations of 
substances within living organisms, the range of capable tissues has 
extended continuously. The first MD in lung tissue was performed in 
1991 in rats; it was 10 years before a MD probe was inserted into a 
human lung. This might be explained by two major reasons: (1) ethical 
and safety concerns, and (2) alternative measurement techniques for 
lung [7]. For other organs like skin and muscle the human studies were 
developed in parallel with the animal experiments.

MD probes can be inserted easily into superficial compartments 
like skin or subcutaneous adipose tissue without notable risks to healthy 
subjects, this is not the case in deeper compartments. Thus, MD in 
internal organs is not permitted in healthy volunteers. As the insertion 
of MD probes into internal organs is more invasive, the technique has 
generally been limited to animals [8]  in strictly experimental studies.

Four main areas of employing MD in internal organs can be 
distinguished. 1) Strictly metabolic processes have been studied under 
different conditions, e.g., metabolites like lactate have been quantified 
to monitor organ ischemia. 2) Researchers have aimed at elucidating 
organ-specific physiological or pathophysiological pathways. For 
instance, cytokine cascades and their interactions have been identified 
in internal organs in addition to metabolites. 3) A considerable number 
of pharmacokinetic studies have been conducted in organs with various 
drugs. 4) MD has been evaluated as a tool permitting local delivery of 
drugs to specific organs or tumors [8].

For some examples on the application of MD techniques in 
different organs, see Table 1.

 Target disorders

To obtain detailed information on the pathomechanism of different 
disorders the continuous in vivo sampling and monitoring by MD 
provided an appropriate tool. For summary on disorders investigated 
in humans or experimental animals by in vivo MD, see Table 2.

Target molecules

Neurotransmitter and biomarker studies using microdialysis: 
MD allows not only the evaluation of target - site distribution of new 
chemical entities, but also the assessment of their pharmacodynamics 
effects on physiological variables and biomarkers of disease processes. 
An important application of this technique is its use in the measurement 
of drug-induced changes in concentrations of monoamine and 
amino acid neurotransmitters and acetylcholine, and their respective 
metabolites [9] in specific brain regions.

The overall objective of antidepressant therapy over the past 
several decades has been to increase monoamine neurotransmitter 
concentration at the synapse. Antidepressant agents produce elevated 
monoamine levels either by inhibiting monoamine metabolizing 
enzymes or by monoamine transporter blockade and inhibiting 
neurotransmitter reuptake (serotonin /5-HT/reuptake inhibitors, 
norepinephrine /NE/ reuptake inhibitors, NE-5-HT reuptake 
inhibitors, 5- HT-NE-dopamine reuptake inhibitors etc.). MD is 
capable for the neurochemical characterization and elucidation of the 

Figure 1: Principle of microdialysis technique:  The most important element 
of the technique is the microdialysis probe (left side). The probe is introduced 
into the target tissue where the free molecules in the ECF can diffuse through 
the probe membrane into the perfusion solution (right side). The cut off value 
of the probe membrane limits the size of the molecules diffusing through the 
membrane. For quantitative microdialysis calibrator molecules can be perfused 
through the probe and the loss of their concentrations in the dialysates can 
be measured. The recovery of the probe for a specific test substance can be 
calculated.

Figure 2: Microdialysis setup for anesthetized animals (1) Microdialysis 
syringe pump, (2) Microdialysis probes placed into the brain and jugular vein 
of a rat, (3) Stereotaxic instrument, (4) Fraction collector, (5) Temperature 
controller. (The figure is a slightly modified adaptation of the picture of CMA 
product catalogue with permission of the CMA representative).

Figure 3: Microdialysis setup for freely moving animals (1) Microdialysis 
syringe pump, (2) Microdialysis probes placed into the central guide cannula 
and jugular vein of a rat, (3) Fraction collector, (4) Plastic bowl for awake 
animals, (5) Instrument table.  (The figure is a slightly modified adaptation of the 
picture of CMA product catalogue with permission of the CMA representative).
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pharmacological profile of several classes of antidepressants. 

In vivo MD is a powerful tool in the development of therapeutic  
strategies over depression for addiction, anxiety, attention deficit, 
hyperactivity disorder and schizophrenia as well as neurodegenerative 
disorders such as Alzheimer’s disease, Parkinson’s disease, epilepsy 
and cerebral ischemia [9]

Besides the CNS applications, MD is used to monitor biomarkers 
also in peripheral tissues. In inflammation processes, metabolic 
disorders, peripheral ischemic diseases, dermatological disorders and 
pain many markers can be determined using these techniques (Table 
3).

Drug tissue distribution studies using microdialysis techniques: 
Several characteristics of MD make it a valuable addition to the 
techniques available for pharmacokinetic studies. The small size of the 
probe generates minimal perturbation of tissues, organs and systems. 
Thus, the samples are representative of normal physiology. The dialysis 
process does not change the fluid volume of the surroundings. This 
allows continuous sampling with good temporal resolution, including 
long-term experiments in awake animals. Samples can be collected 
prior to administration of the dose, so each animal serves as its own 
control and few animals are required overall [10]. Knowledge on 
distribution within the brain is important for drugs that directly act 
on targets in the central nervous system [11] such as anticonvulsants, 
antidepressants, learning and memory enhancers [12], anesthetics, 
antibiotics [13], antinociceptive, and anticancer agents. In some cases 
it is important to avoid brain exposure of drugs, and MD is a tool to 
provide evidence for the absence or low level of a pharmacologically 
active compound in the CNS [14].MD techniques are frequently used 
to determine the unbound anti-infective drug distribution in critically 
ill, diabetic, ischemic and obese patients. A reduction in the cardiac 
output caused by heart failure can affect the tissue distribution [15,16] 
of antibiotics. Inflamed tissues and bones are very common in diabetic 
patients, especially in the lower extremities. Several studies have used 
MD to evaluate anti-infective concentrations in tissues of diabetic 
patients[17-19]. The use of MD sampling is also feasible for the study 
of target – site pharmacokinetics of new antimicrobial agents in both 
preclinical and early clinical development.

Jonsson and coworkers employed MD in critical limb ischemia 
(CLI) patients to study penetration of the antibiotic cloxacillin to the 
target tissue [20]. Cloxacillin concentrations were measured in serum 
and in MD samples from skin and muscle of the lower part of the calf 
and, as reference, subcutaneously at the pectoral level in eight patients 
suffering from CLI. In CLI patients, the tissue penetration of cloxacillin 
was comparable to that of healthy controls, despite impaired blood 
circulation [15,20].

The choice of the correct anti-infective agent at the right dosage 
regiment plays a crucial role in treatment success, safety, and 
prevention of resistance [16]. However, dose adjustments according 
to body weight are not usually performed. Therefore, under dosing 
in overweight or obese patients may occur [21,22]. Hollenstein et al. 
compared the concentrations of ciprofloxacin (2.85 mg/kg) in obese 
and lean patients at the target site, adjusting the dose by weight. The free 
drug concentrations were measured with MD in both skeletal muscle 
and adipose tissue. Plasma concentrations did not predict the actual 
target concentrations quantified with MD. The authors concluded that 
the penetration process of ciprofloxacin is diminished in obese patients 
and the doses have to be adjusted [21]

Measurement of target - site concentrations of antineoplastic drugs 

Organ Species References
Brain human [68] 
brain, blood mouse [31] 
brain mouse [69] 
brain (cortex, hippocampus, striatum) rat [12] 
brain (cortical, subcortical) rhesus monkey [70]
Breast human, mouse [71]

skin human [72]

skin human, ex vivo [73]
subcutaneous fat, muscle human [20]
skin, soft tissue human [74]
muscle human [75]
bone, adipose tissue human [19]
skeletal muscle, adipose tissue human [76]
lung human [77]
lung rat [78]
kidney, lung, liver rat [79]
liver rat [80]
heart rabbit [81]
pancreas rat [82]
peritoneum human [49]

heart pig [83]

pancreas dog [84]
synovial fluid rabbit [85]
cerebrospinal fluid rat [33]

Table 1: Target organs for in vivo microdialysis studies.

Disease (disease model) Species Analyte Reference

Stroke Human glutamate, glycerol, 
lactate, pyruvate [68]

Parkinson’s disease Human GABA, glutamate [86]
Pulmonary tumor surgery followed 
by infection Human cefplrome [77]

Glial tumor Human [87]

Traumatic brain injury Human Tau and beta amyloid 
proteins [88]

Subarachnoid hemorrhage Human lactate [89]

Subarachnoid hemorrhage Human glutamate [90]

sepsis Human cefpirome [91]

diabetes, leg infection Human ertapenem [17]

diabetes, cardiac surgery Human vancomycin [18]

Alzheimer’s disease Mouse amyloid beta [92]

diabetes, leg infection Human daptomycine [19]

Alzheimer’s disease Mouse amyloid beta [69]

Alzheimer’s disease Mouse apolipoprotein E [93]

sepsis Human antimicrobials [76]

Parkinson’s disease Human catecholamines,
L-dopa [94]

Parkinson’s disease Rat GABA, glutamate, 
glycine [95]

Stroke Rat glutamate [96]

sepsis Rat fluconazole [78]

cocaine addiction Mouse dopamine [97]

Stroke Mouse adenosine [98]

Peritonitis Pig cytokines [99]

Obesity Human ciprofloxacin [21]

Cutaneous tumor Human carboplatin [23]

Rheumatoid arthritis Rabbit sinomenine [85]

Table 2: Therapeutic fields as targets for application of in vivo microdialysis.
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in malignancies by MD and relating pharmacodynamic parameters 
are of great interest for the design of active new chemical entities 
with cytotoxic effects [23,24]. Tumor drug exposure, a marker linked 
to clinical outcome, may be reduced dramatically, due to diffusion 
barriers in solid tumors [25].

Transporter interaction studies using microdialysis: Several 
papers reported the localization of drug transporters at the main 
physiological barriers of the organism (blood-brain barrier, blood-
CSF barrier, hepatic-, renal- and intestinal barriers). The role of these 
proteins is huge in drug-drug interactions, drug absorption, distribution 
and elimination. First P-glycoprotein (P-gp) and breast cancer 
resistance protein (BCRP) were identified at the apical membrane of 
brain capillary endothelial cells as the mechanism responsible for the 
restricted brain penetration of various molecules.

P-gp mediated brain distribution of morphine was studied by 
Groenendaal and coworkers [26] in rats using MD approach and 
population pharmacokinetic modelling analysis. They found that brain 
distribution of morphine is determined by three factors: limited passive 
diffusion; active efflux, reduced by 42% by P-gp inhibition and low 
capacity active uptake.

Similar interactions with P-gp were reported in mdr1a (-/-) mice 
by Xie and coworkers using cerebral MD techniques in an earlier  study 
[27].

O’Brian and coworkers reported P-gp mediated BBB transport of 
imipramine [28] and escitalopram [29]. MD based pharmacokinetic  
studies demonstrated that administration of the P-gp inhibitor 
cyclosporin A or verapamil resulted in increased brain levels of 
escitalopram and imipramine without altering plasma escitalopram 
levels in the rat.

P-gp mediated drug-drug interactions were studied not only in the 
brain but also in the periphery by Ma and coworkers using triple probe 
MD in rats [30]. The authors tested brain, blood and bile concentrations 
of spinosin in the presence and absence of cyclosporine A, as selective 
P-gp transporter inhibitor.

Our group reported a dual- and triple-probe mirodialysis study 
using PSC-833 (valsprodar), as specific P-gp inhibitor and quinidine 
as P-gp substrate in anesthetized and awake mice [31] and rats [32], 
respectively. PSC-833 significantly increased the brain exposure of 
quinidine in both species irrespective of the presence or absence 
of anesthesia.  The local perfusion of the inhibitor by retrodialysis 
also enhanced the brain concentration of quinidine in the perfused 
hemisphere compared to the contralateral, control side.

Recently, Chen and coworkers reported the transporter-mediated 
brain exposure of cefadroxil, a cephalosporin antibiotic [33]. Cefadroxil 
is a substrate for several membrane transporters including peptide 
transporter 2 (PEPT2), organic anion transporters (OATs), multidrug 
resistance-associated proteins (MRPs), and organic anion transporting 
polypeptides (OATPs). These transporters are expressed at the blood–
brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB), and/
or brain cells. The distribution of cefadroxil in brain was compared in 
the absence and presence of probenecid, an inhibitor of OATs, MRPs 
and OATPs using triple probe MD technique (brain parenchyma, 
cerebral ventricle and blood probes). The ratio of unbound cefadroxil 
AUC in brain ECF to blood (Kp,uu,ECF) was ~2.5-fold greater during 
probenecid treatment. These findings demonstrate that drug-drug 
interactions via relevant transporters may affect the distribution of 
cephalosporins in the brain ECF.

Further example for the non-P-gp mediated transport studies was 
reported by Westerhout and coworkers who studied methotrexate 
distribution in the presence and absence of probenecid by MD 
technique [34].

Analytical considerations for microdialysis: There are many 
different ways to analyze MD samples for the test molecules. Samples 
can be analyzed off line or directly online using sensors. For offline 
analysis, a specified volume of sample (usually 1–20 ml) is collected 
in vials or tubes for later analysis. The temporal resolution that can be 
obtained in these experiments is usually determined by the MD flow 
rate, analyte recovery, and the sensitivity of the analytical method. At 
the typical MD flow rate of 1ml/min, most offline experiments have 
temporal resolutions from 5 to 10min. An exception to this is if the 
analyte concentration is very high. Then smaller volume samples can 
be collected and diluted prior to analysis. However, in general, sample 
volumes of less than 1ml become very difficult to manipulate offline 
due to problems with surface tension and evaporation [35].

Online sample analysis offers several potential advantages 
over offline analysis. In an online system, the sample collection, 
manipulation, injection, and analysis steps are all integrated in a planar 
device in a continuous, streamlined fashion. Therefore, problems 
related to handling submicroliter volumes of sample (sample loss, 
mislabeling, evaporation, and surface tension) as well as sample 
degradation that can occur with sample exposure to air (e.g., ascorbic 
acid and catecholamines) can be avoided [36-38]. Such systems 
are usually capable of manipulating and analyzing submicroliter 
sample volumes, which allow high temporal resolution analysis to be 
performed and near real-time data, which provide immediate feedback 
on the biological process under investigation. 

 Most applications require a separation of analyte in dialysate 
samples prior to detection. The most commonly employed separation 
methods are liquid chromatography (LC) and electrophoresis (in 
either the capillary (CE) or microchip format). A variety of detection 
methods have also been used, including ultraviolet, fluorescence, 
electrochemical, and mass spectrometric detection [35,39].

LC is the most commonly used analytical method for the separation 
of analytes present in MD samples. The detection method employed 
for LC analysis is dependent on the analyte of interest [35]. Ultraviolet 
detection is popular for detection of drugs for pharmacokinetic 
studies. Electrochemical detection is employed for the detection of 
catecholamines and other redox - active compounds of biological 
interest, such as thiols and aromatic amines. Fluorescence detection 
has also been popular, but usually requires derivatization of analytes 
prior to analysis. Finally, mass spectrometry (MS) is becoming 
increasingly popular for off line analysis of MD samples following 
liquid chromatographic separations [35].

CE is particularly attractive for the analysis of MD samples because 
it has very low sample volume requirements (nanoliters to picoliters) 
and can perform extremely fast separations. A variety of detectors 
can be used, including ultraviolet, laser – induced fluorescence (LIF), 
electrochemical (amperometric and conductivity), and MS [35].

Over the past decade, microchip electrophoresis has evolved to 
become an attractive analytical platform for the online analysis of MD 
samples. Microchip devices have at least two major advantages: very 
fast separations on - chip for monitoring fast biochemical processes 
and miniaturization of the system for on - animal sensing.

Besides the separation- based analytical approaches there are non-
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separation based techniques for bioanalysis of microdialysate samples, 
as well. 

Biosensors are analytical devices with a biological recognition 
element that produce an electrical signal in response to a biological 
change. An ideal biosensor should be able to perform continuous 
and reliable monitoring of analyte from complex body fluids over a 
significant period of time. There are many types of biosensors. Most 
of these are enzyme - based and employ either electrochemical or 
optical detection [35]. Online MD sampling coupled to biosensors has 
been reported for analytes such as ascorbate [40], glucose, lactate and 
glutamate [41].

Another non-separation-based analytical approach is 
immunoassay.  Immunoassays have been employed following MD 
sampling for measuring peptides and some drug substances in MD 
samples. Neuropeptides are present at nanomolar - to - picomolar 
concentrations in the extracellular fluid of the brain. In addition, the 
recovery of peptides across the dialysis membrane is generally much 
lower than that of smaller -molecular - weight neurotransmitters, 
generating extremely dilute samples of analyte [35].

MS detection has the advantages of conclusive analyte identification 
based on molecular weight as well as the sensitivity to detect low 
concentrations of analyte(s) often present in MD samples. More 
frequently, MS is coupled to a separation method (LC-MS; LC-MS/
MS). Matrix – assisted laser desorption ionization (MALDI) has been 
shown to be an attractive choice for off - line analysis of peptides in 
MD samples.

Analyte recovery is a very important parameter in MD sampling 
and bioanalysis. At typical flow rates used in MD sampling (1 to 5 μL/
min), there is not enough time for complete equilibration between the 
perfusate and the surrounding environment to occur, and therefore 
the concentration of analyte in the perfusate reflects only a percentage 
of the total amount present in the extracellular space or sample. The 
recovery is defined as the ratio of the dialysate concentration to the 
actual tissue concentration [35]. For compounds that are present at 
very low concentrations in the extracellular fluid, one way to reduce 
the dependence of the assay on the sensitivity of the analytical method 
is to increase recovery. This can be accomplished by decreasing the 
flow rate [42] or by adding a substance (beta-cyclodextrine, bovine 
serum albumin etc.) to the perfusate that has a strong affinity for the 
compound of interest [14,43].

Drug delivery by microdialysis
The MD probes inserted into the target tissue can be used in 

sampling mode and also in delivery mode (retrodialysis or reverse 
dialysis). If they are used in delivery mode, then specific compounds 
can diffuse from the perfusion fluid into the interstitial fluid of the 
target tissue into the direction of the concentration gradient and can 
express their influence locally without any systemic side effect. 

To avoid or diminish the tissue injury caused by implantation 
of MD probe which might trigger ischemia, gliosis and cell death at 
the sampling site, Nesbitt and coworkers delivered dexamethasone, 
a glucocorticoid anti-inflammatory agent, and XJB-5-131, a 
mitochondrially targeted reactive oxygen species scavenger, using 
retrodialysis [44] techniques. Dexamethasone and XJB-5-131 each 
diminished the loss of evoked dopamine activity, diminished ischemia, 
diminished the loss of neuronal nuclei, diminished the appearance of 
extravasated macrophages, and diminished the loss of dopamine axons 
and terminals next to the probes.

Type of pathology Molecule(s) References

Ischemia/reperfusion injury

glutamate,
aspartate,
glycine
GABA
lactate
pyruvate
glucose
adenosine
myoglobin (cardiac 
ischemia)

[81, 83, 96, 98, 100, 101]

Subarachnoid hemorrhage

glutamate
glutamine
histidine
glycine
lactate
IL-6

[89,90, 102,103] 

Traumatic brain injury
tau,
amyloid beta
glucose

[88, 104]

Parkinson’s disease

dopamine
3-methoxytyramine 
3,4-dihydroxyphenylacetic 
acid
serotonin
HVA
GABA
glutamate
cathecholamines

[86, 94, 95, 105]

Alzheimer’s disease

acetylcholine
apolipoporotein E
beta-amyloid protein
amyloid beta oligomers

[69, 92, 93]

Epilepsy

glutamate
GABA
adenosine
acetylcholine

[106, 107,108] 

Psychiatric disorders 
(schizophrenia)

serotonin
dopamine
GABA

[109, 110]

Inflammation

interleukin-1
interleukin-8
interleukin-10
interleukin-6
TNF-alpha
VEGF
NGF

[99, 111, 112]

Enterocholitis

glucose
lactate
pyruvate
glycerol

[49]

Diabetes

glucose
lactate
pyruvate
glycerol
urea

[113, 114]

Pain

substance-P
beta endorphin
pyruvate
lactate
cortisol
glutamate
serotonin
norepinephrine
dopamine
leukotriene B4
PGE2

[115-117] 

Smoking dopamine [118-120]

Drug abuse dopamine
glutamate [121-123]

Table 3: Target molecules of microdialysis in neurotransmitter and biomarker 
studies
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Another example for the application of reverse MD was described 
by Ludwig and co-workers, who studied the local effect of naloxone, an 
opioid antagonist against the systemic effect of morphine in supraoptic 
nucleus oxytocin neurons [45]. They found that the effect of opioid 
agonists primarily occurs within the supraoptic nucleus itself, since 
the antagonist was effective when given directly into the supraoptic 
nucleus by retrodialysis.

Vazquez-De-Rose reported that retrodialysis of nociceptin into 
the nucleus accumbens shell blocks cocaine-induced increases in 
extracellular dopamine and locomotor activity [46]. Extracellular 
dopamine and locomotor activity can be dissociated within the nucleus 
accumbens and may reflect motor output differences in shell versus 
core regions of the nucleus accumbens.

Our group applied retrodialysis in a drug-drug interaction 
study [32]. The specific P-gp inhibitor PSC-833 was administered 
by retrodialysis via the MD probe into one cerebral hemisphere and 
quinidine was given systemically. The enhancement in the brain 
concentration of quinidine in the inhibitor-treated hemisphere 
provided evidence on the role of efflux transporters localized at the 
BBB in the brain exposure of this compound.

A potential strategy to increase the efficacy of topotecan to 
treat CNS malignancies is modulation of the activity of ATP-
binding cassette (ABC) transporters at the blood-brain and blood-
cerebrospinal fluid barriers to enhance topotecan CNS penetration. 
Zhuang and co-workers focused on topotecan penetration into the 
brain ECF and ventricular cerebrospinal fluid (CSF) in a mouse model 
and the effect of modulation of ABC transporters at the blood-brain 
and blood-cerebrospinal fluid barriers by a tyrosine kinase inhibitor 
(gefitinib) [47]. Topotecan brain ECF penetration was lower compared 
with ventricular CSF penetration. Gefitinib increased topotecan brain 
ECF penetration but decreased the ventricular CSF penetration. 
These results are consistent with the findings that expression of Bcrp1 
and P-gp at the apical side of the choroid plexus facilitates an influx 
transport mechanism across the blood-cerebrospinal fluid barrier, 
resulting in high topotecan CSF penetration.

Diagnostic applications of microdialysis

Low and coworkers reported the application of MD as a diagnostic 
tool in patients with severe head injury. The measurement of brain 
neurochemistry is based on the principle that secondary insults such 
as hypoxia result in alterations in cellular metabolism of neuronal 
tissues; this in turn results in a cascade of metabolic changes that result 
in further cellular damage. Glutamate is an excitatory amino acid 
that is an early marker of cerebral ischemia. Glucose levels fall as a 
consequence of hyperglycolysis during a hypermetabolic state, and this 
in turn results in elevation of lactate levels and lactate: pyruvate ratios. 
Since these biochemical variables obtained from MD assays and partial 
pressure of oxygen in brain tissue (PbtO2) act as early indicators of 
the tissue’s ischemic response to injury, they potentially have a critical 
role in influencing patient outcomes and assisting in the prediction of 
outcomes following traumatic brain injury [48].

Peritoneal MD is a safe procedure and an applicable method 
in surveillance of the metabolic and inflammatory changes in the 
peritoneal cavity after surgery for necrotizing enterocolitis (NEC). 
Pedersen and coworkers reported a MD study in infants on the 
determination of the concentration of glucose, lactate, pyruvate, and 
glycerol in the peritoneal microdialysates. The results of peritoneal MD 

in patients with complications were significantly different from those 
with an uncomplicated course (lactate/pyruvate ratio and glucose 
concentration) suggesting the predictive value of MD monitoring of 
the biochemical changes [49] in this pathology.

Similar ischemia markers were followed by Pynnönen and 
coworkers in small intestine of pancreaticoduodenectomy patients. The 
metabolic changes were measured by intraperitoneal and intraluminal 
MD probes. The results support the hypothesis that intraluminal 
application of MD and metabolic parameters from the small intestinal 
lumen indicate onset of ischemia earlier than intraperitoneal MD with 
higher sensitivity and specificity [50].

Advantages and Limitations of Microdialysis Techniques
The technique of MD has a number of benefits and drawbacks 

reported by several authors which are summarized in Table 4 [11,51,52].  

The three most important benefits are as follows: (1) The method 
measures the concentration of drug or endogenous molecule at the site 
of action. (2) Unbound, pharmacologically active concentrations can 
be determined by MD. (3)  The number of the animals examined can 
be kept to a low level contrary to traditional pharmacokinetic studies 
(simply blood collections) where every time point needs different 
animals. Moreover, MD not only offers the possibility of sampling 
from certain tissues but also of delivering drugs directly to the site of 
action (retrodialysis) [32,53,54] contrary to complementary techniques 
(see the next section). 

Benefits
1.	 It measures the concentrations (drug or endogenous molecules) at the site 

of action
2.	 It measures the unbound, pharmacologically active concentrations of the 

drugs
3.	 The samples are protein free and this usually allows the direct determination of 

the drugs from the collected samples by bioanalytical techniques
4.	 Microdialysis can be used to obtain concentration-time profiles over a 

consecutive number of days, because there is no fluid loss during sampling
5.	 The experiments can be performed not only in anesthetized but also in freely 

moving animals 
6.	 The number of animals can be kept to a low level contrary to traditional PK 

studies where every time point needs different animals
7.	 Microdialysis not only offers the possibility of sampling from certain tissues but 

also of delivering drugs directly to the site of action (retrodialysis)
8.	 In the case of delivery mode, the drug effects can be studied locally without the 

risk of systemic adverse events or confounding drug effects
9.	 More than one compound can be measured simultaneously
10.	More than one tissue (or brain region) can be studied simultaneously
11.	High resolution concentration-time profiles can be obtained from distinct brain 

regions
Limitations

1.	 The implantation of the microdialysis probe into the brain or other target tissue 
could cause tissue trauma or damage (semi-invasive technique)

2.	 The probe insertion into the brain parenchyma can increase the BBB 
permeability for 1-2 days

3.	 The size of the molecules to be determined is limited by the cut off value of 
the probe membrane

4.	 Several molecules show non-specific binding to the microdialysis setup 
5.	 Calibration is necessary as the probe recovery does not reach 100 %
6.	 This techniques measure a mean concentration over a time interval
7.	 Highly sensitive analytical method is necessary, capable of dealing with small 

sample volumes
8.	 Microdialysis techniques are highly sophisticated low throughput methods
9.	 Special surgical skills are needed to set up the experiments

Table 4:  Strengths and weaknesses of microdialysis techniques.
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Comparison of Microdialysis and Complementary 
Technologies: Positron Emission Tomography (PET), 
Magnetic Resonance Spectroscopy (MRS) and Open 
Flow Microperfusion (OFM)

MD is a powerful experimental tool to assess unbound 
concentrations of drugs in the interstitial space fluid of different tissues 
and organs, both in preclinical species and in human subjects. In the 
next part of this review, the non-invasive nuclear imaging methods 
positron emission tomography (PET), magnetic resonance imaging 
(MRI)/ magnetic resonance spectroscopy (MRS) and open flow 
microperfusion (OFM) will be discussed as complementary techniques 
to study drug distribution and pharmacokinetics in the living body.

Positron emission tomography (PET) is a non-invasive nuclear 
imaging technique which can be used to assess the tissue distribution 
and pharmacokinetics of drugs labeled with short-lived positron-
emitting radionuclides, such as carbon-11 (11C, half-life: 20.4 min) or 
fluorine-18 (18F, half-life: 109.8 min) [55].

Whereas PET was initially developed for an application in humans, 
dedicated high-resolution and high-sensitivity PET scanners have 
been developed which allow for conducting PET experiments in small 
laboratory animals [56]. Such experiments are of particular interest 
since diverse animal models of human disease (e.g. transgenic mice, 
tumor-xenograft mice etc.) are commonly used in drug research. 
The PET technology therefore takes a key position at the interface 
between preclinical and clinical—that is translational—research. For 
the purpose of drug development, imaging with PET bears significant 
potential in translational medicine as it allows the same methodology 
to be employed in animal experiments and human studies.	

There are many advantages and limitations of PET versus MD in 
clinical application. (1) For detection of test compound in PET studies 
radiolabeling is necessary. For MD different analytical techniques can 
be used for determination of the test article in the dialysate samples 
(liquid chromatography-tandem mass spectrometry /LC-MS-MS/, 
high pressure liquid chromatography /HPLC/ with fluorescent or 
electrochemical detection etc.) and do not need radioactive labeling. 
(2) The probe implantation into the target organ is a minimally invasive 
process (depending on the target tissue) contrary to PET which is a non-
invasive technology. (3)The route of administration of the test article 
is intravenous in PET studies, but can be oral, subcutaneous, topical, 
inhalation or any other mode at MD. (4) PET imaging determines the 
total drug levels (unbound and protein bound and also metabolites) 
while MD measures only the unbound drug levels. (5) Temporal and 
spatial resolutions of PET are higher than that of MD. (6) Sensitivity of 
PET is about 10-12 mol/L while that of MD 10-9 -10-3 mol/L. (7) The costs 
of PET are much higher than that of MD [55].

MRI uses radio - frequency pulses and magnetic fields to obtain 
signals from changes in nuclear magnetic moments. A technique 
based on the same principle as MRI, but providing a greater degree 
of molecular characterization, is MRS, in which spectroscopic 
profiles of the chemical constituents within a sample are obtained. 
MRS measurements can be performed serially, thus making possible 
PK analysis with a temporal resolution on the order of minutes. Of 
importance, MRS is capable of resolving different chemical species, 
including metabolites, owing to different chemical shifts of the 
resonance signals [57]. 

MRS has proven to be particularly feasible for fluorinated drugs, 
since 19F is one of the lead isotopes for nuclear MRS, and several studies 

have been published describing brain PK of fluorinated psychiatric 
medications [57], tumor uptake of anticancer chemotherapeutics, and 
biodistribution and target tissue PK of fluorinated antibiotics [57] . 
Recently, the use of 19F MRS was validated to quantify the experimental 
antihistamine tecastemizole in heart and liver.

MRS has similar advantages to PET versus MD. However, MRS 
has worse spatial resolution than PET. On the other hand MRS can 
resolve metabolites and bound or unbound drugs, due to chemical shift 
differences, while PET cannot provide chemical resolution.

Several imaging techniques are currently available for assessing 
drug distribution and tissue pharmacokinetics in humans. Each of 
these techniques has proven its ability to provide new information on 
drug distribution for compounds, already marketed and potentially, 
each technique can provide valuable information during drug research 
and development. The choice of technique or the complementary 
combination should be based on the compound of interest, the region 
of the body, where distribution and tissue concentrations should be 
monitored, and the availability of technical and financial resources 
[57,58].

Open flow microperfusion (OFM) is an alternative in vivo sampling 
technique that builds on the strengths of continuous, minimally 
invasive interstitial sampling methods such as MD. But instead of a 
membrane, OFM uses probes with macroscopic openings to exchange 
substances in a liquid pathway. Membrane-based sampling systems, 
like MD, encounter problems when sampling high molecular weight 
or highly lipophilic substances in the interstitial fluid. OFM overcomes 
these problems by replacing the membrane with a steel mesh featuring 
macroscopic openings in combination with a peristaltic OFM pump 
in push/pull mode to achieve stable recovery of OFM samples [59]. 
Current applications in adipose subcutaneous tissue (aOFM) and 
dermal tissue (dOFM) range from preclinical studies to clinical trials 
[60], and cover a wide range of substances from small ions to lipophilic 
topical drugs or to large antibodies. The latest development in OFM has 
been designed for use in cerebral tissue (cOFM).

The key features of OFM and MD show their advantages and 
limitations and different applications. (1) OFM is a membrane free 
method, which means that there is no cut off value in the molecular 
weight of the analytes contrary to MD where the cut off value is 100 
kDa. (2) At OFM technique the samples are unfiltered containing 
small and large molecules and that’s why a sample preparation before 
bioanalysis is necessary. In case of MD technique the samples are 
filtered and clean (practically protein free), containing small molecules 
and these samples do not require preparation before bioanalysis. (3) At 
OFM there is no to low adsorption to the tubings due to direct coupling 
of sampling vial to OFM probe. While at MD there can be a problem 
of adsorption of the molecules to the outlet tubings of the MD setup.

Future OFM applications will include preclinical trials with 
improved anesthesia to prolong experiment time from 8 to 12–14 
hours. The use of the OFM system in awake animals will allow a 
trial time of several weeks, and enables a combination of OFM with 
behavioral experiments. Furthermore, OFM systems will be tested for 
use in knock-out mice to study a wide variety of diseases and wound 
healing.

Over the above mentioned complementary technologies someone 
can ask that what the strength of MD contrary to traditional blood 
collection for PK studies is. Traditional pharmacokinetic studies and 
bioavailability assessment are critical in early phases of drug research 
and development. A potential drawback of the current approach of 
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relating measurement of plasma concentration is inadequate prediction 
of tissue drug concentrations leading to poor therapeutic intervention 
and/or drug toxicity. Two examples for poor therapeutic efficacy and 
toxicity are the observation of sub-therapeutic dose-response for anti-
infective drugs and the toxic side effects of anticancer drugs due to 
poor drug penetration to the site of action [3]. MD has been used to 
measure the pharmacologically active, in vivo tissue concentrations of 
endogenous compounds and to assess drug concentrations closest to 
the site of action in various human tissues in both healthy volunteers 
and patients. Consequently, MD is gaining recognition as a tool in 
drug research and development to select appropriate compounds and 
to optimize dosing regimens [3].

The main properties of MD techniques, PET, OFM and traditional 
pharmacokinetic blood sampling are compared in Table 5.

Future Directions
One of the new fields of application of MD techniques is the 

comparison of protein profiles of extracellular fluids in healthy and 
diseased subjects. Dayon and coworkers studied [61] the proteins 
upregulated in stroke in a clinical study.  The changes in protein levels 
associated with ischemic damages were analyzed in microdialysates 
from the infarct core (IC), the penumbra (P), and the unaffected 
contralateral (CT) brain regions of patients suffering an ischemic 
stroke. A shotgun proteomic approach based on isobaric tagging and 
mass spectrometry was used.

Maurer and coworkers suggested the usefulness of cerebral 
microdialysate proteomics by comparing microdialysate samples 
of patients with subarachnoid hemorrhage (SAH) [62]. A major 
complication of SAH is vasospasm, a narrowing of cerebral blood 
vessels followed by a regional impairment of blood flow. In a subset 
of patients, this complication may result in secondary ischemia and 
is associated with high mortality and unfavorable outcome in those 
who survive. Maurer and coworkers identified differential proteomic 
changes in the cerebral microdialysate of SAH patients who later 
developed cerebral vasospasm compared to SAH patients unaffected 
by the complication. The current proteomic approach including 
sample preparation, protein separation, and protein identification by 
MS (MALDI-TOF) does not provide timely results. Therefore, the 
proteomic approach may deliver important post-hoc results, but it may 
not be feasible as a fast diagnostic tool for patients on intensive care 
units [63].

Another pathology where MD combined with proteomics/
metabolomics approach was applied is wound healing. Wound healing 
of soft tissue and bone defects is a complex process in which cellular 
differentiation and adaption are regulated by internal and external 
factors, among them are many different proteins.  Kalkhof and 
coworkers described an approach to sample metabolites by MD and to 
extract proteins simultaneously by adsorption. With this approach it is 
possible (i) to collect, enrich, and purify proteins for a comprehensive 
proteome analysis; (ii) to detect more than 600 proteins in different 
defects including more than 100 secreted proteins [64]. Many proteins 
have previously been demonstrated to have diagnostic or predictive 
power for the wound healing state.

Among the future application trends of MD it is important to 
mention the topical dermal MD. The crucial step during topical drug 
therapy is the ability of the free active drug to penetrate the skin in 
sufficiently high amounts to produce its clinical effect. Regulatory 
authorities have recognized dermal MD as a potential tool for 
bioequivalence evaluation of topical dermatological dosage forms 
during generic drug development [65,66]. 

MD data are likely to become an important part of new drug 
submissions, and thus may potentially contribute to the Food and Drug 
Administration (FDA) Critical Path Initiative to facilitate innovation 
in drug development [3].

Discussion and Conclusion
MD techniques are presented in this review as constituents of the 

toolbox of drug research, diagnosis and therapy with preclinical and 
clinical approaches. Multiple application possibilities may assure the 
survival, development and refinement of the method.  Besides taking 
further the traditional applications, the investigation of new targets 
(organs, tissues, disorders) meet the focus of in vivo MD in the last 
decades. The field of drug-drug interactions and proteomic approaches 
of the disorders are also new areas for the use of MD. Selection of a 
method for testing tissue distribution or organ specific biochemical 
changes requires careful consideration of its benefits and shortcomings 
and a comparison of the assay properties with the complementary 
technologies. This article makes a comparison between non-invasive 
imaging, and membrane free open flow microperfusion techniques 
and MD. MD is the first choice for assessment of neurochemical 
actions of centrally acting new chemical entities. In addition, as MD 
is able to simultaneously sample target-site concentrations of new 
molecules and endogenous biochemical markers with high temporal 

Properties PET OFM Traditional PK from blood Microdialysis

measured drug concentration total (free, protein bound drug and 
metabolites) concentrations

total (free and protein bound 
drug) concentrations

total (free and protein bound drug) 
concentrations

Only free (active) drug 
concentrations

invasiveness non-invasive minimally-invasive non-invasive minimally-invasive
necessity of radiolabeling labelled drugs needed no need of labeling no need of labeling no need of labeling
drug administration intravenous any route any route any route

size of the molecules measured no cut off value no cut off value no cut off value membrane dependent cut 
off value (<100 kDa)

sample preparation for bioanalysis no need (no sample) needed (unfiltered samples) needed (whole blood) no need (filtered samples)
costs high low low low
surgical skills no need needed no need needed
organ specificity yes yes no, systemic blood yes
number of subjects (animals or 
human) used low low high low

time frame hours hours to days only a very limited number of sampling 
pro animal hours to days

Table 5: Comparison of the features of microdialysis techniques with the main complementary technologies and traditional pharmacokinetic blood sampling for the 
measurement of drug levels in drug research and development studies.
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resolution, this technique makes possible the design of mechanism-
based PK/PD models of lead compounds. MD can reduce the cost of 
early drug development because the number of the animals needed 
is low and the information harvested from one animal is quite wide-
ranging. Acceptance of MD data as a part of preclinical and clinical 
pharmacology packages of drug development by regulatory agencies 
is actually increasing. It is concluded that relatively low costs and good 
benefits/limitations ratio makes MD a tool of wide perspective in drug 
research/development, diagnosis and therapy.
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