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Introduction
Antioxidants are compounds capable to either delay or inhibit the 

oxidation processes which occur under the influence of atmospheric 
oxygen or reactive oxygen species. They are used for the stabilization 
of polymeric products, of petrochemicals, foodstuffs, cosmetics and 
pharmaceuticals. 

Antioxidants are involved in the defense mechanism of the organism 
against the pathologies associated to the attack of free radicals. 

Endogenous antioxidants are enzymes, like superoxide dismutase, 
catalase, glutathione peroxidase or nonenzymatic compounds, such 
as uric acid, bilirubin, albumin, metallothioneins.  When endogenous 
factors cannot ensure a rigurous control and a complete protection of 
the organism against the reactive oxygen species, the need for exogenous 
antioxidants arises, as nutritional supplements or pharmaceutical 
products, which contain as active principle an antioxidant compound. 
Amongst the most important exogenous antioxidants, vitamin E, 
vitamin C, β-carotene, vitamin E, flavonoids, mineral Se are well 

Exogenous antioxidants can derive from natural sources (vitamins, 
flavonoids, anthocyanins, some mineral compounds), but can also be 
synthetic compounds, like butylhydroxyanisole, butylhydroxytoluene, 
gallates, etc [1].

There is an increasing interest in antioxidants, particularly in those 
intended to prevent the presumed deleterious effects of free radicals 
in the human body, as well as the deterioration of fats and other 
constituents of foodstuffs [2].

Health Benefits of Antioxidants
Recently, antioxidants have attracted considerable attention in 

relation to radicals and oxidative stress, cancer prophylaxis and therapy, 
and longevity [3]. Phenols and polyphenols are the target analytes in 
many such cases; they may be detected by enzymes like tyrosinase 

or other phenol oxidases, or even by plant tissues containing these 
enzymes [4-18].

The recommendations based on epidemiological studies are 
such, that fruits, vegetables and less processed staple foods ensure 
the best protection against the development of diseases caused by 
oxidative stress, such as cancer, coronary heart disease, obesity, type 
2 diabetes, hypertension and cataract [19]. The explanation consists 
in the beneficial health effect, due to antioxidants present in fruit and 
vegetables [20]. There are numerous antioxidants in dietary plants: 
carotenoids, phenolic compounds, benzoic acid derivatives, flavonoids, 
proanthocyanidins, stilbenes, coumarins, lignans, and lignins [21]. Of 
the 50 analysed food products with high antioxidant content [20], 13 
were spices, 8 were fruits and vegetables, 5 were berries, 5 were chocolate-
based, 5 were breakfast cereals, and 4 were nuts or seeds. Considering 
the typical serving sizes, blackberries, walnuts, strawberries, artichokes, 
cranberries, brewed coffee, raspberries, pecans, blueberries, ground 
cloves, grape juice and unsweetened baking chocolate were at the top of 
the classification [20].

Fruit juices, beverages and hot drinks contain high amounts of 
antioxidants, like polyphenols, vitamin C, vitamin E, Maillard reaction 
products, β-carotene, and lycopene [22]. The consumption of fruit 
juices, beverages and hot drinks was found to reduce the morbidity 
and mortality caused by degenerative diseases [23-28]. Antioxidants 
are known to play a key role in the protective influence exerted by 
plant foods [28-32]. Epidemiologic studies that analyse the health 
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An overview of the importance and mechanism of action of antioxidants, as well as of the methods of assessment 
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Antioxidants are responsible for the defense mechanism of the organism against the pathologies associated to 
the attack of free radicals, thus the intake of plant derived antioxidants is involved in the prevention of degenerative 
diseases caused by oxidative stress, such as cancer, Parkinson, Alzheimer or atherosclerosis. 

The methods of antioxidant capacity evaluation, including spectrometry, chromatography and electrochemical 
techniques are detailed with respect to principles and analytical performances.
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implications of dietary components rely on the estimation of intakes 
of sample populations, which are found in databases that provide the 
compounds found in commonly consumed foods. Thus, the availability 
of appropriate and complete food composition data is vital. Due to 
the diversity of chemical compounds with antioxidant activity present 
in foodstuffs, complete databases of antioxidant contents are not yet 
available. In addition, levels of single antioxidants in foodstuffs do not 
necessarily reflect their total antioxidant potential (TAP) [22]; the total 
antioxidant potential depends on the synergic and redox interaction 
among the different molecules present in food [33,34]. Geographical 
differences in food composition should also be considered when 
regional surveys are performed.

The total antioxidant potential is a relevant tool for investigating 
the relationship between dietary antioxidants and pathologies induced 
by the oxidative stress. This was confirmed by the data obtained from a 
recent population-based control study, proving that diet TAP resulted 
in reduced risk of both cardiac and distal gastric cancer [35]. Several 
analytical methods were recently developed for measuring the total 
antioxidant capacity of food and beverages: these assays differ in the 
mechanism of generation of different radical species and/or target 
molecules and in the way end-products are measured [33,34,36-39].

The consumption of fruits and vegetables, as well as of grains and 
nuts, has been associated with reduced risk of chronic diseases [40-
42]. Among food components fighting against chronic diseases, great 
attention has been paid to phytochemicals, plant-derived molecules 
endowed with steady antioxidant power. The cummulative and 
synergistic activities of the bioactive molecules present in plant food 
are responsible for their enhanced antioxidant properties. Hence, an 
appropriate investigation of the role of dietary antioxidants in disease 
prevention, should be based on a complete database of antioxidant-rich 
foodstuffs [40].

The evaluation of the total antioxidant capacity (TAC) may be 
an appropriate tool to determine the additive antioxidant properties 
of plant foods [43]. The importance of TAC as a novel instrument to 
estimate the relationship between diet and oxidative stress-induced 
diseases, is presented in recent studies [44,45] showing a negative 
association between dietary TAC and the incidence of gastric cancer 
or the levels of C-reactive protein. In order to assess the overall intake 
of TAC in population studies, the TAC of 34 vegetables, 30 fruits, 34 
beverages and 6 vegetable oils, of varieties most often consumed in Italy, 
has been analysed using three different assays [43]. Among fruits, the 
highest antioxidant activities were found in berries, among beverages, 
coffee had the greatest TAC, followed by citrus juices, which exhibited 
the highest value among soft beverages [43]. The TAC of spices, dried 
fruits, sweets, cereals, pulses, and nuts was determined with the aim 
to complete the Italian TAC database [40]. In fiber-rich foods where 
phenolics are present in free or bound forms, such as cereals, legumes, 
and nuts, the contribution of bound antioxidant compounds to the 
TAC value was evaluated [40].

Various berries and fruit types of less common fruit species are 
known to contain antioxidants [46]. The intake of high amounts of 
flavonoids, compounds endowed with antioxidant, antiproliferative 
and anti-inflammatory activity, may have a positive impact on human 
health, especially in the prevention of cancer and inflammatory diseases 
[46].

The Mechanism of Action of Antioxidants
LMWAs (low molecular weight antioxidants) [47] are small 

molecules that frequently infiltrate cells, accumulate (at high 
concentrations) in specific compartments associated with oxidative 
damage, and then are regenerated by the the cell [48]. In human tissues, 
cellular LMWAs are obtained from various sources. Glutathione (GSH), 
nicotinamide adenine dinucleotide (reduced form), and carnosine [49] 
are synthesized by the cells; uric acid (UA) [50] and bilirubin [51] 
are waste products of cellular metabolism; ascorbic acid (AA) [52], 
tocopherols and polyphenols are antioxidants obtained from the diet.

Among these LMWAs, a considerable attention was focused on 
ascorbic acid (AA), known for its reductive properties and for its use on 
a wide scale as an antioxidant agent in foods and drinks [53]; it is also 
important for therapeutic purposes and biological metabolism.

Ascorbic acid is an antioxidant with therapeutic properties, 
which plays an important role in activating the immune response, in 
wound healing, in osteogenesis, in detoxifying the organism, in iron 
absorption, in collagen biosynthesis, in preventing the clotting of blood 
vessels, and in many other metabolic processes [54-56]. 

Vitamin C can be easily oxidized, its degradation being accelerated 
by heat, light and the presence of heavy metal cations [57-59]. Thus, 
due to its content variation, vitamin C represents an important quality 
indicator of foodstuffs [59] and contributes to the antioxidant properties 
of food [60-64]. 

Special attention has been dedicated to the study of antioxidant 
action mechanism. 

The excess free radicals circulating in the body oxidize the low 
density lipoproteins (LDL), making them potentially lethal; the 
excess free radicals can also accelerate aging processes and have been 
linked to other very serious pathologies, such as brain stroke, diabetes 
mellitus, rheumatoid arthritis, Parkinson’s disease, Alzheimer’s disease 
and cancer. Physiologically, the oxygenated free radicals are among 
the most important radical species. Reactive oxygen species (ROS) 
comprise species with a strong oxidizing tendency, both of a radical 
nature (the superoxide radical, the hydroxyl radical) and a non-radical 
nature (ozone, hydrogen peroxide) [65]. 

A number of chemical and physical phenomena can initiate 
oxidation, which proceeds continuously in the presence of (a) suitable 
substrate(s), until a blocking defence mechanism occurs [66]. Target 
substances include oxygen, polyunsaturated fatty acids, phospholipids, 
cholesterol and DNA [67]. 

The essential features of oxidation via a free radical-mediated chain 
reaction are initiation, propagation, branching and termination steps 
[66]. The process may be initiated by the action of external agents such 
as heat, light or ionizing radiation or by chemical initiation involving 
metal ions or metalloproteins [68].

Initiation

LH + R∙    →   L∙ + RH

where LH represents the substrate molecule, for example, a lipid, with 
R∙ as the initiating oxidizing radical. The oxidation of the lipid generates 
a highly reactive allyl radical (L∙) that can rapidly react with oxygen to 
form a lipid peroxyl radical (LOO∙).
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Propagation

L∙ + O2  →  LOO∙
LOO ∙ + LH  →  L∙  + LOOH

The peroxyl radicals are the chain carriers of the reaction; they can 
further oxidize the lipid, producing lipid hydroperoxides (LOOH), 
which in turn break down to a wide range of compounds [69], including 
alcohols, aldehydes, alkyl formates, ketones and hydrocarbons, and 
radicals, including the alkoxyl radical (LO∙).

Branching

LOOH   → LO∙  + HO∙
2 LOOH →  LOO ∙ + LO∙  + H2O

The breakdown of lipid hydroperoxides often involves transition 
metal ion catalysis, in reactions similar to those involving hydrogen 
peroxide, yielding lipid peroxyl and lipid alkoxyl radicals.

Termination

Termination reactions involve the combination of radicals to form 
non-radical products:

  LO ∙  +   LO ∙
  LOO ∙   +   LOO ∙    
  LO ∙  +   LOO ∙
Primary antioxidants, AH, when present in trace amounts, may 

either delay or inhibit the initiation step by reacting with a lipid radical 
or inhibit the propagation step by reacting with peroxyl or alkoxyl 
radicals [70].

L ∙ + AH   →   LH + A∙
LOO∙ + AH   →   LOOH + A∙
LO∙  + AH  →   LOH + A∙

Secondary or preventative antioxidants are compounds that retard 
the rate of oxidation. This may be achieved in a number of ways, 
including removal of substrate or singlet oxygen quenching [66, 71].

Methods of Total Antioxidant Capacity Assessment
The various analytical methods [72] of evaluation of the antioxidant 

capacity fall into distinct categories:

Spectrometric Techniques

Spectrometric techniques [72-91] rely on the reaction of a radical, 
radical cation or complex with an antioxidant molecule capable to 
donate a hydrogen atom. 

The DPPH method: [2,73-75] DPPH• (2,2-diphenyl-1-
picrylhydrazyl) is a stable free radical, due to the delocalization of 
the spare electron on the whole molecule. Thus, DPPH• does not 
dimerize, as happens with most free radicals. The delocalisation on the 
DPPH• molecule determines the occurence of a purple colour, with an 
absorbtion band with a maximum around 520nm. 

When DPPH• reacts with a hydrogen donor, the reduced (molecular) 
form (DPPH) is generated, accompanied by the disappearance of the 
violet colour. Therefore, the absorbance diminution depends linearly on 
the antioxidant concentration. Trolox is used as standard antioxidant 
[74, 75].

Antioxidant 
capacity assay Principle of the method End-product 

determination
Spectrometry

DPPH Antioxidant reaction with an organic 
radical Colorimetry

ABTS Antioxidant reaction with an organic 
cation radical Colorimetry

FRAP Antioxidant reaction with  a Fe(III) 
complex Colorimetry

PFRAP 
Potassium ferricyanide reduction by 
antioxidants and subsequent reaction 
of potassium ferrocyanide with Fe3+

Colorimetry

CUPRAC Cu (II) reduction to Cu (I) by 
antioxidants Colorimetry

ORAC 
Antioxidant reaction with peroxyl 
radicals, induced by AAPH 
(2,2’-azobis-2-amidino-propane)

Loss of fluorescence of  
fluorescein

HORAC 
Antioxidant capacity to quench OH 
radicals generated by a Co(II) based 
Fenton-like system  

Loss of fluorescence of  
fluorescein

TRAP
Antioxidant capacity to scavenge 
luminol-derived radicals, generated 
from AAPH decomposition 

Chemiluminescence 
quenching

Fluorimetry 

Emission of light by a substance 
that has absorbed light or other 
electromagnetic radiation of a 
different wavelength

Recording of 
fluorescence excitation/
emission spectra

Electrochemical Techniques

Cyclic 
voltammetry 

The potential of a working electrode 
is linearly varied from an initial 
value to a final value and back, and 
the respective current intensity is 
recorded

Measurement of 
the intensity of the 
cathodic/ anodic peak

Amperometry
The potential of the working electrode 
is set at a fixed value with respect to a 
reference electrode

Measurement of the 
intensity of the current 
generated by the 
oxidation/reduction 
of an electroactive 
analyte

Biamperometry
The reaction of the analyte 
(antioxidant) with the oxidized form of 
a reversible indicating redox couple

Measurement of 
the current flowing 
between two 
identical working 
electrodes, at a small 
potential difference 
and immersed in a 
solution containing the 
analysed sample and a 
reversible redox couple 

Chromatography

Gas 
chromatography

Separation of the compounds in a 
mixture is based on the repartition 
between a liquid stationary phase and 
a gas mobile phase

Flame ionisation or 
thermal conductivity 
detection

High 
performance 
liquid 
chromatography

Separation of the compounds in a 
mixture is based on the repartition 
between a solid stationary phase and 
a liquid mobile phase with different 
polarities, at high flow rate and 
pressure of the mobile phase

UV-VIS (e.g. diode 
array) detection, 
fluorescence, mass 
spectrometry or 
electrochemical 
detection

The spectrophotometric method with DPPH was applied to 
antioxidant capacity determination in fruit juices [75] and fruit 
(guava) extracts [74]. The standard curve was linear between 25 and 
800mM Trolox [74]. Results are expressed in µM Trolox Equivalents/g 
fresh mass. Antioxidant activity of guava fruit methanol extracts, as 
determined by the DPPH method are comprised between 16.2  ± 1.0 
and 32.0  ± 5.1µM TE/ fresh mass [74].

The ABTS method: The ABTS cation radical (ABTS•+) [76] which 
absorbs at 743 nm (giving a bluish-green colour) is formed by the 
loss of an electron by the nitrogen atom of ABTS (2,2’-azino-bis(3-
ethylbenzthiazoline-6-sulphonic acid)). In the presence of Trolox (or of 
another hydrogen donating antioxidant), the nitrogen atom quenches 
the hydrogen atom, yielding the solution decolorization.    

ABTS can be oxidized by potassium persulphate [43,74] or 
manganese dioxide [77], giving rise to the ABTS cation radical 
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(ABTS•+) whose absorbance diminution at 743 nm was monitored in 
the presence of Trolox [43,74,77], chosen as standard antioxidant. 

The antioxidant activity of soft beverages, as determined by the 
ABTS method is comprised between 0.09 mM Trolox/liter for Cola and 
3.30mM Trolox/liter for grapefruit juice [43].  

The total antioxidant activity of white- and yellow-flesh nectarines 
[78] was evaluated by FRAP method, the results being expressed as 
Ascorbic Acid Equivalent Antioxidant Capacity, AEAC). Thea values 
ranged between 14.4 and 104.5mg/100 of fruit. 

The HORAC (hydroxyl radical averting capacity) assay: [79,81]: 
this technique relies on the measurement of the metal-chelating activity 
of antioxidants, under the conditions of Fenton-like reactions. The 
method uses a Co(II) complex and hence evaluates the protecting ability 
against the formation of hydroxyl radical. Fluorescein is incubated 
with the sample to be analysed, then the Fenton mixture (generating 
hydroxyl radicals) was added. The initial fluorescence was measured, 
after which the readings were taken every minute after shaking. Gallic 
acid solutions were used for building the standard curve.

The lipid peroxidation inhibition assay: The lipid peroxidation 
inhibition assay method uses a Fenton-like system (Co(II) + H2O2), to 
induce lipid (e.g. fatty acid) peroxidation [79,83]. 

α-linolenic acid was chosed as a model substrate. It was mixed with 
the analysed sample, as well as with the Fenton-like mixture, to induce 
lipid peroxidation.  After the end of the incubation, the concentration 

of thiobarbituric acid-reactive substances (TBARS) was measured, as 
the index of lipid peroxidation. Lipid peroxidation was expressed in 
nmoles of TBARS per 1 ml of mixture α-linolenic acid/analysed sample.

Fluorimetry: fluorescence is the emission of light by a substance 
that has absorbed light or other electromagnetic radiation of a different 
wavelength. In most cases, emitted light has a longer wavelength, and 
therefore lower energy, than the absorbed radiation. Fluorescence 
emission occurs when an orbital electron of a molecule relaxes to its 
ground state, by emitting a photon of light after being excited to a 
higher quantum state by some type of energy. Fluorescence assay has 
been used to antioxidant content determination [87-91].

The fluorescence spectroscopy has been applied for the 
determination of phenolic compounds in oils [87]. A method based on 
fluorescence is proposed to quantify the butylhydroxyanisole (BHA) 
and tert-butylhydroquinone (TBHQ) antioxidant concentration in 
biodiesel produced from sunfower and soybean oils. Fluorescence and 
excitation spectra of the solutions were recorded at room temperature 
using a spectrofluorimeter. The emission spectra were obtained 
under excitation at about 310 nm and fluorescence in the 320-800nm 
range was evaluated. Biodiesel samples without BHA and TBHQ 
showed fluorescence band at about 420nm, which can be attributed 
to tocopherols, inherent to the vegetable oils used in the biodiesel 
production. The addition of BHA and/or TBHQ is responsible for the 
occurence of a fluorescence band around 330nm. It was verified that 
the fluorescence intensity around 330nm increases linearly as function 
of antioxidant concentration with correlation coefficient of about 1, 
regardless of the oil source and antioxidants.

Fluorimetric methods of ascorbic acid determination are based on 
dehydroascorbic acid reaction with o-phenylene diamine [88,89]. This 
technique requires a strict control of pH, as the fluorescence intensity 
depends strongly of the pH value.

A fluorescence method was developed [90], to examine how 
membrane sterol lateral organization affects the potency of antioxidants. 
This information was used to evaluate possible adverse effects of lipid-
soluble antioxidants, which was reported in recent clinical studies. 
In the presence of an antioxidant, the lag time produced during free 
radical-induced sterol oxidation in lipid vesicles reflects the potency of 
the antioxidant. The obtained data suggest that while ascorbyl palmitate 
is a more efficient antioxidant than its water-soluble counterpart as 
judged by the lag time, it can easily perturb sterol lateral organization 
by insertion into membrane bilayers, which could impose detrimental 
effects on cells.

Another fluorescence assay [91] measured the rate and extent 
of sterol oxidation in lipid bilayers. Dehydroergosterol (DHE), a 

The spectrophotometric method based on the absorbance 
diminution of ABTS cation radical was applied to antioxidant content 
determination in guava fruit extracts [74], fruit and vegetable extracts, 
soft beverages, alcoholic beverages, tea and coffee [43]. The standard 
curve was linear between 25 and 600µM Trolox [74]. The values of the 
total antioxidant capacity of guava extracts ranged between 22.3  ± 0.9 
and 37.9  ± 3.4µM TE/ fresh mass [74].

The FRAP (ferric reducing antioxidant power) method: The FRAP 
(ferric reducing antioxidant power) method relies on the reduction by 
the antioxidants, of the complex ferric ion-TPTZ (2,4,6-tri(2-pyridyl)-
1,3,5-triazine). The binding of Fe2+ to the ligand creates a very intense 
navy blue color. The absorbance can be measured to test the amount 
of iron reduced and can be correlated with the amount of antioxidants 
[43,74,78].  Trolox [43] or ascorbic acid [78] were used as references. 

The ORAC (oxygen radical absorption capacity) assay: [74,79, 
80] the method measures the antioxidant scavenging activity against 
the peroxyl radical, induced by 2,2’-azobis-(2-amidino-propane) 
dihydrochloride (AAPH), at 37oC. Fluorescein was used as the 
fluorescent probe. The loss of fluorescence was an indicator of the 
extent of the decomposition, from its reaction with the peroxyl radical. 
Antioxidant activity of guava fruit methanol extracts were determined 
by the ORAC method. The standard curve was linear between 0 and 
50mM Trolox. The obtained results ranged between 18.2  ± 2.3 and 25.5  
± 1.6µM TE/ fresh mass [74].

The TRAP (total peroxyl radical trapping antioxidant parameter) 
assay: the luminol-enhanced chemiluminescence (CL) [79,82] was 
exploited to monitor the reactions involving the peroxyl radical. The 
CL signal is driven by the production of luminol derived radicals, 
resulted from the thermal decomposition of AAPH. The TRAP value 
was determined from the duration of the time period during which the 
sample quenched the chemiluminiscence signal, due to the presence of 
antioxidants.

The PFRAP (potassium ferricyanide reducing power) method: 
[84, 85] An absorbance increase can be correlated to the reducing ability 
of antioxidants/antioxidant extracts. The compounds with antioxidant 
capacity react with potassium ferricyanide, to form potassium 
ferrocyanide. The latter reacts with ferric trichloride, yielding ferric 
ferrocyanide, a blue coloured complex, with a maximum absorbance 
at 700nm.

The CUPRAC (cupric reducing antioxidant power) assay: [84, 
86] the standard antioxidants or extracts are mixed with CuSO4 and 
neocuproine. After 30min, the absorbance was measured at 450nm. In 
the assay, Cu(II) is reduced to Cu(I) through the action of electron-
donating antioxidants. Results are expressed in milligrams of Trolox 
per liter of extract.
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fluorescent cholesterol analog, is used as a probe and at the same time, 
as a membrane component. The assay can also be performed on bilayers 
containing a mixture of sterols including DHE and nonfluorescent 
sterols, such as cholesterol and ergosterol. The fluorescence intensity 
of DHE decreases on oxidation, so the rate and extent of free radical- 
or enzyme-induced sterol oxidation can be measured as a function 
of temperature and membrane composition. In agreement with the 
sterol regular distribution model, it is found that both free radical- and 
enzyme-induced sterol oxidation vary with membrane sterol content in 
a well defined alternating manner [91].

Electrochemical techniques

Electrochemical techniques were also applied to antioxidant 
content and antioxidant capacity determination. Cyclic voltammetry 
and biamperometry are the most broadly used. 

Cyclic voltammetry: Cyclic voltammetry is a type of 
potentiodynamic electrochemical measurement. In cyclic voltammetry 
experiments the working electrode potential is ramped linearly versus 
time. In cyclic voltammetry, the potential of a working electrode is 
linearly scanned from an initial value to a final value and back, while 
recording the respective current intensity.

When the value of a set potential is reached, the working electrode’s 
potential ramp is inverted. This inversion can happen multiple times 
during a single experiment. The current at the working electrode is 
plotted versus the applied voltage to give the cyclic voltammogram.

The important parameters obtained from a cyclic voltammogram 
are the intensities of the cathodic and anodic peaks Ia, Ic, the anodic 
oxidation potential (Ea), and the cathodic oxidation potential  (Ec). All 
these values can be readily obtained from the voltammogram. In the 
case of a reversible system, the values of the intensities of the cathodic 
and anodic peaks are equal. For irreversible system, only the presence 
of one peak is noticeable on the voltammogram. Cyclic voltammetry 
(CV), shown to be a convenient methodology, has been validated for 
the quantitation of the Low Molecular Weight Antioxidant capacity of 
blood plasma, tissue homogenates, and plant extracts. Analysis of the 
CV tracing yields the values of (i) the biological oxidation potential, 
E and E1/2, which relate to the nature of the specific molecule(s); (ii) 
the intensity (Ia) of the anodic current; and (iii) the area of the anodic 
wave (S) [47]. The sensitivity of the method, as given by the slope of 
the calibration graph versus vitamin C was 15.175µA/mM ascorbic acid 
[47]. The antioxidant capacity of dry vegetal extracts [65] (expressed as 
mg of ascorbic acid equivalents) was determined by cyclic voltammetry 
performed at a glassy carbon working electrode. Green tea, black 
tea, rosemary and coffee, were selected and analysed to test the total 
antioxidant capacity of respective dry extracts. For the three extracts 
obtained from each matrix the antioxidant capacity was determined by 
the measurement of the anodic area of a cyclic voltammogram. 

Of the substances tested, those in which dry methanol extracts 
display the highest total antioxidant capacity are: Green Tea > Black 
Tea > Rosemary > Arabica Coffee> Herb Tea > Acerola > Quality Tea 
> Acai. On the other hand, ofthe substances tested, those for which 
dry aqueous extracts display the highest total antioxidant capacity 
are: Green Tea >Black Tea > Arabic Coffee > Herb Tea > Rosemary > 
Acerola >Quality Tea > Acai. This implies that these two solvents do 
not always have the same extractive capacity for all the antioxidant 
substances contained in the various vegetal samples.

Cyclic voltammetry results of antioxidant capacity determination in 

buckwheat products showed good correlation with the data obtained by 
spectrophotometry [92]. Cyclic voltammograms of analysed buckwheat 
extracts were useful for evaluation of the antioxidant capacity. The total 
charge below the anodic current waveform was correlated with the data 
obtained by the spectrophotometric method with ABTS+∙ and DPPH∙. 
The changes in the antioxidant capacity of buckwheat and its products 
followed the changes in flavonoid composition.

The amperometric method: The amperometric method involves 
the measurement of the intensity of the current that flows between a 
working electrode and a reference electrode, at a fixed (applied) value 
of potential. The current is generated by the oxidation/reduction of an 
electroactive analyte. The value of the potential is maintained at a set 
value with respect to a reference electrode [93-95].

The amperometric determination of the antioxidant activity [96] 
was based on the reduction of 2,2-diphenyl-1-picrylhydrazyl (DPPH•) 
at the glassy carbon electrode. All the experiments were performed in a 
three-electrode electrochemical cell at 140 mV vs. Hg2Cl2 | 3M KCl using 
ethanolic solution (40%) and 0.033M KCl in 0.033 M phosphate buffer, 
pH=7.4. The linear range obtained for Trolox in 100µM DPPH ethanol-
water solution was up to 30µM, with a limit of detection of 0.05µM. 
The developed method was applied for the evaluation of antioxidant 
activity of some water or ethanol soluble pure antioxidant compounds 
and of several samples of tea, wine and some other beverages. The good 
correlation of results (R2=0.9993) expressed as Trolox equivalents, was 
obtained between the proposed amperometric method and the classic 
spectroscopic method [96]. 

The biamperometric method: The biamperometric method is 
based on the measurement of the current flowing between two identical 
working electrodes polarized at a small potential difference and 
immersed in a solution containing a reversible redox couple. Indirect 
biamperometric measurement relies on the reaction of the analyte with 
the indicating redox couple, its selectivity depending on the specificity 
of the reaction involving the oxidized or reduced form of the redox pair 
and the analyte. Fe3+/Fe2+, I2/I

-, Fe(CN)6
3-/Fe(CN)6

4- are redox couples 
commonly used in biamperometric measurements [97].

A common redox pair chosen in biamperometric studies was 
DPPH•/DPPH. Antioxidants react with DPPH• (radical form) 
generating DPPH (reduced form), the intensity of the resulted current 
being proportional to the residual concentration of DPPH•, after its 
reaction with the analyte (antioxidant) [75, 98]. 

Two identical Pt [75] or glassy carbon [98] electrodes were used, 
where the reduction of the DPPH• radical and the oxidation of the 
reduced form (DPPH) take place as follows:

The reduction of DPPH•at electrode 1 gives rise to a cathodic 
current, while the oxidation of DPPH at electrode 2 generates an 
anodic current. In biamperometry, the controlled parameter is the 
potential difference between the two identical working electrodes. The 
potential values of the two electrodes are not controlled with respect to 
a reference electrode. The biamperometric detector response is linear 
with respect to that constituent of the redox couple which is present 
in lower concentration. Working conditions were chosen for a DPPH• 
(oxidized form) concentration smaller than DPPH concentration. Each 
antioxidant addition in a solution containing the redox couple DPPH•/
DPPH decreases the concentration of the oxidized (radical) form and 
increases the concentration of the reduced form, thus generating a 

Electrode 1: DPPH• + e- → DPPH 

Electrode 2: DPPH → DPPH• + e-
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current proportional to the concentration of antioxidant. In the case 
of the proposed method, the cathodic current is limited by the lower 
concentration of DPPH• (radical form) in the indicating mixture. The 
DPPH•/DPPH method was applied to the determination of the total 
antioxidant capacity in fruit juices [75], tea, wine and coffee [98]. The 
sensitivity of the method was 20.1 nA/µM of Trolox, while the limit 
of detection accomplished by the used measuring device was 0.05 µM 
[98].

Another redox couple used in biamperometric antioxidant 

enzymatically produced by peroxidase in a tubular flow-through reactor. 
The performance of the bioreactor was tested at different concentrations 
of immobilized enzyme, ABTS and hydrogen peroxide. Interdigitated 
array microelectrodes were used as electrochemical sensors for the 
biamperometric determination. The results of antioxidant activity 
were determined using Trolox as a standard. The applied interdigitated 
electrode (IDE) detector accomplished a good sensitivity of 0.3 nA/
µM Trolox and offered linear range between 20 to 500µM Trolox. Real 
samples like juices, tea and wine were analysed [99]. 

The ABTS cation radical was also produced bienzymatically, by 
using glucose oxidase and peroxidase. The linearity of IDE detector 
was tested in the range 20µM-2000µM and a good sensitivity of 0.165 
nA/µM for Trolox solutions was obtained [100]. The interdigitated gold 
electrodes were used for biamperometric determination of antioxidant 
capacity of alcoholic beverages (wine and spirits) [100]. 

Biosensors method

Oxidoreductases are the most oftenly used in biosensor applications 
because of their electron transferring properties during catalysis. These 
enzymes offer the advantages of being stable and in some situations 
do not require coenzymes or cofactors. There are several reviews and 
books referring to antioxidant and antioxidant capacity determination 
by biosensors [72, 101-104].

Potential applications of biosensors for evaluation of antioxidant 
status include  monitoring of superoxide radical (O2•−), monitoring of 
nitric oxide (NO), monitoring of glutathione, monitoring of uric acid, 
ascorbic acid or phenolic compounds [104].

A carbon paste DNA-based biosensor for the electrocatalytical 
evaluation of total antioxidant capacity was constructed [105]. The 
method was based on the partial damage of a DNA layer adsorbed on 
the electrode surface by OH• radicals, generated by Fenton reaction 
and the subsequent electrochemical oxidation of the intact adenine 
bases, to generate an oxidation product that was able to catalyse the 
oxidation of NADH. The presence of antioxidant compounds scavenged 
hydroxyl radicals, leaving more adenine molecules unoxidized, and 
thus, increasing the electrocatalytic current of NADH measured 
by differential pulse voltammetry. Using ascorbic acid as a model 
antioxidant species, the detection of amounts as low as 50 nM ascorbic 
acid in aqueous solution was possible [105].

Frequently, polyphenols are the main contributors to the 
antioxidant capacity of several plants which contain them. Several 
amperometric biosensors for the detection of phenolic compounds 
have been developed, on the basis of enzymes, such as tyrosinase, 
laccase or peroxidase [106-109]. Biosensors for phenolic compounds 
were constructed by immobilizing polyphenol oxidase (PPO) into 
conducting copolymers prepared by electropolymerization of pyrrole 
with thiophene capped polytetrahydrofuran [108].

These enzyme-based biosensors allow the evaluation of the “total 
phenol content”. Since tyrosinase acts on the hydroxyl groups of 
phenolic compounds, the total amount of -OH groups in red wines was 
obtained through activity determination by enzyme electrodes. Results 
are reported in Gallic Acid Equivalent (GAE) as mg/l [108,110]. For 
polyphenol determination in vegetable extracts [111], an amperometric 
horseradish peroxidase-based biosensor was employed.

The biosensors were used for the determination of antioxidant 
capacity in wines, the results being consistent with those obtained by 
spectrophotometry [112,113] or in orange juices, by biosensors based 
on screen-printed electrodes [114]. For the analysis of commercial red 
wines, a multi-walled nanotube ionic liquid electrode with immobilized 
tyrosinase was used [113]. The sensing ranges were 0.01-0.08 mM in a 
phosphate buffer solution. 

Chromatographic methods

Chromatographic methods were often applied to antioxidant 
separation and detection, and used before spectrophotometrical or 
electrochemical assessment of the total antioxidant capacity.

Gas chromatography: Gas chromatography (GC) is a common type 
of chromatography used for separating and analysing compounds that 
can be vaporized without decomposition. The process of separating the 
compounds in a mixture is carried out between a liquid stationary phase 
and a gas mobile phase. The mobile phase is usually an inert gas such 
as helium or an unreactive gas such as nitrogen. The stationary phase is 
a microscopic layer of liquid or polymer on an inert solid support. The 
comparison of retention times is what gives GC its analytical usefulness. 
The most common detectors are the flame ionization detector and the 
thermal conductivity detector.

The antioxidant capacity of turmeric oil (responsible for its 
antimutagenic capacity) was also determined by chromatographic 
methods [115]. Turmeric oil and its fractions were analysed by gas 
chromatography with flame ionisation detector and gas chromatography 
coupled with mass spectrometry. Turmeric oil and its fractions were 
then tested for antioxidant activity using the carotene-linoleate model 
system and the phosphomolybdenum method. The quantitative 
antioxidant capacity of the turmeric oil and its fractions were measured 
spectrophotometrically through the phosphomolybdenum method, 
which is based on the reduction of Mo (VI) to Mo (V) by the sample 
analyte and the subsequent formation of green phosphate/Mo (V) 
complex with a maximum absorption at 695 nm. The method using 
the carotene-linoleate [115, 116] model was based on the continuous 
measurement of the optical density, until the colour of β-carotene 
disappeared. Butylated hydroxyanisole (BHA) was used for the blank.

HPLC (high performance liquid chromatography): HPLC (high 
performance liquid chromatography) typically utilizes different types of 
stationary phases, a pump that moves the mobile phase(s) and analyte 
through the column, and a detector to provide a characteristic retention 
time for the analyte. The detector (usually a diode array detector) may 
also provide additional information related to the analyte, (i.e. UV/Vis 
spectroscopic data for analyte if so equipped).

A pump provides the higher pressure required to move the mobile 
phase and analyte through the densely packed column. The increased 
density arises from smaller particle sizes. This allows a better separation 
on columns of shorter length and ensures higher velocity. Normal-
phase HPLC uses a polar stationary phase and a non-polar, non-
aqueous mobile phase, and works effectively for separating analytes 
readily soluble in non-polar solvents. Reversed phase HPLC has a 

capacity assay is ABTS+∙/ABTS [99,100]. The ABTS cation radical was 
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The antioxidant activity using a HPLC system with post-
column on-line antioxidant detection, based on 2,2’-azinobis-3-
ethylbenzothiazoline-6-sulphonic acid radical scavenging activity. The 
method was applied to the determination of antioxidant content of 
coffee [117]. Following separation of the coffee samples on the HPLC 
column, the eluate was directed to a PDA (photodiode array) detector 
and then mixed with a stabilised solution of the ABTS cation radical 
and the solution was directed to a detector monitoring absorbance 
at 720 nm. The ABTS cation solution has a deep blue colour, and 
any quenching of the radical results in a loss of colour indicated by 
a negative peak on the HPLC trace. The antioxidant contributions of 
individual HPLC peaks were added to give the total HPLC-derived 
antioxidant activity. The total antioxidant capacity of the green coffee 
determined with the on-line HPLC system was 760 ± 2.5µmol Trolox/l 
and 984 ± 25.8µmol Trolox/l  for the roasted coffee [117].

A HPLC method with fluorescence detection [118] was developed 
for the determination of propyl gallate, nordihydroguaiaretic acid, 
butylated hydroxyanisole, tert-butylhydroquinone and octyl gallate 
in edible oils and foods. The HPLC separation was performed on a 
C18 column  using a mixture of 5% acetic acid-acetonitrile-methanol 
as the mobile phase and monitored by using a fluorescence detector. 
Sample peaks were identified by comparison of the fluorescence spectra 
with those of antioxidant standards. Average recoveries of fortified 
antioxidants at 100 micrograms/g were 72.1-99.6%. Coefficients of 
variation were 0.7-7.2% [118].

The antioxidant activity of the extracts from root barks of adult 
plant and root of seedlings extracts [119] was evaluated by HPLC 
coupled to electrochemical detection (HPLC-ED).

The EICD electrochemical detector was composed of a glassy 
carbon working electrode, an Ag/AgCl reference electrode and a Pt 
electrode. The separation of the analytes was carried on a Gemini 
C18 column, using the isocratic mode and acetonitrile/water mixture 
containing acetic acid as mobile phase. The optimal potential of the 
standards was obtained on a hydrodynamic voltammogram, from the 
evaluation of peak areas vs applied potential vs Ag/AgCl [119]. 

The advantages and shortcomings of the antioxidant assessment 
methods were presented by Prior and colab [120]. Several articles 
highlighten the advantages and disadvantages of in vivo and in vitro 
analysis [121-128].

The methods are chosen as a function of the nature of the sample and 
the comparison is valid only on the same sample types. The advantages 
of the analytical techniques can reffer to the complexity of the necessary 
tools, to the simplicity of the applied procedure, to the duration of 
the analysis, to the biological relevance and the performances of the 
method (sensitivity, precision, accuracy, detection limit).  

Determinations relying on photometric measurements (DPPH, 
ABTS and FRAP assays)  are simple and rapid and need only a UV-
Vis spectrophotometer to perform, which probably explains their 
widespread use in antioxidant screening. 

Most methods can be rapidly automatized and some can be applied 
in vivo (e.g. ABTS assay). Nevertheless, the analytical signal is sometimes 
difficult to measure and does not account for all antioxidants.

TRAP assay has been criticized as being based on an unphysiological 
oxidative stress (water-soluble peroxyl radicals), the FRAP assay does 
not measure thiol antioxidants, such as glutathione. The DPPH assay 
was considered as not based on a competitive reaction, because DPPH∙ 
is both radical probe and oxidant. Interpretation is complicated when 
the tested compounds have spectra that overlap DPPH∙ at 515nm. 
The FRAP assay is characterized by a fast kinetics (4-6 min) but in 
fact this is not always true. Some polyphenols react more slowly and 
require longer reaction times for detection, for example, 30min. Copper 
has advantages over iron for antioxidant assay, in that all classes of 
antioxidants, including thiols, are detected with little interference from 
reactive radicals, and the copper reaction kinetics are faster than in 
case of iron. CUPRAC assay is complete in minutes for ascorbic acid, 
uric acid, gallic acid, and quercetin, but requires 30-60 min for more 
complex molecules. ORAC method is based on a temperature-sensitive 
reaction. Hence, temperature control is essential.

Regarding the complexity of the analytical instruments, the 
photometric methods are the simplest, followed by voltammetric and 
chromatographic methods. 

Voltammetry offers low detection limits, even when compared to 
more expensive techniques. It requires little sample preparation. This 
technique provides us with the advantage of a fast analysis as well as with 
the easiness and rapidity of the standard addition method application. 
Because of the low cost of the required equipment, as well as simplicity 
of the employed procedures, voltammetry appears to offer an attractive 
alternative to the titrimetric or instrumental methods, in particular 
in food quality control. It does not require complicated, expensive 
equipment and well-qualified personnel like chromatography, nor 
is it laborious or time consuming like the previously mentioned 
instrumental technique [59].

Conclusions
The increasing interest gained by antioxidants is due to the health 

benefits provided mainly by natural sourced (exogenous) low molecular 
weight antioxidants. This consists in preventing the occurence of 
oxidative-stress related diseases, caused by the attack of free radicals on 
key biocomponents like lipids or nucleic acids.

Various methods and analytical tools are employed for antioxidant 
content and total antioxidant capacity evaluation: spectrometry, 
electroanalytical methods, chromatography. 

These techniques are able to offer a complete profile of the 
antioxidant content of foodstuffs. 
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