

Micellar Liquid Chromatographic Determination of Lamivudine, Indinavir and Ketoconazole in Dosage Forms and Biological Fluids

Wael Talaat*

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damnhour, 25511, Egypt

Abstract

A simple, reversed phase high performance liquid chromatographic method has been developed for the determination of lamivudine, indinavir and ketokonazole in pharmaceutical preparations, human plasma and urine. The method was conducted using A Shim-pack VP-ODS ($150 \times 4.6 \text{ mm i.d}$) stainless steel column at ambient temperature with ultra violet detection at 225 nm. Micellar mobile phase consisted of 0.07 M sodium dodecyl sulphate , 10% n-propanol, 0.3% triethylamine in 0.02 M phosphoric acid (pH 4.5) was used and pumped at a flow rate of 1.2 mL/min . The calibration curve was rectilinear over the concentration range of (0.05-1.0) µg/mL and (0.2-5.0) and (0.3-5.0) µg/mL lamivudine , indinavir and ketokonazole respectively. The proposed method was successfully applied to the analysis of these drugs in some dosage forms. The method was extended to the *in-vitro*,

Keywords: HPLC; Micellar mobile phase; Biological fluids

Introduction

The aim of this study was to develop a micellar liquid chromatographic method for the analysis of some coadministered drugs used for the treatment of human immunodeficiency disease (HIV). The studied drugs were lamivudine, ketokonazole and indinavir. The studied compounds were separated and determined in dosage forms and biological fluids. *In vivo* estimation of these drugs was investigated in patient plasma.

Mobile Phase

Micellar liquid chromatography (MLC) offering additional advantages over conventional liquid chromatographic methods. It has proved to be a useful technique in the determination of diverse groups of compounds in several matrices including food and biological samples. MLC allows complex matrices to be analysed without the aid of extraction and with direct injection of the physiological samples. Micelles tend to bind proteins competitively, thereby releasing proteinbound drugs and proteins, rather than precipitating into the column. Proteins compounds are solubilized and washed harmlessly away, eluting with the solvent front. MLC utilizes small amounts of organic modifier and generates less amount of toxic waste in comparison to aqueous-organic solvents, so that they are less toxic, non-flammable, biodegradable and relatively inexpensive (green chemistry) [1,2]. Micelles provide hydrophobic and electrostatic (for ionic surfactants) sites of interaction. In the micelles, three sites of solubilisation can be identified: the core (hydrophobic), the surface (hydrophilic) and the palisade layer (the region between the surfactant head groups and the core). Solutes associated to micelles experience a microenvironment that is different from that of bulk solvent. This is reflected by micelleinduced perturbations in solute physicochemical properties, including changes in solubility, acidity, photophysical properties, and reaction rates [3]. Also, the capability of simultaneous separation of hydrophobic and hydrophilic analytes in the same run without a gradient elution [4]. Unfortunately, some drawbacks were reported concerning the chromtographic efficiency and weak elution strength of pure micellar solution [5,6]. Many articles has been reported for determination of drugs in pharmaceutical preparations and biological fluids [7-9].

The proposed mobile phase was composed of a mixture of 0.07 M sodium dodecyl sulphate (SDS), 10% n-propanol, 0.02 M phosphoric

acid and 0.3% triethylamine. The pH was adjusted at pH 4.5 by using phosphoric acid or triethylamine. The mixture was then sonicated for 30 min. The resulting transparent mobile phase was filtered through a 0.45 μ m membrane filter. The proposed method is investigated for the determination of some coadministered drugs for treatment of HIV. Ketoconazole is coadministered with antiretroviral drugs in order to increase their duration as it suppress the liver microsomal enzymes [10]. It can be used for therapeutic dose monitoring, bioavailablity and pharmacokinetic studies of these drugs.

Lamivudine

Lamivudine (Figure 1) is (2R-cis)-4-Amino-1-[2-(hydroxylmethyl) 1,3-Oxathiolan-5-yl]-2(1H)-pyrimidinone [11]. It is used as antiviral against HIV and hepatitis B. It has less cytotoxicity and greater antiviral activity than other antiviral drugs [12]. The United States Pharmacopoeia (USP) determine lamivudine by HPLC method [13]. The USP mobile phase consists of mixture (95:5) of ammonium Buffer and methanol (pH 3.8) conducted through C18 column. The flow rate is about 1.0 mL per minute. The column temperature is maintained at 35°C. Other HPLC methods were reported [14-22].

Ketokonazole

Ketokonazole (Figure1) is $1-[4-(4-\{[(2R,4S)-2-(2,4-Dichlorophe$ $nyl) -2-(1H-imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy}phenyl)$ piperazin-1-yl]ethan-1-one [11]. Ketoconazole is a synthetic, imidazole antifungal medication used primarily to treat fungal infections.It interferes with the fungal synthesis of ergosterol, a constituent offungal cell membranes, ketoconazole works principally by inhibiting

*Corresponding author: Wael Talaat, Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damnhour, 25511, Egypt, Tel: +20 45 3368069; E-mail: wt.ismail@yahoo.com

Received December 18, 2014; Accepted January 19, 2015; Published January 23, 2015

Citation: Talaat W (2015) Micellar Liquid Chromatographic Determination of Lamivudine, Indinavir and Ketoconazole in Dosage Forms and Biological Fluids. Pharm Anal Acta 6: 327. doi:10.4172/2153-2435.1000327

Copyright: © 2015 Talaat W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

the enzyme cytochrome P450 [12]. Ketoconzole has been titrated potentiometrically using perchloric acid as titrant [5]. Several different articles have been published for the determination of ketoconazole spectrophotometrically [23-25] Voltametrically [26], by HPTLC [27], by HPLC [23,28,29] and by LC-MS [30]. The USP [13] Use mobile phase consists of diisopropylamine in methanol (7:3) conducted through C18 column.

Indinavir

Indinavir is 2S)-1-[(2S,4R)-4-benzyl-2-hydroxy-4-{[(1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]carbamoyl}butyl]-N-tertbutyl-4-(pyridin-3-ylmethyl)piperazine-2-carboxamide [11]. It is a protease inhibitor used as a component of highly active antiretroviral therapy to treat HIV infection and AIDS [12]. Several HPLC [31-33] and LC-MS [34] methods have been reported for the determination of indinavir. The comparison method [31] uses an analytical column of a Phenomenex Luna[®] C8 10 mm and a mobile phase was a mixture of di-sodium hydrogen phosphate (0.01 M)+ammonium chloride (0.4%) with pH adjusted to 4.5 (solvent A) and acetonitrile(solvent B), 68:32, v/v, pumped at a flow rate of 1.8 mL/min through the column.

Experimental

Reagents

All chemicals used were of Analytical Reagents grade, and the

- solvents were of HPLC grade.
- Orhtophosphoric acid (Prolabo, Paris, France).
- Methanol (Hipersolv, Merck).

• Sodium dodecyl sulphate (Park Scientific limted, Northompthon, UK), 0.1 M aquous solution was prepared.

• n-Propanol, Ethanol and Triethylamine (Riedel-deHaen, Sleeze, Germany).

• n-Butanol (Honi limited, London, UK).

Materials

Lamivudine was kindly supplied by Eva Pharmaceuticals, Cairo, Egypt. Ketoconazole and indinavir were purchased from Sigma Aldrich. Lamidine[®] tablets each labeled to contain 150 mg of lamivudine, Batch No. 1183498. Product of Eva pharmaceuticals and were obtained from the local pharmacy. Nezoral[®] tablets each labled to contain 200 mg of ketoconazole, Batch No.KN364. Product of Jansen pharmaceuticals and were obtained from the local pharmacy. Crixivan[®] tablets each labeled to contain 200mg of indinavir, Batch No. 58692. Product of Merck pharmaceuticals and were obtained from the local pharmacy.

Instrument

The analysis was performed using Shimadzu[™] LC-20A Series Chromatograph equipped with a Rheodyne injector valve with a 20µL loop and a SPD-20A UV detector operated at 225 nm. LC Workstation (Nishinokyo-Kuwabaracho, Nakagyo-Ku, Kyoto 604-8511, Japan).

Column and mobile phase

A Shim-pack VP-ODS column (5 μm) (150 mm \times 4.6 mm) was used. The micellar mobile phase consisted of a solution containing a mixture of 0.07 M sodium dodecyl sulphate (SDS),10% n-propanol, 0.02 M phosphoric acid and 0.3% triethylamine. The pH was adjusted at pH 4.5 by using phosphoric acid or triethylamine. The mixture was then sonicated for 30 min. The resulting transparent mobile phase was filtered through a 0.45 μm membrane filter (Millipore, Ireland). The micellar mobile phase was freshly prepared. Column stabilization was done by running the mobile phase for 1 hr. in order to obtain stable baseline. The column hold up value was the first deviation of the base line obtained.

Page 3 of 8

Standard solutions

Stock solutions of lamivudine, ketoconazole and indinavir were prepared by dissolving 10.0 mg of the drug in methanol and complete to 25.0 mL in volumetric flask with same solvent. These stock solutions were further diluted with the mobile phase to obtain the working concentration range 0.05-1.0 μ g /mL and 0.3-5.0 and 0. 2-5.0 for lamivudine, ketoconzole and indinavir respectively. The stock solutions were found to be stable for at least one week when kept in the refrigerator .The stability of the stock solution was checked through elution of each drug alone. There is no indication of any decomposition of the drugs in the samples.

General Procedures

Construction of calibration graph

Working solutions containing concentration ranges of (0.05-1.0 μ g/mL and (0.3-5.0) for lamivudine, ketoconzole respectively were prepared by serial dilution of the stock solutions together with an aliquot of internal standard solution containing 0.1 μ g/mL indinavir. 20 μ L aliquots were injected (triplicate) and eluted with the mobile phase under the previous chromatographic conditions . A plot of the peak area ratio between the drug and internal standard *versus* concentration of the drug is made to obtain the standard calibration curve. Alternatively, the regression equation was derived. For constructing a calibration curve for indinavir, 0.1 μ g/mL lamivudine was used as internal standard and complete the procedure as mentioned above.

Analysis Lamidine, Nezoral and Crixivan tablets and capsules

Ten tablets or the contents of ten capsules were accurately weighed, finely pulverized and mixed well. Aliquot quantities of the powder equivalent to 150 mg, 200 mg and 200 mg of lamivudine, ketoconalzole and indinavir were transferred to a 100 mL volumetric flask. The drugs were extract with 80 mL of methanol, the flasks were sonicated for 20 min. Filter into 100 mL volumetric flask and complete to the volume with methanol. Aliquots of this solution were diluted with the mobile phase and the internal standard (0.1 μ g/mL indinavir) was added to lamidine and nezoral extracts. 20 μ l were injected (triplicate) and eluted with the mobile phase. The nominal concentration was obtained from the corresponding regression equation. For the determination of indinavir in tablets, the previous procedure was conducted with using 0.1 μ g/mL lamivudine as internal standard.

Analysis of lamivudine, ketoconalzole and indinavir in spiked plasma and urine

0.5 mL aliquots of sample plasma was transferred into series of centrifuge tubes, spiked with the working concentrations of the drugs, 0.1 μ g/mL indinavir (internal standard), 1.0 mL of acetonitrile was added, then centrifuged at 4000 rpm for 20 min at room temperature. The supernatant solutions were aspirated and filtered using a microfilter paper. 20 μ l were injected (triplicate) and eluted with the mobile phase. The nominal concentration was obtained from the corresponding regression equation. For the determination of indinavir in plasma, the previous procedure was conducted with using 0.1 μ g/mL lamivudine as internal standard.

Analysis of lamivudine, ketoconalzole and indinavir in patient samples

Lamidine 15 mg and nezoral 200 mg were administered to a healthy volunteer (males 31 years old) in different days after 8 hours of fasting. A blood sample was withdrawn in the morning before administration of drug as blank. 10 mL Blood samples were collected after several time intervals; 30 min., 1 hr, 2 hrs, 3 hrs, 4 and 5 hrs after drug administration. The samples were drawn into test tubes containing sodium citrate as anticoagulant and centrifuged at 2000 rpm for 20 min. The supernatant plasma was transferred into test tubes, 0.1 μ g/mL indinavir (internal standard) was added. The procedure of spiked plasma was performed. Crixivan* 200 mg was determined in patient plasma by conducting the previous procedure using 0.1 μ g/mL lamivudine as internal standard. The plasma samples were analyzed directly after withdrawing and treatment without the need of freeze-thaw cycles. The study was done on the available volunteer and it can be extended for further applications.

Results and Discussion

The micellar mobile phase was selected due to its previously mentioned advantages [1-4] especially the possibility of direct injection of physiological samples. The proposed method is the only one developed for the simultaneous separation and determination of the studied drugs in biological fluids. In addition of being more sensitive than the other methods.

The drug peaks are eluted at retension times of 3.8, 6.1 and 6.9 for lamivudine, ketoconazole and indinavir respectively. The peaks are separated from plasma peak and are well resolved with resolution factors of 3.83 and 1.33 for lamivudine, ketoconazole and ketoconazole, indinavir respectively (Figures 2 and 3). The other resolution factors were calculated between the peak of the drug and the preceding peak.

Ultra Violet (UV) detection

Several wavelengths were investigated and the wavelength 225 nm was used as it provides high sensitivity for the determination of ketconazole and good sensitivities for the other drugs.

Study of the experimental parameters

The experimental parameters affecting the chromatographic separation of the drugs were studied and optimized. These variables including mobile phase, flow rate and linearity range. Variables were optimized by changing each in turn, while keeping all others constant to obtain the highest number of theoretical plates and good resolution. The optimum condition was using of 0.07 M sodium dodecyl sulphate

Page 4 of 8

, 10% n-propanol, 0.3% triethylamine in 0.02 M phosphoric acid (pH 4.5), the mobile phase was pumped at a flow rate of 1.2 mL/min (Table 1).

Analytical validation

Linearity of the method: After optimizing the conditions, it was found that the relation between the peak area ratios and the final concentrations of the drugs were linear over the ranges (0.03-1.0) μ g/mL and (0.2-5.0) and (0.3-5.0) μ g/mL lamivudine, indinavir and ketokonazole respectively. Linear regression of analysis of results gave the following equation:

Peak area ratio=0.01+7.4 C,

r=0.9999 for lamivudine

Peak area ratio=0.03+12.7 C

r=0.9999 for ketokonazole

Peak area ratio=0.03 + 9.6 C

r=0.9999 for indinavir

where,

C=concentration in µg/mL

r=correlation coefficient

The results of the statistical analysis of regression data for pure samples, such as standard deviation of the slope (S_b) and standard deviation of intercept (S_a) and the standard deviation of residuals (Sy/x) were calculated and were found to be 0.2, 0.012, 0.016 for lamivudine, 0.3, 0.03, 0.04 for ketoconazole 0.22, 0.06, 0.07 for indinavir. The small values of the figures point out to low scattering of the points around the calibration.

Accuracy and precision

The proposed method was evaluated by studying the accuracy as percent relative error (% Er) and precision as percent relative standard deviation (% RSD) [35]. The results of intraday and interday accuracy and precision for the method are summarized in Table 2. The results show low percent relative error (% Er) and percent relative standard deviation (% RSD) indicating high accuracy and precision. The accuracy of the proposed method was in good agreement with the official and comparison methods [5,23] (Table 3).

Limits of detection and quantification

The limit of detection (LOD) and quantification (LOQ) were calculated form the calibration curve according to the formula LOD=3.3 S_a/b and LOQ=10 S_a/b [35] respectively. where S_a is the standard deviation of the intercept of the regression line, b is the slope

Experimental parameter		Number of the	oretical plates		Capacity factor K`		
		LAM	KCZ	IDV	LAM	KCZ	IDV
	3.0	2360	2880	4310	4.40	7.76	9.0
_	4.0	2410	3150	4470	4.41	7.75	9.0
	4.5	2470	3240	4580	4.43	7.71	8.94
nН	5.0	2435	3210	4450	4.38	7.60	8.80
	6	2360	2910	4360	4.38	7.60	8.90
	7.0	2310	2650	4280	4.40	7.58	8.90
	0.05	2340	3170	4450	5.0	8.3	9.7
	0.07	2470	3240	4580	4.43	7.71	8.94
	0.1	2440	3120	4420	3.85	7.3	8.3
SDS Conc.	0.12	2350	2920	4320	3.0	6.4	7.6
	0.15	2240	2840	4110	2.6	6.0	7.0
	Methanol	1180	1850	2280	4.6	8.0	9.5
Type of organic	Ethanol	2250	2650	3110	4.5	7.9	9.2
modifier	Propanol	2470	3240	4580	4.43	7.71	8.94
	Butanol	2340	2830	3240	4.40	7.4	8.7
	5%	1980	2410	3840	5.5	8.2	9.6
	8%	2330	3140	4150	4.8	8.0	9.3
Propanol	10%	2470	3240	4580	4.43	7.71	8.94
	12%	2410	3190	4260	3.9	7.3	8.6
Conc.	15%	2220	2550	3570	3.5	6.7	8.2
	0.8	1340	1180	2330	6.7	11.5	13.4
	1.0	2110	2660	3880	5.3	9.3	10.7
Flow rate	1.2	2470	3240	4580	4.43	7.71	8.94
	1.5	2310	2740	3940	3.54	6.2	7.2
(mL/min.)	1.8	2010	2110	2140	2.9	5.2	6.0
Experimental parameter				Se	electivity factor (α)	

Page 5 of 8

		LAM KCZ	KC7	
			RCZ	
	3.0	1.75	1.1	7
	4.0	1.74	1.1	7
	4.5	1.74	1.1	6
	5.0	1.74	1.1	4
pН	6	1.75	1.1	5
	7.0	1.75	1.1	5
	0.05	1.66	1.1	7
	0.07	1.74	1.1	6
	0.1	1.90	1.1	4
SDS Cono	0.12	2.13	1.1	9
SDS Conc.	0.15	2.31	1.1	7
	Methanol	1.74	1.1	9
	Ethanol	1.76	1.1	6
Type of organic	Propanol	1.74	1.1	6
modifier	Butanol	1.70	1.1	8
	5%	1.50	1.1	7
	8%	170	11	6
Propanol	10%	1.70	11	6
Гюранов	1078	1.74	1.1	9
Conc.	12 /0	1.90	1.1	0
	15%	1.91		
	0.8	1.72	1.1	7
	1.0	1.75	1.1	5
Flow rate	1.2	1.74	1.1	6
(mL/min.)	1.5	1.75	1.1	6
	1.8	1.80	1.1	5
Experime	ental parameter		Resolution factor (Rs)	
		LAM KCZ	KCZ	IDV
	3.0	LAM KCZ 3.80	ксz 1.3	IDV
	3.0 4.0	LAM KCZ 3.80 3.81	ксz 1.3 1.3	IDV 30
	3.0 4.0 4.5	LAM KCZ 3.80 3.81 3.83	KCZ 1.3 1.3 1.3 1.3	IDV 30 30 33
ρH	3.0 4.0 4.5 5.0	LAM KCZ 3.80 3.81 3.83 3.83 3.80	ксz 1.3 1.3 1.3 1.3 1.3 1.3	IDV 50 50 53 52
рН	3.0 4.0 4.5 5.0 6	LAM KCZ 3.80 3.81 3.83 3.80 3.80 3.81	ксz 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IDV 30 30 33 32 30
рН	3.0 4.0 4.5 5.0 6 7.0	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 3.81	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IDV 80 80 83 82 80 80
рН	3.0 4.0 4.5 5.0 6 7.0 0.05	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IDV 10 10 13 12 10 10 10 10 10 10 10 10 10 10
рН	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 3.81 4.5 3.83	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IDV 10 10 13 12 10 11 13 12 13 10 10 10 10 10 10 10 10 10 10
pH	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	IDV 30 30 33 32 30 50 1 33 36 66
pH SDS Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 3.81 4.5 3.83 3.83 3.1 2.5	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3	IDV 10 10 13 12 10 13 13 16 6
pH SDS Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 4.5 3.83 3.83 3.1 2.5 2.0	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4	IDV 30 33 33 32 30 30 1 33 36 6 0
рН SDS Conc. Туре of organic	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 4.5 3.83 3.1 2.5 2.0 2.8	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.5 1.4	IDV 50 53 53 52 50 50 1 1 53 56 6 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1
pH SDS Conc. Type of organic modifier	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	IDV 50 50 53 52 50 50 1 53 56 6 6 0 1 1 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.5 1.4 1.7 1.4 1.3 1.5	IDV 30 30 33 32 30 30 1 33 36 6 6 0 1 1 20 33
pH SDS Conc. Type of organic modifier	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol Butanol	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.1 1.4 1.3 1.4	IDV 30 30 33 32 30 30 30 33 36 6 6 0 11 33 36 6 0 11 33 36 6 0 11 33 36 6 0 13 33 36 6 6 0 13 36 14 36 36 36 36 36 36 36 36 36 36
pH SDS Conc. Type of organic modifier	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol Butanol 5%	LAM KCZ 3.80 3.81 3.83 3.83 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4	IDV 30 30 33 32 30 30 30 33 36 6 6 0 1 1 20 33 30 33 40 8
pH SDS Conc. Type of organic modifier Propanol	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol Butanol 5% 8%	LAM KCZ 3.80 3.81 3.83 3.83 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.5 1.4 1.4 1.4 1.5 1.5	IDV 30 30 33 32 30 30 30 33 36 6 6 0 1 1 20 33 30 40 8 50
pH SDS Conc. Type of organic modifier Propanol	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol Butanol 5% 8% 10%	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.1 1.5 1.4 1.4 1.5 1.5 1.5	IDV 30 30 33 32 30 30 30 33 33 46 6 6 0 1 1 20 33 33 40 8 50 33 50 53 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Butanol 5% 8% 10% 12%	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.83 3.9 5.1 4.2 3.83 3.1 3.83 3.1 3.83 3.1 3.83 3.9 5.1 4.2 3.83 3.1 3.1 3.2 3.83 3.2 3.83 3.1 3.1 3.2 3.83 3.2 3.83 3.2 3.1 3.2 3.83 3.2 3.1 3.2 3.83 3.1 3.1 3.2 3.83 3.1 3.2 3.83 3.1 3.2 3.83 3.1 3.2 3.83 3.1 3.2 3.1 3.2 3.2 3.83 3.1 3.2 3.2 3.2 3.2 3.2 3.83 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.1 3.2 3.3 3.1 3.1 3.1 3.2	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.4 1.1 1.5 1.2 1.5 1.2 1.5 1.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	IDV 30 33 33 32 30 30 1 33 36 6 0 1 1 33 36 6 0 1 1 33 36 6 0 1 1 33 36 6 6 0 1 1 33 36 56 6 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Butanol 5% 8% 10% 12%	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.66	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.4 1.1 1.5 1.2 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	IDV 50 50 53 52 50 50 50 1 1 53 56 6 6 50 1 1 50 53 50 53 50 53 50 53 50 53 50 53 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Butanol 5% 8% 10% 12% 15% 0.8	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.5 5.1 4.2 3.83 3.1 5.	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.5	IDV 50 50 53 52 50 50 1 1 53 56 6 6 6 6 6 50 53 50 53 50 53 58 50 53 58 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Propanol Butanol 5% 8% 10% 12% 15% 0.8	LAM KCZ 3.80 3.81 3.83 3.80 3.81 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.1 4.2 3.83 3.9 5.1 4.2 3.83 3.1 4.2 5.7 4.60 5.7 4.60 5.7 5.	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.1 1.5 1.2 1.6 1.4 1.7 1.5 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	IDV 50 50 53 52 50 50 50 53 56 6 6 6 6 50 53 50 53 50 53 50 53 50 53 50 53 50 53 50 53 50 50 50 50 50 50 50 50 50 50
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Butanol 5% 8% 10% 12% 15% 0.8 1.0	LAM KCZ 3.80 3.81 3.83 3.83 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.66 5.7 4.60 3.83 3.83	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5	IDV 50 50 53 52 50 50 50 53 50 53 50 53 55 56 50 55 55 55 55 55 55 55 55 55
pH SDS Conc. Type of organic modifier Propanol Conc.	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Propanol Butanol 5% 8% 10% 12% 15% 0.8 1.0 1.2	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.83 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.1 2.66 5.7 4.60 3.83 3.10	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.1 1.5 1.2 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.5	IDV 30 30 33 33 32 30 30 30 33 33 33 33 33 33 33
pH SDS Conc. Type of organic modifier Propanol Conc. Flow rate (mL/min.)	3.0 4.0 4.5 5.0 6 7.0 0.05 0.07 0.1 0.12 0.15 Methanol Ethanol Ethanol Butanol 5% 8% 10% 12% 15% 0.8 1.0 1.2 1.5	LAM KCZ 3.80 3.81 3.83 3.83 3.80 3.81 4.5 3.83 3.1 2.5 2.0 2.8 3.2 3.83 3.9 5.1 4.2 3.83 3.9 5.1 4.2 3.83 3.1 2.66 5.7 4.60 3.83 3.10 2.55 2.0 2.5 3.83 3.10 3.55 5.5 5.5 5.7 5.5 5.7 5.	KCZ 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.4 1.1 1.5 1.2 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.7 1.5	IDV 100 100 133 142 100 100 11 133 166 16 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 11 100 100 11 100 100 11 100 10

 Table 1: Effect of different experimental parameters on the column efficiency.

 LAM: Lamivudine

 KCZ: Ketoconazole

 IDV: Indinavir

Page 6 of 8

of the calibration curve . The limit of detections were 0.005, 0.008, 0.021, for lamivudine, ketoconazole and indinavir, respectively. The limit of quantification values were 0.016, 0.024, 0.062, for lamivudine , ketoconazole and indinavir, respectively.

Robustness

The robustness of the method was studied according to the United State Pharmacopoeia [13] and no significant effect on assay data performance was observed with change of pH (4-5), flow rate (1-1.5mL) and mobile phase composition (0.05-0.1 M SDS), (8%-12%propanol) (Table 4).

System suitability

System suitability parameters were measured using three injections of reference solutions of the studied drugs to verify the system performance. The % RSD values were calculated for the number of theoretical plates, capacity factor, tailing factor and retention time Table 5.

Application to dosage forms

The proposed method was successfully applied for the determination of the studied drugs in tablets and capsules. The results shown in Table 3 are in good agreement with those obtained by the official USP method [13] for the determination of lamivudine, ketoconazole comparison methods [31] for the determination of indinavir. The proposed method is fairly sensitive compared with the official and comparison methods.

Content uniformity testing

Due to the high precision of the method, and its ability to rapidly

estimate the concentration of the drug in a single tablet and capsule extract with sufficient accuracy, the method is suited for content uniformity testing which is a time consuming process when using conventional assay technique. The steps of the test were adopted according to the United States Pharmacopoeia procedure. The acceptance value AV was calculated for each of the commercially available tablets and it was found to be smaller than the maximum allowed acceptance value L1.The results demonstrated reasonable drug uniformity as shown in Table 6.

Application to spiked biological fluids

The high sensitivity attained by the proposed method allows determination of the drugs in biological fluids with high percentage of recovery Table 7.

Application to patient samples

The plasma samples obtained from the volunteer were investigated using the regression equation of spiked plasma. The maximum plasma level reached after 1 hr for lamivudine, 2 hr for indinavir, and ketoconazole. Hence, the proposed method allows monitoring of the therapeutic drug levels in plasma, bioavailability and pharmacokinetic studies (Figures 2 and 3) (Table 8). The obtained results are with good agreement with the reported plasma concentrations [10,12,31].

Stability

The stability of the methanolic and aqueous sample solutions at room temperature (25°C) for 24 hour after preparation, was verified by reassaying them. There is no indication of any decomposition of the drugs in the samples.

LAMIVUDINE				KETOCONAZOLE				INDIMAVIR			
Conc. added µg/mL	% Found	% RSD	% Er	Conc. added µg/mL	% Found	% RSD	% Er	Conc. added µg/mL	% Found	% RSD	% Er
Intraday				Intraday				Intraday			
0.03	99.90 ± 0.22	0.22	0.3	0.3	99.50 ± 0.32	0.32	0.18	0.18	99.80 ± 0.23	0.23	0.13
0.5	100.10 ± 0.26	0.26	0.8	0.8	100.20 ± 0.40	0.40	0.23	0.23	100.20 ± 0.3	0.27	0.16
1.00	99.88 ± 00.21	0.21	5.00	5.00	99.90 ± 0.41	0.41	0.24	0.24	99.68 ± 0.26	0.26	0.15
Interday				Interday				Interday			
0.03	100.20 ± 0.24	0.24	0.14	0.3	100.31 ± 0.32	0.32	0.18	0.3	100.23 ± 0.3	0.25	0.14
0.5	100.13 ± 0.20	0.20	0.12	0.8	99.62 ± 0.33	0.33	0.19	0.8	100.15 ± 0.2	0.23	0.13
1.00	99.5 ± 0.27	0.27	0.16	5.00	99.62 ± 0.3	0.42	0.24	5.00	100.15 ± 0	0.27	0.16

Table 2: Intraday and inter day precision for the proposed method for the determination of the studied drugs. Each result is the average of three separate determinations.

LAMIDINE 150 MG				NEZORAL 200 MG				CRIXIVAN 200 MG			
Propose	d method	Official	method ⁽¹³⁾	Propos	Proposed method		Official method ⁽¹³⁾		Proposed method		son method ⁽³¹⁾
Amont taken, μg/ mL	% Found	Amont taken, µg/ mL	% Found	Amont taken, μg/ mL	% Found	Amont taken, µg/ mL	% Found	Amont taken µg/mL	, % Found	Amont taken, µg/ mL	% Found
0.03	100.30	1.00	99.90	0.3	100.30	1.0	99.50	0.3	99.30	0.5	99.82
0.08	99.60	4.00	99.80	0.8	99.30	2.0	99.80	0.8	99.52	0.8	99.20
0.5	99.83	8.00	100.41	2.00	99.82	3.0	100.25	2.00	99.91	1.00	100.50
1.00	99.77	10.0	99.42	5.00	99.71	4.0	100.15	5.00	100.10		100.13
mean ± SD	99.91 ± 0.3		99.90 ± 0.35	mean ± SD	99.80 ± 0.33		99.90 ± 0.38	mean ± SD	99.70 ± 0.41		99.90 ± 0.50
t-test	(2.45)*	(0.26)		t-test	(2.45)*	(1.4)		test	(2.45)*	(1.35)	
F-test	(9.27)*	(1.31)		F-test	(9.27)*	(1.563)		F-test	(9.27)*	(1.5)	

Table 3: Application of the proposed and comparison method to determination of the studied drugs in dosage forms.

Page 7 of 8

	LAMIVUDINE			KETOO	KETOCONAZOLE			INDINAVIR		
PARAMETERS	Retention time	Theoritical plate	Capacity factor	Retention time	Theoritical plate	Capacity factor	Retention time	Theoritical plate	Capacity factor	
0.05 MSDS	4.2	2340	3.5	6.50	3170	8.3	7.50	4450	9.70	
0.07 MSDS	3.8	2470	4.43	6.1	3240	7.71	6.9	4580	8.94	
0.1 MSDS	3.4	2440	1.5	5.80	3120	7.30	6.5	4420	8.3	
8% propanol	4.1	2330	4.8	6.3	3140	8.0	7.2	4150	9.3	
10% propanol	3.8	2470	4.43	6.1	3240	7.71	6.9	4580	8.94	
12% propanol	3.4	2410	3.9	5.8	3190	7.30	6.7	4260	8.6	
pH 4	3.82	2410	4.45	6.2	3150	7.75	7.0	4470	9.0	
pH 4.5	3.8	2470	4.43	6.1	3240	7.71	6.9	4580	8.94	
pH 5.0	3.7	2435	4.38	6.0	3210	7.60	6.8	4450	8.8	
1.0 mL/min	4.4	2110	5.3	7.2	2260	9.3	5.50	3880	10.7	
1.2 mL/min	3.8	2470	4.43	6.1	3240	7.71	6.9	4580	8.94	
1.5 mL/min	3.2	2310	3.54	5.0	2740	6.2	5.7	3940	7.2	

Table 4: Results of the robustness of the proposed method.

PARAMETER NUMBER OF THEORETICAL PLATES*		CAPACITY* FACTOR	TAILING FACTOR*	RETENTION TIME*	
Lamivudine	0.16	0.14	0.22	0.12	
Ketoconazole	0.18	0.15	0.24	0.15	
Indinavir	0.2	0.13	0 .27	0.16	

 Table 5: Results of system suitability study.

 * % RSD (n=3)

DADAMETED	PERCENTAGE OF THE LABLE CLAIM							
PARAMETER	Lamidine tablets	Nezoral tablets	Crixivan capsules					
	99.45	101.10	101.22					
	99.50	100.90	100.24					
	100.33	99.40	99.31					
	100.20	99.53	100.44					
	100.63	100.30	99.75					
Data	99.82	99.55	100.32					
	99.60	101.21	99.60					
	99.12	99.23	99.32					
	100.15	99.65	99.35					
	100.30	99.21	99.50					
Mean	99.91	100.01	99.90					
SD	0.53	0.80	0.50					
% Error	0.17	0.30	0.15					
Acceptance	1.25	1.85	1.10					
value(AV)								
Maximum allowed value(L1)		15						

Table 6: Content uniformity testing of Lamivudine, ketoconazole and indinavir in their dosage forms using the proposed method.

LAMIVUDINE		KETOCO	NAZOLE		INDIMAVIR
Conc.added µg/mL	% Found	Conc.added µg/mL	% Found	Conc.added µg/mL	% Found
Plasma		Plasma		Plasma	
0.03	98.90	0.3	101.31	0.3	98.70
0.5	101.10	0.8	99.20	0.8	101.10
1.00	99.30	5.00	98.80	5.00	99.50
mean ± SD	99.76 ± 1.17	mean ± SD	99.77 ± 1.35	mean ± SD	99.77 ± 1.22
Urine		Urine		Urine	
0.03	100.10	0.3	99.10	0.3	100.42
0.5	100.50	0.8	101.20	0.8	101.15
1.00	99.11	5.00	98.90	5.00	99.21
mean ± SD	99.9 ± 0.72	mean ± SD	99.73 ± 1.27	mean ± SD	100.3 ± 0.9

 Table 7: Application of the proposed method for the determination of the studied drugs in spiked plasma.

Page 8 of 8

TABLET/TIME	0.5 HR	1 HR	2 HR	3 HR	4 HR	5 HR
lamidine [®] 150 mg tablets	0.90	1.61	1.51	1.1	0.83	0.41
Nezoral [®] 200 mg	1.8	3.1	3.4	2.8	1.9	1.5
Crixivan [®] 200 mg capsules	0.6	1.0	1.5	0.8	0.52	0.11

Table 8: Determination of the studied drugs in µg/mL in patient plasma.

Conclusion

The proposed method provides simultaneous determination of lamivudine, ketoconazol and indinavir offering additional advantages over comparison methods. The present investigation can be utilized for monitoring of the concentration of the studied drugs in patient plasma. In addition it can be extended for pharmacokinetic studies.

References

- Romero JE, Carda-Broch S, Gil-Agusti M, Capella-Piero M, Bose D (2005) Monitoring disopyramide,lidocaine and quinidine by micellar liquid chromatography. Trends Anal Chem 24: 104-109.
- MeiC, Devasish B, Josep E, Juan P, Maria R et al. (2011) Determination of Putrescine and Tyramine in Fish by Micellar Liquid Chromatography with UV Detection Using Direct Injection. The Open Analytical Chemistry Journal 5: 22-26.
- Ruiz M, Carda S, Torres J, García M (2009) Retention mechanisms in micellar liquid chromatography. J Chromatog A 1216: 1798–1814.
- 4. Romero JE, Samuel C, Maria R (2010) Micellar liquid chromatography in bioanalytical chemistry. Contribution to science 6 : 105–114
- Berthod A (1997) Causes and remediation of reduced efficiency in micellar liquid chromatography. J. Chromatogr. A 780: 191-206.
- Dorsey JG, DeEchengaray MT, Landy JS (1983) Efficiency enhancement in micellar liquid chromatography. Anal Chem 55: 924-928.
- Thogchai W, Liawruangrath B (2013) Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products. International Journal of Cosmetic Science 35: 257-263.
- Swati D, Devasish B, Shukla SK, Abhilasha Di, Romero JE (2013) Monitoring strychnine and brucine in biochemical samples using direct injection micellar liquid chromatography, Anal Methods 5: 1747-1754.
- Dalia R (2012) Simultaneous Determination of Metformin, Nateglinide and Gliclazide in Pharmaceutical Preparations Using Micellar Liquid Chromatography. Int J Biomed Sci 8: 144-151.
- Walker, R. Whittlesea , C. (2008) . Clinical Pharmacy and Therapeutics (4th edn.) Harcourt publishers limited, London.
- Budavari S (1996) The Merck Index (12th edn.) Merk &Co. Inc, White House Station, NJ.
- 12. Hardman JG, Gilman AG, Limbird LE (1996) The Pharmacological Bases of Therapeutics (9th edn.) MC Graw-Hill, NY.
- (2007) United State Pharmacopeial convention: United State Pharmacopoiea, 30 National Formulary 25, US Pharmacopoiea convention, Rockville, MD.
- Sharaf M, Eid M, Talaat W (2014) Micellar liquid chromatographic determination of ribavirin, silybin, interferon α 2A, lamivudine and ursodeoxycholic acid in dosag forms and biologicak fluids. Liquid Chromator and Relat Technol 37: 1-19.
- Bengi U, Sibel A (2002) Determination of lamivudine and zidovudine in binary mixturesusing first derivative spectrophotometric, first derivative of the ratiospectra and HPLC-UV method. Analytica Chimica Acta 466: 175-181.
- Gholamerza B, Shahla M, Amir K, Bahareh M (2005) High performance liquid chromatographic determination of lamivudine in human serum using liquidliquid extraction :application to pharmacokinetic studies. J. Chromatogr B. 823: 213-219.
- Sockalingam A, Narayareddy I, Pitchaimuthu S, Sishaiah K (2005) Simutaneous quantification of stavudine, lamivudine and nevirapine by UV spectroscopy, reversed phase HPLC and HPTLC. Pharm Biomed Anal 39: 801-807.

- Wissen C, Aarnoutse R, Burger D (2005) Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didansine, stavudine, zidovudine and abacavir in human plasma by reversed phase HPLC. J. Chromatogr. B 816: 121-129.
- Vincent B, Philippe M, Philippe C, Ghislaine L, Luigi A (2005) .Simultaneous analysis of several antiretroviral nucleosides in rat plasma byHPLC with UV using acetic acid /hydroxylamine buffer test of this new volatile medium-pH for HPLC-ESI-MS/MS. J. Chromatogr B 821: 132-140.
- Mahua S, Sateesh K, Ramesh P (2006) Development and validation of Rp-HPLC and UV spectrophotometeric method of analysis for the quantitative estimation of antiretroviral drugs in pharmaceutical dosage Forms. J Chromatogr 830: 349-355.
- Herve R, Bernard M, Corrinne C, Pierre B (2007) Determination of 19 antiretroviral agents in pharmaceuticals or suspected products with methods using HPLC. J Chromatogr B 850: 376-382.
- 22. Roa L, Daniel R, Nathan, Marie E, Marisa C, et al. (2008) Metabolism and pharmacokinetics of the combination zidovudine plus lamivudine in the adult Erythrocebus patas moneky determined by LC-MS analysis. Toxicology and Applied Pharmacology 226: 206-211.
- Gjorgjeska B (2012) Determination of Ketoconazole in tablets by using three different methods. European Medical Health and Pharmaceutical Journal 4: 8-13.
- Rane S, Padmaja (2012) Spectrophotometric method for the determination of ketoconazole based on amplification reactions, J Pharmaceutical Analysis 2: 43-50.
- 25. Farhadi K, Malek R (2001) A New spectrophotometric Method for the Determination of Ketoconazole Based on the Oxidation Reactions, Analytical Sciences 17: 867-372.
- Shamsipur M, Farhadi K (2000) Adsorptive stripping voltammetric determination of ketoconazole in pharmaceutical preparations and urine using carbon paste electrodes, Analyst 125: 1639-1645.
- Saysin S, Liawruangrath B, Liawruangrath S (2010) High performance thinlayer chromatographic determination of ketoconazole in pharmaceutical formulations, J Cosmet Sci 61: 367-374.
- Staub I, Bergold A (2004) Determination of Ketoconazole in Shampoo by High Performance Liquid Chromatography, Acta Farm Bonaerense 2 : 387-392.
- Heyden Y, Nguyet A, Detaevernier M, Massart D, Vercammen (2002) J Simultaneous determination of ketoconazole and formaldehyde in a shampoo: liquid chromatography method development and validation, J Chromatogr A 958: 191-196.
- Chen Y, Felder L, Jiang X, Naidong W (2002) Determination of ketoconazole in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 774: 67-73.
- Gonçalves T, Fernandes B, Galindo D, Souza V, De Abreu L, et al. (2007) Determination of indinavir in human plasma and its use in pharmacokinetic study. Rev Bras Cienc Farm 43: 159-160.
- 32. Sarash M, Lopez Y, Mallolas J, Blanco J, Gatell J, et al. (2001) Simultaneous determination of the HIV-protease inhibitors indinavir, amprenavir, ritonavir, saquinavir and nelfinavir in human plasma by reversed-phase high-performance liquid chromatography. J Chromatogr B 757: 325-332.
- 33. Yamada H, Kotaki H, Nakamura T, Iwamoto A (2001) Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir and nelfinavir in human plasma by high-performance liquid chromatography. J Chromatogr B 755: 85-89.
- 34. Anura L, Kearney B, Judith A, Gambertoglio J, Aweeka T (2001) An LC-MS-MS method for the determination of indinavir, an HIV-1 protease inhibitor, in human plasma, J Pharmaceutical and Biomedical Analysis 25: 309-315
- Miller JC, Miller JN (1993) Statistics for Analytical Chemistry (4th edn) Ellis-Howood and prentice Hall, NY.